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Summary of Problem

Main questions

@ Client Retention:

e When will an existing client leave the company?

e.g. Atagiven pointin time, which clients are most at risk of
leaving the company?

@ Life Cross-Sale:

e When will an existing client add a new product?

e.g. Given a client’s current product(s), what is the probability that
they will leave before adding life insurance, or vice-versa?
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The objectives

@ Determine the relevant response variable for each
question.

@ Develop a statistical approach to determine a reasonable
model.

© Incorporate the roles of potential covariates (fixed and
time-dependent).

© Perform validation, measure performance, and assess
prediction.
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Summary of Problem

Available data

@ Data:
@ TRAINING SET
@ TESTING SET
@ Time intervals for every client, start and end times defined
by the events of interest:
@ Addition of one or more products
@ Removal of one or more products
@ Earliest termination of all products

@ Approx. 25 covariates to potentially be used in the model



Proposed Models

Client retention problem: difficulties with covariates

@ The Cox Proportional Hazards (PH) model assumes this
hazard function for the time until an event (“earliest”
termination of all products):

A(t) = Ao(t)e? ' 2

Xo(+) is an unspecified baseline hazard, z are the
covariates known at time t, and 3 are the parameters to be
estimated.
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Client retention problem: difficulties with covariates

@ The Cox Proportional Hazards (PH) model assumes this
hazard function for the time until an event (“earliest”
termination of all products):

A(t) = Ao(t)e? ' 2

Xo(+) is an unspecified baseline hazard, z are the
covariates known at time t, and 3 are the parameters to be
estimated.

@ R packages easily fit Cox PH and predict quantities such
as the cumulative hazard, when z is time-independent

t t
A(t) = /)\(u)du - eﬁTZ/Ao(u)du
0 0
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Proposed Models

Typical approaches and difficulties with covariates

@ However, with time-varying covariates, to obtain an
estimate of the hazard A(t), we need an estimate of Ay(f)
for which the slope can be obtained

@ Either we:

@ smooth Ay(t) or
@ assume a parametric form for the baseline hazard
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Proposed Models

Our immediate options

@ Assume baseline hazard takes a parametric form so that
the hazard can be computed directly:

A(t) = No(t;0)° "2

© Assume baseline hazard is linear piecewise
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Proposed Models

More elaborate approaches

These models can be used for either the client retention or the
life cross-sale problems:

@ Multi-state models
@ Self-exciting process models
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Proposed Models

Fitting a parametric baseline hazard

@ Implementation of the Cox PH model with a parametric
baseline hazard is relatively straightforward with the r
library flexsurv

@ Choices for \y(-) include the 4-parameter generalized

gamma (includes gamma, weibull, etc.), generalized F, and
Gompertz



Proposed Models

Preliminary Results

Generalized gamma baseline cumulative hazard without
covariates

Parametric Hazard Curve
against Non-Parametric Estimation without Covariates




Proposed Models

Preliminary Results

Generalized gamma baseline cumulative hazard with covariates

Parametric Hazard Curve
against Non-Parametric Estimation with Covariates.




Proposed Models

Zooming in tells a different story...
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Proposed Models

Considerations

@ Note: Running flexsurv on a large data set takes much
longer than running coxph

@ Our initial plan:
Find a suitable set of covariates using the semi-parametric
Cox PH model
e Use these covariates in a parametric Cox PH model to do
prediction
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Model Validation

Selection of “optimal” covariates

What we tried:

@ Given all covariates, cycle through all possible additive
models and compare AIC (or BIC)

@ Forward and backward selection based on likelihood ratio
tests

@ Other algorithms (eg. PCA)
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Measurement of performance

How would we compare candidate models?

@ The proportional hazards assumption can be checked for a
fitted model by examining plots of the 3 coefficients over
time

@ Whether or not this assumption is met, it is more useful to
the company to have a practical prediction-based measure

@ Prediction with time-varying covariates is a unique
challenge for survival models



Model Validation

Measurement of performance

Which clients are “most likely” to leave as of a given date, say
July 1, 20127

@ The model can give us a ranking of the instantaneous
probabilities of leaving the company, A\;(t); i=1,...,m, for
the m clients in the test set
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Model Validation

Measurement of performance

Which clients are “most likely” to leave as of a given date, say

July 1, 20127
@ The model can give us a ranking of the instantaneous
probabilities of leaving the company, A\;(t); i=1,...,m, for

the m clients in the test set

@ Compare this with the actual ranking of clients in order of
when they left the company after July 1, 2012

@ Various measures: gain curves, lift curves, ROC, etc.
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Further Considerations

Modeling the cross-sale

@ Multi-state models are extremely flexible (can be
implementated with packages such as mstate)

@ The states and allowable transitions must be carefully
defined

@ Quantities of the form
Pr{ in state j at time t| in state / at time s}

could then be accessible



Further Considerations

Addressing the cross-sale problem

@ We considered a simple 3-state model

| Product Combination A | Product Combination B |

~N i

Relevant and numerically accessible:

Pr{will have combo B before leaving the company]
currently have combo A}
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Further Considerations

Modeling the cross-sale

@ Other difficulties that require more time:
e Formatting the data set such that transitions are clearly
defined
e Expressions of conditional transition probabilities are
usually not analytically tractable
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Other Models and Future Work

@ Self-exciting models and other counting models



Further Considerations

Other Models and Future Work

@ Self-exciting models and other counting models
@ Survival trees and ensemble methods
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