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Introduction

The Dominion Radio Astrophysical Observatory (DRAQO)
IS located in a geographically isolated region near
Penticton B.C.

This is the site of a multitude of sensitive RF detectors
that require a quiet RF spectrum to effectively operate.

For any given day, the site can experience any number
of transient RF signals due to a variety of sources.



IPSW Questions

DRAO would like to develop the capability to:

» Classify and Cluster the set of known RF sources as they are
determined

 |dentify any novel RF sources that have not been previously
classified

* Provide a set of descriptors for each novel source

« Update the clusters dynamically as novel sources are
identified

Once identified, the hope is that any novel sources can be
eliminated with this technique.
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The Dynamic RF Scene

« Detection of RFI in time-frequency space.
ML bounding box approach.




Separate the signals by using a bounding box
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Results: Separated signals




Sample signal types

Short tone burst
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Frequency Shift Key (FSK)

Amplitude: Index 114
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Ampitude: Index 193
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Noisy burst
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Unknown (Box)

Amplitude: Index 209
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Want to differentiate between different signals

Signals have different modulation types

eg:
Analogue: AM, SSB,DSB, FM, PM,
Digital: ASK, FSK, PSK, QAM, BPSK

Can separate signals by looking at their modulation types



Cumulants

Higher order cumulants are claimed to be able to do this

Higher order moment Mpq — F [up_Q(u*)Q]
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Papers claiming this base their claims on using
polynomial supervised learning from synthetic datal!

We are using unsupervised learning from real data
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Also: Count the number of time and frequency peaks

Index 93

Amplitude: Index 93
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Features vector

From each detection, the following 13 features were
extracted for use in clustering:

* Number of peaks in the

* Center Frequency (Hz) frequency direction
« Bandwidth (Hz) « Number of peaks in the time
+ C,, (4! order power direction

cumulant) * Prominence of the major

frequency peak

. th
Ces (67 Order power - Avg. spacing of the frequency

cumulant) peaks
* Transmission length » Avg. spacing of the time peaks
(seconds) « Normalized power centroid in
o de (2l’1d order power the time direction
cumulant) « Width in the frequency direction
(channels)



Clustering the feature vectors in the data

Various algorithms exist for clustering: DBSCAN, WARD (Matlab)
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Hierarchical clustering

The two cluster indices appear to be independent
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Combine the cluster indices

Give a combined cluster index vector

| = (cc,tf)

This seems to be effective in classifying the signals and
identifying new signals



Cluster 1: 1=(2,4)
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Cluster 2: |1 =(2,2)

(getectnon Index 251 [getectnon Index 252 (getectnon Index 209

S ~ S
v v v
b~ < ©
s < s
g & ¢
- - (v
0 20 40 0 10 20 0 20 &0
Time Index Time Index Time Index
Detection Index 69 Detection Index 93 Detection Index 95
~ 0 x 0 - 0
LY LY v
z 2 z
g 200 g 200 g 200
0 S0 100 0 100 200 0 100 200
Time Index Time Index Tume Index
Detection Index 191 Detection Index 205 Detection Index 242
x 0 x 0 x O
- A o
= L= E
g £ 200 g
0 100 200 0 20 a0 0 S0

Time Index Time Index Time Index




Cluster 3: 1=(1,3)
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Cluster7: 1=(1,4)
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Cluster 8: 1=(1,1)
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Autoencoder approach

« Separately, two methods were tried using a convolutional
autoencoder on the baseband time-series data:

» The first idea is to shove all the signals into the encoder, and use
the latent feature space for clustering (in progress)

* The second idea is to not cluster, instead training the
autoencoder on the full dataset, then compute the difference
between the input and the reconstruction. If the error is large
enough, it's “anomalous”.



Autoencoder approach

 First it was trained on all of
the dataset with a P, greater
than 40 dB, then compared
with simulated pure white
noise (on the right)

* Next a collection of real
signals known to be noisy
was used for training, and
then the rest were for testing
(in progress)

* The following slides show the
process of separating those
signals using a parallel
coordinates plot
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Full dataset
colored by Freq
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Dataset for training (see pink)

colored by Freq
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Data for testing (see pink)

colored by Freq
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Conclusions

Building on the unsupervised detection, it was found that cumulants C42 and C63
alone were insufficient to cluster incoming RFI signals.

This is in contrast to other researcher claims that cumulants are sufficient.
However this claim was based on supervised learning algorithms using synthetic
data and not unsupervised leaning on real data.

Cumulants combined with extra information of the number of peaks in the time
domain and the frequency domain, were sufficient to classify the incoming signals.

When tested on a subsequent dataset, this scheme detected a new cluster
providing some confidence as to its future capability.



Autoencoder implementations are currently in progress.

1) One uses all the data and is attempting to cluster based on the
latent feature space.

2) A second also uses all the data but tried to reconstruct the signal.

An inability to be able to do this task would identify a signal as
novel.

A system that combines the bounding box technique to separate
signals with the clustering is in the process of being implemented.



