RESEARCH TALKS
Emil AKHMEDOV
Isometry invariance of exact correlation functions in various charts of Minkowski and de Sitter spaces
Abstract
We consider quantum field theory with self-interactions in various patches of Minkowski and de Sitter spacetimes. Namely, in Minkowski spacetime we consider separately the right (left) Rindler wedge, past wedge, and future wedge. In de Sitter spacetime we consider expanding the Poincaré patch, the static patch, the contracting Poincaré patch, and the global de Sitter itself. In all cases we restrict our considerations to the isometry invariant states leading to maximally analytic propagators. We prove that loop corrections in the right (left) Rindler wedge, in the past wedge (of Minkowski spacetime), in the static patch and in the expanding Poincaré patch (of de Sitter spacetime) respect the isometries of the corresponding symmetric spacetimes. All these facts are related to the causality and analyticity properties of the propagators for the states that we consider. At the same time in the future wedge, in the contracting Poincaré patch and in the global de Sitter spacetime infrared effects violate the isometries.
Jan AMBJORN
Are we bombarded by baby universes?
Abstract
It is suggested that the late time exponential expansion of our Universe is caused by the universe being bombarded by baby universes. This leads to a modified Friedmann equation that is in agreement with late-time cosmological observations without invoking a cosmological constant.
Arup BOSE
Limiting spectral distribution of random matrices with independent entries
Abstract
It is well known that the limit eigenvalue distribution of the scaled standard Wigner matrix is the semi-circular distribution whose $2k$th moment equals the number of non-crossing pair-partitions of $\{1,2,\ldots ,2k\}$. There are several extensions of this result in the literature, including the sparse case. We discuss extension of these results by relaxing significantly the i.i.d. assumption.
The limiting spectral distribution then involve a larger class of partitions. In the process we show how some new sets of partitions gain importance. Several existing and new results for their band and sparse versions, as well as for matrices with continuous and discretevariance profile follow as special cases.
Patterned random matrices such as the reverse circulant, the