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Merci, Thanks!
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Motivation

Data-driven approach
Nonparametric model

Human intuition of the physics
Low dimensional parametric model
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Long Term Approach
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Shape Generation
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Surrogate Model
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“Good Shape” Characterization
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“Good Shape” Characterization
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Proof-of-Concept for Design Generation
Regression based; automated, but still parametric...

Inverse PCA

Gaussian Noise
Parameterized Curves
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Proof-of-Concept for Design Generation
Regression based; automated, but still parametric...

Yuri and Mohsen
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Proof-of-Concept for Design Generation
Regression based; automated, but still parametric...

1 2 3 4 5 6 7 8 9 10
PC

0.0

0.1

0.2

0.3

|P
CA

i|

Good real data
Bad real data
Good simulated data

1 2 3 4 5 6 7 8 9 10
PC

0.0

0.1

0.2

0.3

St
d.

 D
ev

.

Good real data
Bad real data
Good simulated data

IPSW (CRM / UdeM) CNRC Structure 2019 8 / 9



Future Directions

We have identified several key sub-problems, all of which require
significant further investigation:

How do we represent shapes and what is the shape of the space
of good shapes?

What is a good non-parameteric model for shape generation,
and how do we teach it to generate good shapes?
Can we machine-learn the Maxwell’s equations and
approximately solve them in a fraction of the time required for
direct simulation?

These questions are all individually difficult, but will inspire innovative
new research directions at the interface of data driven modeling for
inverse problems, machine learning, physics, and shape design.
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