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Problem Breakdown

Thierry Jean, Myles Sjogren
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Problem statement

L How can we better predict risk and future return ?

Fundamental factors E — @

describe the underlying financials,

such as earnings, market
capitalization, and debt levels.

7source: https://www.investopedia.com/terms/m/multifactor-model.asp




Historical Stock Data

Tabular data indexed by stock id and date

1207 individual stocks

245 months (from 11-1998 to ©3-2019)

93 features about fundamental factors

4 |abels about future/forward total return

over 1, 3, 6, and 12 months

source: https://github.com/shokru/mlifactor.github.io/tree/master/material
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Data Exploration

Correlation Matrix of
Stocks’ 1 month returns
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Data Exploration — PCA and Clustering of Stocks

(8, 0.6736612) Mean Returns for Different Clusters

Cumulative explained variance
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Problem Solving Strategy
3




We will try 2 distinct methods to forecast returns

1. Tree-based models:
" Leverages larges datasets with many features

= Discover subsets of important features

2. Autoencoders:
=  Allow for a non-linear dimension reduction of features

= (Can detect stocks with "anomalous" factors
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Tree-based models

Yaroslav Babich, Kiran Deol, Myles Sjogren, Ernest Tafolong
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Overview of Tree Models

= Aimed at finding groups of observations that behave similarly

= Trees grow through a branching process which splits data according

to certain thresholds/categories of a given predictor.

= At each step “impurity” or other error metrics are minimized




Representation of a tree




One tree isn’t Enou

Boosting: aggregate forecasts

from many simpler trees

Reduces correlation among

different trees in the forest

XGBoost, LightGBM
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Results

Important considerations:
Train-Validation-Test split

Model Hyperparameters
no. of trees, depth of trees,

regularization parameters, etc.
How long to Train
Sparsity of Data
Model generalization

1 Month Forward Return

Example Prediction path




Results

Aggreqgated Prediction Paths

Most Important Features
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SHAP - Feature im

portance
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Takeaways

Stock returns are inherently hard to predict at a certain timescale

Trees takes some fine tuning

Parameters and features that perform well for a given stock and

time window may not generalize to others




Reconstructed

Ideally they are identical. input

X~ x

Bottleneck!
Encoder Decoder
9o fo

An compressed low dimensional
representation of the input.

Autoencoder models

Mohamed Gueye, Qi Guo, Ehsan Rezaei, Javad Roustaei, Shiva Zokaee

participants are sorted alphabetically




Architecture

» The fundamental goal of asset pricing is to understand the
behavior of risk premiums.

The high-dimensional nature of machine learning methods
(element (a) of this definition) enhances their flexibility relative

to more traditional econometric prediction techniques.

This flexibility brings hope of better approximating the unknown
and likely complex data generating process underlying equity
risk premiums

/




Architecture
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IC_model_1 and cumulative IC_model_1 by Year and Month

IC_model_3 and cumulative IC_model_3 by Year and Month
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The standard deviation is By comparing the mean of each
decreasing by adding each model  model we can see the progress.




Average of model_1 Average of model_2 Average of model_3 Average of model_4

-0.00001 -0.00015 0.0000026 0.0000002

The average of R2 score within each model is getting better by each model.
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Conclusion

Both Tree-based and Autoencoder models
were developed to forecast future return of
securities based on their fundamental
factors

We highlighted the importance of adequate

training and validation to prevent “Look-
ahead” bias




Future development

Forecast models developed could be
expanded to portfolio composition and
portfolio performance forecast

Smart Beta Exchange-Traded Funds
(ETFs) are rising in popularity among
iInvestors

They provide a variety of investment
and risk-management strategies at
lower fees

L/




Thanks!

Any questions?

/



Sources

Coqueret, G. & Guida, T. (2021). Machine Learning for Factor Investing. http://www.mlfactor.com/

Coqueret, G. & Guida, T. (2019). Machine Learning for Factor Investing. [Data set].
https://github.com/shokru/mlifactor.github.io/tree/master/material

Gu, S., Kelly, B., & Xiu, D. (2021). Autoencoder asset pricing models. Journal of Econometrics
222:429-450

Gu, S., Kelly, B., & Xiu, D. (2018). Empirical Asset Pricing via Machine Learning The Review of
Financial Studies 33:2223-2273




Python packages and libraries

* Numpy » Scikit-learn * Matplotlib

* Pandas Xgboost « Seaborn

« Scipy LightGBM  Plotly

« MKL Optuna « Dash
Bottleneck SHAP
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Appendix | - Fundamental Factors

average daily volume in amount in
USD over 12 months

earnings per share

price momentum 12 - 1 months in USD

net margin 1Y growth

earnings per share basic

price momentum 6 - 1 months in USD

cash flow from operations per share net

average daily volume in amount in
USD over 3 months

earnings per share growth

average daily volume in amount in
USD over 6 months

earnings per share continuing
operations

price momentum 12 - 1 months in USD
divided by volatility

price to book

price earnings

earnings per share diluted

price momentum 6 - 1 months in USD divided
by volatility

margin pretax

reccuring earnings on total assets

total sales on average assets

enterprise value

net debt on EBITDA

return on capital

buyback yield

enterprise value on EBITDA

net debt

revenue

book value

fixed assets on common equity

net debt on cash flow

return on assets

capital expenditure on price to sale
cash flow

free cash flow

net margin

return on capital

free cash flow on book value

net debt yield

return on capital employed

capital expenditure on sales

free cash flow on capital employed

net income

return on equity

cash dividends cash flow

free cash flow margin

net income available margin

price to sales

cash per share

free cash flow on net operating assets

net income on operating asset

average share turnover 12 months

cash flow per share

free cash flow on operating assets

net income on total operating asset

average share turnover 3 months

debt to equity

free cash flow on total assets

net operating asset

average share turnover 6 months

dividend yield

free cash flow on tangible book value

operating asset

total assets

dividend per share

free cash flow on total operating assets

operating cash flow

EBIT on book value

free cash flow yield

operating cash flow on book value

total enterprise value less market
capitalization

EBIT on non operating asset

free cash flow on price sales

operating cash flow on capital employed

total debt on revenue

EBIT on operating asset

intangibles on revenues

operating cash flow margin

total capital

EBIT on total asset

interest expense coverage

operating cash flow on net operating assets

total debt

EBITDA margin

33

average market capitalization over 12
months in USD

operating cash flow on operating assets

total debt on capital

operating cash flow on total assets

total liabilities on total assets

average market capitalization over 3
months in USD

operating cash flow on tangible book value

volatility of returns over one year

operating cash flow on total operating assets

volatility of returns over 3 years

average market capitalization over 6
months in USD

operating margin
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