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Context

The objective is to predict the spilling of a flight:
↪→ Spilling flight definition: open to interpretation.

One proposition: the spill flight event is defined by the event:

“occupation rate 3 days before departure ≥ 0.95”.

The occupation rate is defined by

the number of bookings
actual airplane capacity .
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Dataset Building and Features - 1
10 Origins and Destinations: AAA, BBB, CCC, ..., JJJ, KKK, LLL

Figure: Flights from 20 routes studied between 10 Origins and Destinations

Simplification: aggregating data by a unique flight index (TOD).
↪→ longitudinal data (time series) per each flight over two years.
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Dataset Building and Features - 2

Figure: Distribution of flights functions of Departure airport (Left), Destination
airport (Middle) and Departure hour (Right)
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Machine Learning - Random forest - 1
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Machine Learning - Random forest - 2

Data were stratified by cabin
class
70-30 split between training and
testing data
5-fold cross-validation using
caret package
Average of 93% of accuracy
achieved for spill-detection
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Machine Learning - Lasso, SVM, Gradient Boosting,
logistic regression

Data were stratified by flight
We use Lasso to select features.
Average of 80% of accuracy
achieved for spill-detection for
SVM, LG, Gradient Boosting
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Machine Learning - ROC , AUC
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Survival model approach - 1

Approach: Train a survival model to obtain a survival function
associated with each unique Origin-Destination pair.
The selected model is the Cox.
This model allows us to predict the probability of survival according
to certain flight characteristics.
The characteristics retained are: the moment of the day, the day of
the week and the week of the year.
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Survival model approach - 2
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Survival model approach - 3

Application to one flight to predict the probability of spill 3 days before
departure knowing that we are 30 days from departure gives : prediction
score = 67.01%; MSE = 53.17%.

Low prediction capacity: But normal since the model does not take
into account any other information.
Can be use as feature engineering to improve another model.
Possible improvement : add more relevant variables that may explain
spill (eg: price range 30 days before departure).
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Kalman Filtering - 1

Approach: Compute a forecast of plane occupation and conclude if it spills
or not

Historical data and measurements Occupation rate forecast Spilling Forecast

Principle:

Infer dynamic for the current booking:
Use historical data to fit a polynomial regression

Modify dynamic to fit current measurements (data-driven approach):
Use Kalman filtering to enrich the dynamic with current observations
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Kalman Filtering - 2
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Figure: One flight occupation prediction using Kalman Filters and historical model
(Polynomial degree: 5)
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Kalman Filtering - 3
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Kalman Filtering - 4

Actual Predicted
Spill occurrence rate 36% 40%

Figure: Results for a dataset of 11,307 flights

Prediction score: 73%
False negative: 12%

Perspectives:
Improving the historical dynamic model
Machine learning initial guess for new flight (without historical data)
The Kalman filtering approach allows day to day update of the
occupation forecasting with minimal computational load
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