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Introduction - The Problem

The Problem
We are asked to replicate an index of illiquid assets (the real-estate
market) using liquid tradeable securities.
d
(thRf) + (1 - Zwi,t> Tt
i=1

dR! = dt + Qde;. (1)

R} is the returns of the index at time ¢,

R{ is the vector of returns of tradeable securities at time ¢,

e w; is a vector of w; ¢, containing the weight invested in each
asset ¢ at time ¢,

7, risk-free rate at time ¢ (proxied by 1-month deposit rate),

e () is the volatility of the replication errors.

Question: why is this important? Because investors wish to be
invested without buying actual houses.



Introduction - The Sketched Solution

In order to replicate the index, we need two key components:
e The factors to include into the portfolio;

e The optimal weights wy.



Introduction - Overview in Pictures - Index

Teranet-National Bank National Composite House Price Index™

12-month % change June 2005 = 100
20 220
18 L210
16 L200
14 Index (R) | 190

12-month change (L)

2000 2002 2004 2006 2008 2010 2012 2014 2016

Anything hidden from this picture? What happens within those 12
months...



Introduction - Overview in Pictures - Autocorrelation

Any chance of finding seasonality in our securities? Not in absence
of arbitrage...



Introduction - Overview in Numbers
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Table 1: Statistics of the index-return (1999-2017)
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Index.Return  CN.Comdty  CD.Curncy  CL.Comdty ~ GC.Comdty ~HG.Comdty  ES.Index  HC.ndex  PT.Index BAA

Index.Return 1 0 0.110 0.100 0 0.110 0.080 0.010 0.080 0.170
CN.Comdty 0 1 -0.250 -0.240 0.200 -0.230 -0.230 -0.140 -0.180 0.050
CD.Curncy 0.110 -0.250 1 0.430 0.380 0.520 0.550 0.450 0.500 0.010
CL.Comdty 0.100 -0.240 0.430 1 0.210 0.380 0.200 0.290 0.370 -0.110
GC.Comdty 0 0.200 0.380 0.210 1 0.290 0.020 0.180 0.200 0.020
HG.Comdty 0.110 -0.230 0.520 0.380 0.290 1 0.450 0.450 0.480 0.020
ES.Index 0.080 -0.230 0.550 0.200 0.020 0.450 1 0.480 0.770 0.180
HC.Index 0.010 -0.140 0.450 0.290 0.180 0.450 0.480 1 0.460 -0.040
PT.Index 0.080 -0.180 0.500 0.370 0.200 0.480 0.770 0.460 1 0.050

BAA 0.170 0.050 0.010 -0.110 0.020 0.020 0.180 -0.040 0.050 1

Table 2: The correlation matrix for the data.

With the notable exception of the last security (BAA), which
exhibits very high persistence in its returns, there is no significant
autocorrelation of returns.



Our approach

e Factor selection
e Adaptive Elastic-Net Regularization
e Gradient boosting approach

e Weights Estimation

e Rolling Regressions
e Kalman filtering

e Particle filtering



Factor Selection - Boosting

Extended Gradient-Boosting Learning
The goal of the learning algorithm in [2] is to identify the factors
that significantly contribute to the model by minimizing the loss

function,

d
I(4, = (he 2+ Aa (2)

t=1

where hg(Ay) is the value of the replicating portfolio at time t.



Factor Selection - Boosting

Gradient Boosting - Cross Validation

e We choose the most parsimonious learning-rate() through Cross
Validation:

Training Error Validation Error

0.0380
I

0.0370

Log regulation Log regulation



Factor Selection - Results

e Using the selected A we chose the following factors:

Feature importance
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Factor Selection - Selected Factors

Table 3: Correlation matrix of the selected factors.

Index.Return ~ CL.Comdty =~ HG.Comdty =~ HC.Index BAA BA.Comdty TU.Comdty FV.Comdty TY.Comdty

Index.Return 1 0.092 0.113 0.012 0.208 0.260 -0.139 -0.152 -0.148
CL.Comdty 0.092 1 0.379 0.286 -0.112 0.182 -0.121 -0.147 -0.151
HG.Comdty 0.113 0.379 1 0.455 0.014 0.097 -0.179 -0.204 -0.210
HC.Index 0.012 0.286 0.455 1 -0.034 -0.030 -0.115 -0.110 -0.103
BAA 0.208 -0.112 0.014 -0.034 1 -0.042 -0.048 -0.029 -0.052
BA.Comdty 0.260 0.182 0.097 -0.030 -0.042 1 0.017 -0.057 -0.078
TU.Comdty -0.139 -0.121 -0.179 -0.115 -0.048 0.017 1 0.874 0.766
FV.Comdty -0.152 -0.147 -0.204 -0.110 -0.029 -0.057 0.874 1 0.961

TY.Comdty -0.148 -0.151 -0.210 -0.103 -0.052 -0.078 0.766 0.961 1




Factor Selection - Adaptive Elastic-Net Regularization

Adaptive Elastic-Net
Performs variable selection for linear models with constant weights,

and estimates the weights w as

d d
W& (1 + %) [argminweRd (Z(hw(At) — )+ )\Zﬁjwf\ + a(w)Q)]

Jj=1 Jj=1

M = (li;(Enet)])”",

where w;(Enet) are the optimal weights defined in [9]. The Adap-
tive Elastic-Net algorithm was shown in [10] to converge to the true
set of explanatory variables under certain assumptions.



