Go to menu Go to content

Références

Voici quelques références pertinentes permettant d’aller plus loin dans les concepts mathématiques vus dans cette formation.

  1. Altrock, P. M., Liu, L. L. & Michor, F. The mathematics of cancer: integrating quantitative models. Nat. Rev. Cancer 15, 730–745 (2015).
  2. Barbolosi, D., Ciccolini, J., Lacarelle, B., Barlési, F. & André, N. Computational oncology — mathematical modelling of drug regimens for precision medicine. Nat. Rev. Clin. Oncol. 13, 242–254 (2016).
  3. Le Sauteur-Robitaille, J., Crosley, P., Hitt, M., Jenner, A. L. & Craig, M. Mathematical modeling predicts pathways to successful implementation of combination TRAIL-producing oncolytic virus and PAC-1 to treat granulosa cell tumors of the ovary. Cancer Biol. Ther. 24, 2283926 (2023).
  4. Craig, M., Gevertz, J. L., Kareva, I. & Wilkie, K. P. A practical guide for the generation of model-based virtual clinical trials. Front. Syst. Biol. 3, (2023).
  5. Surendran, A. et al. Approaches to Generating Virtual Patient Cohorts with Applications in Oncology. in Personalized Medicine Meets Artificial Intelligence: Beyond “Hype”, Towards the Metaverse (eds. Cesario, A., D’Oria, M., Auffray, C. & Scambia, G.) 97–119 (Springer International Publishing, Cham, 2023). doi:10.1007/978-3-031-32614-1_8.
  6. Kim, T. H., Shin, S. & Shin, B. S. Model-based drug development: application of modeling and simulation in drug development. J. Pharm. Investig. 48, 431–441 (2018).
  7. Knapp, B. et al. Ten Simple Rules for a Successful Cross-Disciplinary Collaboration. PLOS Comput. Biol. 11, e1004214 (2015).
  8. Exponential growth. Eur. J. Cancer 1965 10, 165–168 (1974).
  9. Murphy, H., Jaafari, H. & Dobrovolny, H. M. Differences in predictions of ODE models of tumor growth: a cautionary example. BMC Cancer 16, 163 (2016).
  10. Meibohm, B. & Derendorf, H. Basic concepts of pharmacokinetic / pharmacodynamic (PK/PD) modeling. Int. J. Clin. Pharmacol. Ther. 35, 401–13 (1997).
  11. Gabrielsson, J. & Weiner, D. Non-compartmental Analysis. in Computational Toxicology: Volume I (eds. Reisfeld, B. & Mayeno, A. N.) 377–389 (Humana Press, Totowa, NJ, 2012). doi:10.1007/978-1-62703-050-2_16.
  12. Goutelle, S. et al. The Hill equation: a review of its capabilities in pharmacological modelling. Fundam. Clin. Pharmacol. 22, 633–648 (2008).
  13. Gesztelyi, R. et al. The Hill equation and the origin of quantitative pharmacology. Arch. Hist. Exact Sci. 66, 427–438 (2012).
  14. Réseau Santé Numérique. https://rsn.quebec/fr/accueil/.