RESEARCH TALKS
Da Rong Cheng (University of Miami)
A mapping approach to associative submanifolds
Abstract
Based on analogy with J-holomorphic maps, Aaron Smith proposed in 2011 a class of first-order PDEs whose solutions are mappings that conformally parametrize calibrated submanifolds in ambient spaces equipped with a vector cross product. I will report on previous and recent joint works with Spiro Karigiannis (Waterloo) and Jesse Madnick (Oregon) on the analytical properties and variational characterization of these mappings, focusing on the case of associative submanifolds in ambient spaces equipped with a G2-structure.
Tristan Collins (MIT)
Complete Calabi-Yau metrics and Monge-Ampere equations
Abstract
I will describe progress towards the construction of complete Calabi-Yau metrics on the complement of ample, simple normal crossings anti-canonical divisors. This talk will discuss joint works with Y. Li, and F. Tong and S.-T. Yau.
Aleksander Doan (Trinity College & UCL)
Cauchy-Riemann operators and quaternionic vortex equations
Abstract
It is well-known that the number of J-holomorphic curves in an almost manifold can change when we vary the almost complex structure J. I will talk about an analogous phenomenon in gauge theory on surfaces, where the number of solutions to certain partial differential equations can change when the equations are perturbed. These two phenomena are closely related, as they are both caused by a wall structure in the space of Cauchy-Riemann operators on a surface. This talk is based on joint work with Thomas Walpuski.
Shubham Dwivedi (Humboldt Universität)
Geometric flows of G2 and Spin(7)-structures
Abstract
We will discuss a family of flows of G2-structures on seven dimensional Riemannian manifolds. These flows are negative gradient flows of natural energy functionals involving various torsion components of G2-structures. We will prove short-time existence and uniqueness of solutions to the flows and a priori estimates for some specific f