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Computational Fluid Dynamics

• The Advanced Aerodynamics Department uses the FANSC
software to solve the Navier-Stokes equations.

• These are coupled non-linear partial differential equations that
govern the motion of compressible, viscous fluids such as air.

• The Navier-Stokes equations are solved on a fluid volume
region discretized into a large number of cells.

• The solution of the equations yields the values of the density,
velocity, and pressure within each cell.

• The computation is distributed over many processors (1000
today, maybe 10000 in a few years from now...).



Multi-block Structured Grids

The discretization produces regions that “look like” grids.

The union of several regions may (or may not) look like a grid.



Allocating Computations to Processors: the Objectives

One must find a way of allocating groups of cells to processors. A group
of cells will consist of several grid-like regions called “blocks”.

• The computational load must be balanced, i.e., the difference
between the numbers of cells allocated to any two processors must
be as small as possible.

• The maximum communication cost between a processor and all the
other processors must be as small as possible.

• The number of blocks allocated to a given processor must not be
too large.

• None of the blocks allocated to a given processor must be too small
or too “thin.”



Decomposition of the Problem

Since the problem is too complicated to be solved as a whole, we
have decomposed it into subproblems.

1 Refine the original partition (produced by an engineer) so as
to obtain small blocks and create a graph with weights on
nodes and edges.

2 Partition the graph into clusters (i.e., groups of blocks
assigned to a given processor).

3 Reorganize the blocks within a given cluster so as to obtain
relatively large blocks that are grid-like and are not too “thin.”



Topology Refinement and Graph Structure

Figure 1: Topology file

Figure 2: Three dimensional
plot of the surface provided
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Grid Examples Used For The Partitioning Model

Figure 3: 8× 10× 15
structured grid

Figure 4: T shape
object formed by 2
structured grids

Figure 5: Shape object
formed by 3 structured
grids



Partitioning Problem Of The Block Graphs (1)

Idea: Turn our problem into a balanced graph clustering problem.

Input: Graph G = (V ,E ), node weights wn : V 7→ N+, edge weights
we : E 7→ N+, number of colours k .

Objective: Find a colouring of nodes c : V 7→ P where P = {1, . . . , k}
such that T = c1 maxp∈P Vp + c2 maxp∈P Bp is minimized. Here the

volume of a partition is Vp =
∑

u∈V wn(u)δ(c(u), p) and the boundary of

a partition is Bp =
∑

(u,v)∈E we((u, v))[1− δ(c(u), c(v))]δ(c(u), p),

where δ denotes the indicator function.

Methods for balanced graph clustering:

• Heuristic based on label propagation

• Integer programming formulation

• Freely available programs: KaHIP and METIS (slightly different objective
functions)



KaHIP Applied To Structured Grids

Figure 6: 8× 10× 15
structured grid
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Heuristic Partitioning Method Applied To Structured Grid

0. Initialize

• Set nodes to random partitions
• Use previous partition as a starting

point

1. For each node u ∈ V (in random order):

• Find colours in the neighborhood of
u: Ccandidates = {c(v) : (u, v) ∈ E}

• For each p ∈ Ccandidates find change in
the objective function ∆u,pT if c(u)
is set to p.

• Select p∗ that minimizes ∆u,pT . If
∆u,p∗T < 0, set c(u) to p∗.

2. Repeat point 1, if at least one colour was
changed in last run of point 1.



Heuristic Partitioning Method Applied To Structured Grid

Figure 7: 8× 10× 15 Structured Grid



Heuristic Partitioning Method Applied To Structured Grids

Figure 8: 8× 10× 15
structured grid
partitioned by our
algorithm

Figure 9: Partitions assigned to 5 processors



Heuristic Partitioning Method Applied To Structured Grids

Figure 8: 8× 10× 15
structured grid
partitioned by our
algorithm

Figure 9: Partitions assigned to 5 processors



Heuristic Partitioning Method Applied To T-shape Grid

Figure 10: Structure partitioned to 5 and to
8 processors



Heuristic Partitioning Method Applied To T-shape Grid

Figure 10: Structure partitioned to 5 and to
8 processors



Partitioning Problem Of The Block Graphs (2)

• Assign the work units to processors in order to minimize the
sum of the maximum load and the maximum communication
cost

• Mathematical formulation

minimizeC1maxp∈P

{∑
v∈V

wvyvp

}
+ C2maxp

∑
p? 6=p

∑
(v ,u)∈E

w(v ,u)yvpyup?




such that

1
∑

p∈P yvp = 1,∀v ∈ V
2 yvp ∈ {0, 1},∀p ∈ P, v ∈ V



Partitioning Problem Of The Block Graphs (2)

Here is an equivalent formulation.

minimize (C1T1 + C2T2)

such that

1
∑

v∈V wvyvp ≤ T1,∀p ∈ P

2
∑

p? 6=p

∑
(v ,u)∈E w(v ,u)yvpyup? ≤ T2,∀p ∈ P

3
∑

p∈P yvp = 1,∀v ∈ V

4 yvp ∈ {0, 1}, ∀p ∈ P, v ∈ V



Partitioning Problem Of The Block Graphs (2)

We now linearize the term yvpyup? .