Factor Selection - Adaptive Elastic-Net Regularization

Adaptive Elastic-Net
Performs variable selection for linear models with constant weights,

and estimates the weights w as
d

d
A « . * - _
wE (1 + E) argmin,, cga E (ha(Ay) —y)? 4+ A E 7| w0| + a(w)?
=1 i=1

iy = (| (Enet)) ™",
where w;(Enet) are the optimal weights defined in [9]. The Adap-

tive Elastic-Net algorithm was shown in [10] to converge to the true
set of explanatory variables under certain assumptions.

e The adaptive elastic-net was used to perform factor selection.
e Upon cross-validation, all factors were considered as

important.



Estimating Weights - Rolling Regressions

Result
We performed a 24 month moving window and here is the result:
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Conclusion
v" Provides a benchmark and starting point for the filter,

X The regression does not provide an accurate forecast.



Estimating Weights - Filtering

Description of the Filtering Problem

e We are interested in predicting an unobservable signal X,

e However we only know the observation process Y; which depends on
X, but is obscured by noise.

e The goal is to best guess the conditional density of X, given Y;,
denoted by 7 (f) (see [4] for details).
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Estimating Weights - Filtering

Description of the Filtering Problem

e We are interested in predicting an unobservable signal X,

e However we only know the observation process Y; which depends on
X, but is obscured by noise.

e The goal is to best guess the conditional density of X, given Y;,
denoted by 7 (f) (see [4] for details).
Kalman-Bucy Filter

v" Simple closed form,

X Relies on idealized assumptions.

Particle Filter
v' Difficult to calibrate initial state,

x Does not have a simple closed-form expression.



Estimating Weights - Filtering - Methodologies

. Kalman . .
——Eietioh Filer 7 Particle Filter

e Initialize Kalman Filter with the regression weights;

e Use the Kalman estimates of the model parameters for the
Particle Filter.



Estimating Weights - Filtering - Model

We use the following model:

Wi =oWi_1 + &

; : (3)
RI* =WI'RI™ + ¢

W4, the portfolio weights' matrix, is the signal being filtered;

e ¢ is a constant diagonal (for now) matrix capturing dynamics
of the weights;

R}* is the observation, in our case the excess return of the
index;

R{* are the excess returns of our selected factors;
e and & are |ID and Normally distributed.



Estimating Weights - Filtering - Kalman

Using selected factors from the Gradient-Boosting we get:

Basic Kalman Filter - 10 factors
(optim stopped at 50000 evals)

——index (base 100)
— replication out-of-sample
- replication in—sample
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We tried to improve this method by:
e Model 2: including the original scope (14 factors, minus 3
highly correlated / redundant assets);
e Model 3: initializing the filter to weights which were estimated
using the regression approach on the first 36 months.



Estimating Weights - Filtering - Particles

We obtained a further improvement out-of-sample using the

particle filter:

Particle filter with N = 1000000 particles. Evolution equation: o = ®u,_s&




Estimating Weights - Filtering - Particles

We obtained a further improvement out-of-sample using the
particle filter:

Particle filter with N = 1000000 particles. Evolution equation: o = ®u,_s&
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Problem solved? Not quite...



Results - Behind the Scenes

Basic Kalman 9 Factors - Estimated Weights
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Although most weights vary within acceptable boundaries:

e Some have a negative value for ¢, implying alternation of
long/short positions = costly!

e One security is leveraged up to 20 times = risky!



Results - Statistics

Portfolio TE Pearson Corr Kendall Corr Mean  Std Skew Excess kurt
Target 0 1 1 6.3130 2.2388 -0.2256 1.4168
Regression 6.0823 0.1331 0.0472 0.0053 0.0011 0.5543 2.0818
Kalman 1 1.3391 0.9875 0.8918 6.1752 2.0605 -0.1797 1.5414
Kalman 2 6.74e-10 1 1 6.2954 2.2430 -0.2191 1.4029
Kalman 3 7.84e-10 0.5763 0.3946 6.2738 1.7355 - 0.2416 1.0534
Particle (Unc.) | 4.2000 0.8450 0.8568 6.0789 2.0887 -0.1913  1.4587
Particle (Con.) | 3.3496 0.9056 0.9270 5.7817 2.1457 -0.3291 1.5756
Table 4: In-sample statistics.
Portfolio TE Pearson Corr Kendall Corr Mean  Std Skew Excess kurt
Target 0 1 1 6.3130 2.2388 -0.2256 1.4168
Regression 9.8850 0.1284 0.0132 0.0031 0.0011 0.5682 2.1050
Kalman 1 6.0297 0.6587 0.4420 5.6274 1.8757 -0.1584 1.7168
Kalman 2 6.5171 0.5763 0.3946 6.2738 2.2430 1.7355 1.0534
Kalman 3 6.5033 0.5777 0.3937 6.2792 1.7307 0.2609 1.0423
Particle (Unc.) | 8.0168 0.3685 0.2484 6.2779 1.8499 0.2040 0.4957
Particle (Con.) | 7.2842 0.5038 0.3306 6.6414 19172 0.0092 1.2384

Table 5: Out-of-sample statistics.



Conclusion - Extensions and Further Research

e Current extensions:
e Estimation of ¢ using a constrained optimization in the
Kalman Filter;
e The results on the weights is significant (leverage on
BAA drops to -6) but still unsatisfactory.
e Further research:
e Restricting weights-space using the Particle Filter (easy
to implement but very computer intensive);
e Integrating seasonality using the following model:

Wi = oWi1 +YyWi12 + € (4)

e Studying a larger scope and reducing dimensionality (as
well as rebalancing costs!) using Boosting.
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