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Main questions

1 Client Retention:
When will an existing client leave the company?
e.g. At a given point in time, which clients are most at risk of

leaving the company?

2 Life Cross-Sale:
When will an existing client add a new product?
e.g. Given a client’s current product(s), what is the probability that

they will leave before adding life insurance, or vice-versa?
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The objectives

1 Determine the relevant response variable for each
question.

2 Develop a statistical approach to determine a reasonable
model.

3 Incorporate the roles of potential covariates (fixed and
time-dependent).

4 Perform validation, measure performance, and assess
prediction.



Summary of Problem Proposed Models Model Validation Further Considerations

The objectives

1 Determine the relevant response variable for each
question.

2 Develop a statistical approach to determine a reasonable
model.

3 Incorporate the roles of potential covariates (fixed and
time-dependent).

4 Perform validation, measure performance, and assess
prediction.



Summary of Problem Proposed Models Model Validation Further Considerations

The objectives

1 Determine the relevant response variable for each
question.

2 Develop a statistical approach to determine a reasonable
model.

3 Incorporate the roles of potential covariates (fixed and
time-dependent).

4 Perform validation, measure performance, and assess
prediction.



Summary of Problem Proposed Models Model Validation Further Considerations

The objectives

1 Determine the relevant response variable for each
question.

2 Develop a statistical approach to determine a reasonable
model.

3 Incorporate the roles of potential covariates (fixed and
time-dependent).

4 Perform validation, measure performance, and assess
prediction.



Summary of Problem Proposed Models Model Validation Further Considerations

Available data

Data:
1 TRAINING SET
2 TESTING SET

Time intervals for every client, start and end times defined
by the events of interest:

1 Addition of one or more products
2 Removal of one or more products
3 Earliest termination of all products

Approx. 25 covariates to potentially be used in the model
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Client retention problem: difficulties with covariates

The Cox Proportional Hazards (PH) model assumes this
hazard function for the time until an event (“earliest”
termination of all products):

λ(t) = λ0(t)eβ>z

λ0(·) is an unspecified baseline hazard, z are the
covariates known at time t , and β are the parameters to be
estimated.
R packages easily fit Cox PH and predict quantities such
as the cumulative hazard, when z is time-independent

Λ(t) =

t∫
0

λ(u)du = eβ>z
t∫

0

λ0(u)du
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Typical approaches and difficulties with covariates

However, with time-varying covariates, to obtain an
estimate of the hazard λ(t), we need an estimate of Λ0(t)
for which the slope can be obtained
Either we:

smooth Λ0(t) or
assume a parametric form for the baseline hazard
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Our immediate options

1 Assume baseline hazard takes a parametric form so that
the hazard can be computed directly:

λ(t) = λ0(t ; θ)eβ>z

2 Assume baseline hazard is linear piecewise
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More elaborate approaches

These models can be used for either the client retention or the
life cross-sale problems:

1 Multi-state models
2 Self-exciting process models
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Fitting a parametric baseline hazard

Implementation of the Cox PH model with a parametric
baseline hazard is relatively straightforward with the R
library flexsurv
Choices for λ0(·) include the 4-parameter generalized
gamma (includes gamma, weibull, etc.), generalized F, and
Gompertz
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Preliminary Results

Generalized gamma baseline cumulative hazard without
covariates
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Preliminary Results

Generalized gamma baseline cumulative hazard with covariates
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Zooming in tells a different story...
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Considerations

Note: Running flexsurv on a large data set takes much
longer than running coxph

Our initial plan:
Find a suitable set of covariates using the semi-parametric
Cox PH model
Use these covariates in a parametric Cox PH model to do
prediction
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Selection of “optimal” covariates

What we tried:

Given all covariates, cycle through all possible additive
models and compare AIC (or BIC)
Forward and backward selection based on likelihood ratio
tests

Other algorithms (eg. PCA)
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Measurement of performance

How would we compare candidate models?

The proportional hazards assumption can be checked for a
fitted model by examining plots of the β coefficients over
time
Whether or not this assumption is met, it is more useful to
the company to have a practical prediction-based measure
Prediction with time-varying covariates is a unique
challenge for survival models
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Measurement of performance

Which clients are “most likely” to leave as of a given date, say
July 1, 2012?

The model can give us a ranking of the instantaneous
probabilities of leaving the company, λi(t); i = 1, ...,m, for
the m clients in the test set
Compare this with the actual ranking of clients in order of
when they left the company after July 1, 2012
Various measures: gain curves, lift curves, ROC, etc.
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Modeling the cross-sale

Multi-state models are extremely flexible (can be
implementated with packages such as mstate)
The states and allowable transitions must be carefully
defined
Quantities of the form

Pr{ in state j at time t
∣∣ in state i at time s}

could then be accessible
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Addressing the cross-sale problem

We considered a simple 3-state model

Relevant and numerically accessible:

Pr{will have combo B before leaving the company
∣∣

currently have combo A}
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Modeling the cross-sale

Other difficulties that require more time:
Formatting the data set such that transitions are clearly
defined
Expressions of conditional transition probabilities are
usually not analytically tractable
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Other Models and Future Work

Self-exciting models and other counting models
Survival trees and ensemble methods
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