1

xpp
?

vu =

{
1 if node v (resp. u) belongs to cluster p (resp. p?)

0 otherwise

2 
xpp

?

vu ≥ yvp + yup? − 1

xpp
?

vu ≤ yvp

xpp
?

vu ≤ yup?

∀(u, v) ∈ E ; p, p? ∈ P : p? 6= p

3 The minimization structure of the model implies that x will
automatically be binary and the last two constraints are not
necessary. We redefine the variables.

xpe =

{
1 if e is an outgoing arc from cluster p

0 otherwise

4 xp(v ,u) ≥ yvp + yup? − 1,∀(u, v) ∈ E ; p, p? ∈ P, p? 6= p

5 xp(v ,u) ≥ 0,∀(u, v) ∈ E , p ∈ P



Partitioning Problem Of The Block Graphs (2)

Here is the final formulation, assuming that all vertex weights are
identical and all edge weights are also identical.

minimize C1w1T1 + C2w2T2

such that

1
∑

v∈V yvp ≤ T1,∀p ∈ P and
∑

p∈P yvp = 1, ∀v ∈ V

2
∑

e∈E xpe ≤ T2, ∀p ∈ P

3 xp(v ,u) ≥ yvp + yup? − 1, ∀(u, v) ∈ E ; p, p? ∈ P, p? 6= p

4 yvp ∈ {0, 1}, ∀p ∈ P, v ∈ V

5 xp(v ,u) ≥ 0, ∀(v , u) ∈ E ; p ∈ P



Partitioning Problem Of The Block Graphs (2)

Conclusions after implementing our algorithm.

• Our problem is a very challenging combinatorial problem.
• It is highly degenerate.
• The LP is very weak (the two halves of each node are in

different clusters).
• The network size is massive.

• We tried the following approaches.
• Cplex
• Benders decomposition
• MIP-based heuristic (I, II)

If we know the values of the y variables, the communication cost is
almost trivial to compute.



Pseudocode of MIP-based heuristic (II)

1 Find the degree of each node.

2 For each cluster (associated to a given processor), execute the
following steps.

1 Find the node with the smallest degree (i.e., v).
2 While the load limit is not reached and some neighbour exists,

do

1 Find all neighbours of v and add them to the current list;
2 Update v by selecting one of its neighbours for exploration.

3 Fix the binary variables associated with each node in the
cluster list.

3 Solve the “restricted MIP.”



Partitioning Problem Of The Block Graphs (2)

Results (the time limit was set to 30 minutes)

Approach Instance I Instance II

Cplex 149951 1966080
Benders 150480 N/A

Heuristic I 162240 369280
Heuristic II 130880 291136



Reorganizing the Blocks Assigned to a Given Processor

We have considered two approaches.

1 Treat the union of all the blocks as a single structure and try
to decompose it into “cuboids”, i.e., grid-like regions.

2 Attempt to merge the blocks themselves by applying some
algorithm (probably a greedy algorithm).

The first approach requires very complicated and time-consuming
algorithms and the second one does not guarantee that the
solution produced is optimal.



General Algorithm To Build The Final Blocks

Algorithm 1 General Algorithm
1: mark all the blocks with the labels of the original block from which they were extracted

2: if all the blocks belong to the same original block then

3: call function to get structured blocks

4: else if the original blocks are compatible (Call Routine to check for degeneracy) then

5: merge all the blocks

6: call function to build structured blocks
7: else
8: divide the blocks in 3D representable sets (TODO)

9: for all the 3D representable sets do

10: call function to build structured blocks
11: end for
12: end if

13: function build structured blocks(3D representable blocks)

14: call routine to detect concave edges (implemented)

15: if there are no concave edges then

16: all the blocks assigned to the processor form a structured block

17: return the blocks structure
18: else
19: call routine to build structured blocks (TODO)

20: return the blocks structure
21: end if
22: end function



General Algorithm To Build The Final Blocks

Comparison between the original set of blocks and the final result
where the concave edges are detected



A Greedy Algorithm for Merging the Blocks Assigned to a Given Processor

Let L denote the original list of cuboids. Repeat the following
steps as long as the list contains at least one mergeable cuboid.

1 Choose a mergeable cuboid (let it call A).

2 Among the cuboids that can be merged with A, select a
cuboid B.

3 Merge cuboids A and B, yielding a new cuboid C .

4 Replace cuboids A and B by cuboid C in the list L.



Future Directions

• Implement refinement and heuristic algorithm for a more
complicated structure.

• Compare with a deterministic optimization technique.

• Study various clustering methods for parallel optimization.



Thank You For Your Attention!


