Drawing Huge Plots on
the Web

Mikola Lysenko and Perouz Taslakian
plot.ly

plotly

http://plot.ly
http://plot.ly

Requirements

> 1 million data points
Exact rendering
Interactive

Important for plot.ly’s business!

http://plot.ly

1. Scatter pl

2. Line plots

100K points

40

100K points

Main Question

Is It possible to render > 10 million

points/lines?

WebGL

Low level rendering API for drawing triangles, uses

GPU

Executes asynchronously and in parallel

Performance factors:
m Draw calls
m Fragment processing

m \ertex processing
m Bandwidth

Extremely fast performance possible

ebGL

GPU Pipeline

Vertex
processing

Vertex

Primitive
processing

-

—

Geometry Primitive

Textures Rasterization

\——/

Buffers Fragment

(Fragment
processing

Pixel

Pixel

Frame buffers orocessing

—

Source: http://romain.vergne.free.fr/teaching/IS/SI03-pipeline.html

| [|
GPU Pipeline
W
+ attributes processing

¢ o o 1 Memory Vertex

(Primitive j

processing

Fragment
processing

Pixel

Pixel
Frame buffers orocessing)

Source: http://romain.vergne.free.fr/teaching/IS/SI03-pipeline.html

Fill rate

e Observation:
Large scatter plots are fill
rate limited.

m Can process many vertices

easily, as long as most end
up outside viewport.

e For huge plots, many
points end up on same
pixel, so it is enough to
draw just one sprite for
whole group.

Cover Order

o Let P={p,, p,, ... p.} be a set of primitives with p. ER?

e s,>s. >...>s =0 bea set of scales (pixel sizes)

e The cover order of ®Pis the filtration

FCF C..CF=@

such that UPC U FJ. @ st

level (p) = min |
p, € F,

Cover Order

e \We want a cover order of the points (for scatter plots)
or line segments (for line plots) so that given a zoom
level, we can quickly determine the points/segments
that need to be rendered by the GPU (i.e. those that
are not covered or hidden behind others).

100 million points

e \We preprocess the points as follows:

1. Construct a quadtree of the given pointset using a
depth-first traversal of the points and keeping
track of their level in the tree.

Store the points in array Q.

2. Sort the points of Q in increasing order of level,
and of x-coordinate.

3. Keep track of point levels using an array of indices
of size equal to total number of levels.

Quadtrees

Source: http://www.cs.berkeley.edu/~demmel/cs267/lecture26/lecture26.html

Quadtrees

Source: http://www.cs.berkeley.edu/~demmel/cs267/lecture26/lecture26.html

Rendering

e \We send all the points (array Q) to the GPU.

e [o render for a given level, we ask the GPU to draw
some superset of the points that are visible on the
screen and are not hidden behind others.

Rendering

1. Compute the size of a pixel in the data
coordinate to get the current zoom level Z.

2. Compute the x . _and x _ of the screen.
3. Starting at level Z, for each level above Z

.. Find the predecessor p of x_.and successor
s of x
m

axX

. draw the points whose x-coordinates are
between p and s.

Quadtrees

—

Quadtrees

e
T mm

Quadtree Bad Cases

e Preprocessing may take a long time if the quadtree
ends up having height O(n).
e This happens when the input consists of a big

cluster of points that are far from the rest of the
points.

e [0 avoid such a bad case, we introduce a small
change to the way we construct the quadtree.

Trick with Quadtrees

e [he idea is as follows.

1. After every split of the area into four quadrants,
check each quadrant to see if they contain greater
than 90% of the points.

2. If such a quadrant is found, then split the point
cluster arbitrarily into two equal sets and
construct a new quadtree for each one separately.

e Doing this will preserve the level information for each
node, which is all that we need to render effectively.

Transparent Points

e For points that are semi-transparent, “hiding” the
ones that are behind others will not give the desired
result.

e |nstead we need to
“blend” colors for the
points that are stacked.

Transparent Points

e For transparent points having the same color and
marker, we need to know the number of points that
a given point “hides”.

e \We can compute this
information while building
the quadtree -- for every
node of the tree,
store the number of its descendants.

Line Plots

e \Want to sort lines in cover order (reduce fragment
processing cost on GPU).

e Quadtrees don’t work.

Might hit O(2"
boxes in level h

Cover Order for Lines

e Build covers inductively, solve for Fj \ Fj_1:
e \Want smallest set of line segments that cover

P \ F_,atscales,

Line Plots: Ideas

1. Set Cover Approximation.

o The cover ordering problem for line segments can be
reduced to the problem of Set Cover (which is NP-complete).
o This allows us to use the Set Cover approximation algorithm
that has an approximation factor of 6(log n).
Running time: O(n°).

2. Greedy Longest Segment.
O Sort the segments and process them by decreasing order of
length. Running time: O(n?).
3. Divide-and-Conquer.

o Recursively split the segments (arbitrarily) into two equal
groups and process. Running time: O(n log n).

Summary of results

Scaled from 10 million points to 100 million
interactively.

Solved transparent rendering for a special case of
scatter plots.

New heuristics for line plots (to be investigated
further).

Beginnings of theoretical framework for rendering
large data sets.

What needs work

Preprocessing time
Transparent lines, complex scatter plots
SVG export

Analysis and implementation of line cover

Thank you

