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1 Introduction

Designing and building laser cavities requires a good knowledge of the physics
and tolerances of their various elements. Cavities can be designed and opti-
mized in an experimental fashion but this method takes time and is costly.
A less costly (but less precise) method is to carry out a numerical simulation
of the elements of the cavity and the physical laws governing the evolution of
the electric �eld (the laser light). Modelling allows us to solve the �forward�
problem, in which the characteristics of the laser light are described as a
function of the cavity parameters. We are trying, however, to design and
optimize cavities, which is an �inverse� problem: we seek to determine the
cavity parameters that yield speci�c characteristics of the laser light. Further
a simulation of a pulse laser (the case we are considering) may take several
minutes for a typical cavity: it is then di�cult to explore the parameter space
exhaustively or to use numerical methods for optimizing the design.

Another approach consists of simplifying the problem in order to solve
it analytically or by using a fast numerical method. The simpli�ed model,
however, must be su�ciently close to the real-world problem for the solution
to describe the exploration zone of the parameters and the tolerances for the
various elements.

2 Problem de�nition

We are considering pulsed �ber lasers, meaning that the laser pulses are
con�ned within an optic �ber. The laser cavity is thus made of optic �ber.
The elements also have input and output �bers. The fact that pulses are
con�ned within the �ber is important, since their characteristics are modi�ed
when they propagate, which is not the case (generally speaking) when they
propagate in the air. The laser cavity can thus be described as a sequence
of blocks representing the elements in the cavity, as well as the �ber, as
illustrated in Figure 1. Our speci�c interest is the dispersion-tuned actively
mode-locked �ber lasers [1]. These lasers are characterized by the fact that
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Figure 1: The cavity may be represented by several blocks.

they include an element that modulates the electric �eld in the time domain
and a highly dispersive element that induces a di�erent delay for each pulse
frequency. The other elements (output coupler, gain) are typical for lasers.

The pulses are described by their electric �elds envelope, which is a com-
plex variable. This envelope depends upon the time (or the frequencies, by
computing a Fourier transform) and the position within the cavity, both of
which are real variables. The evolution of the pulses electric �eld through
each element (and the �ber) is described either by a PDE (whose variables
are the time and the position within the cavity) or by a function on the elec-
tric �eld. The boundary conditions are such that the �eld input to a block
is the output of the previous block. Since the cavity is closed, the solution
is an eigenmode of the system of successive PDEs. The main problem con-
sists of determining the envelope of the electric �eld describing the pulse as
a function of the various blocks parameters. The secondary problem consists
of modelling these blocks or approximating them so as to allow an analytical
(or fast numerical) solution.

3 Possible approaches

Several approaches have been proposed to solve this kind of problem, which
arises for all laser cavities.

• The most widespread method is to use an average model that linearizes
all the blocks, which amounts to propagating the pulse in an �average
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block� including all the e�ects. The solutions obtained by this method
are thus independent of the position, which is appropriate for certain
cavities (including the solitonic cavities) but not the cavities where the
pulses vary a lot [2].

• Another approach is to consider only linear elements and integrate each
block, in such a way that the system is described by transfer functions.
The system can be solved if the shape of the electric �eld is known [3].

• It is also possible to �free� the equations from time or spectral depen-
dence by postulating an ansatz for the electric �eld, which replaces the
PDEs on the electric �eld by ODEs on the ansatz parameters [4].

• One variant of this approach is to consider the electric �eld as a square-
integrable distribution (which is indeed the case since the pulses have
a �nite energy) and describe it using the moments of the distribution.
In this fashion we obtain a system of ODEs on the moments [5].

In summary we need to determine the cavity parameters that will produce
the desired optical pulse. We wish to understand the bene�ts and drawbacks
of each method with regard to the accuracy of block modelling and the
existence of analytical solutions. We already have software to simulate a
given cavity and validate the analytical models at certain points. Blocks
may be modelled in several ways, some of which are more detailed than
others. Some features of the system may be neglected in the �rst models but
others should be included in those models because they have an impact on
the experimental results.
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