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N
Context

The objective is to predict the spilling of a flight:
— Spilling flight definition: open to interpretation.

One proposition: the spill flight event is defined by the event:

“occupation rate 3 days before departure > 0.95".

The occupation rate is defined by

the number of bookings

actual airplane capacity -
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-
Dataset Building and Features - 1

10 Origins and Destinations: AAA, BBB, CCC, ..., JJJ, KKK, LLL
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Figure: Flights from 20 routes studied between 10 Origins and Destinations

Simplification: aggregating data by a unique flight index (TOD).
< longitudinal data (time series) per each flight over two years.
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Dataset Building and Features - 2

i E:3 Il 888 a0
2 1
30000~ 000~ 2 5
I EEE KKK EE 6000~ Z
20000~ 20~ o]
) of A
£ 10000~ KKK uL £100m- 1 uL 20
= 2 2
2 S 20
3 » : 3 ‘
; . :
¥4 HHH FFF zZ HH FFF z
cee cop cee ooC
15 "
A esc ™ cce oo
Departure Aiport Desfinasion Aiport Degariure Hour

Figure: Distribution of flights functions of Departure airport (Left), Destination
airport (Middle) and Departure hour (Right)
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Machine Learning - Random forest - 1
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Machine Learning - Random forest - 2

Impertance Plot

@ Data were stratified by cabin
class
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o bH-fold cross-validation using
caret package

- -_II-II ll-I--IIl-I o Average of 93% of accuracy

T s . . :
AR PP 4/4/«2\?«2/@%@@?‘%9‘ o achieved for spill-detection
S RN AN N "V\’\/;\,Q\\/\K/\\/\\/ &

005-

0.00-

Variables

Ninth, IPSW AIR CANADA August 26, 2019 8 /18



Machine Learning - Lasso, SVM, Gradient Boosting,
logistic regression

predictors coefficients sort

7 VRTUL_CAP_CNT 1.892305 1.992305
6 ADJ_CAP_CNT -1.103309 1.103309
5 PHY_CAP_CNT -1.037746 1.037746
15 LF_2018_45 0.198183 0.198183
2 LF_2017_1 0.172539 0.172539
35 LF_2017_45 -0.102602 0.102602
22 cap_2017_1 0.101714 0101714
3 CARRIER_CDE 0.036218 0.036218
14 cap_2018_45 0.032820 0.032820
OVR_BOOK_FARE_CAD -0.024283 (0.024283
FLIGHT_NUM 0.024120 0.024120

[} Online.Path -0.022669 0.022669
8 OVR_BOOK_SEAT_CNT 0.022425 0.022425
29 LF_2017_15 -0.021366 0.021366
25 LF_2017_3 0.015092 0.015092
1 TOD -0.013028 0.013028
41 LF_2017_120 0.008564 0.008564
17 LF_2018_60 -0.008296 0.008296
19 LF 2018 90 -0.007817 0.007817

Ninth, IPSW

@ Data were stratified by flight

@ We use Lasso to select features.

@ Average of 80% of accuracy

AIR CANADA

August 26, 2019

achieved for spill-detection for
SVM, LG, Gradient Boosting
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]
Machine Learning - ROC , AUC

Receiver Operating Characteristic
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Survival model approach - 1

@ Approach: Train a survival model to obtain a survival function
associated with each unique Origin-Destination pair.

@ The selected model is the Cox.

@ This model allows us to predict the probability of survival according
to certain flight characteristics.

@ The characteristics retained are: the moment of the day, the day of
the week and the week of the year.
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Survival model approach - 2

5 flights charateristic
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Survival model approach - 3

Application to one flight to predict the probability of spill 3 days before
departure knowing that we are 30 days from departure gives : prediction
score = 67.01%; MSE = 53.17%.
@ Low prediction capacity: But normal since the model does not take
into account any other information.
@ Can be use as feature engineering to improve another model.
@ Possible improvement : add more relevant variables that may explain
spill (eg: price range 30 days before departure).
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Kalman Filtering - 1

Approach: Compute a forecast of plane occupation and conclude if it spills
or not

Historical data and measurements —3 Occupation rate forecast —y Spilling Forecast

Principle:

@ Infer dynamic for the current booking:
Use historical data to fit a polynomial regression

e Modify dynamic to fit current measurements (data-driven approach):
Use Kalman filtering to enrich the dynamic with current observations
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Kalman Filtering - 2
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Figure: One flight occupation prediction using Kalman Filters and historical model
(Polynomial degree: 5)
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Kalman Filtering - 3
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Figure: One flight occupation prediction using Kalman Filters and historical model
(Polynomial degree: 5)
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Kalman Filtering - 4

Actual | Predicted
Spill occurrence rate | 36% 40%

Figure: Results for a dataset of 11,307 flights

e Prediction score: 73%
o False negative: 12%
Perspectives:
@ Improving the historical dynamic model
@ Machine learning initial guess for new flight (without historical data)

@ The Kalman filtering approach allows day to day update of the
occupation forecasting with minimal computational load
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