
Optimal Partitioning Of Multi-Block

Structured Grids

Mohammad Akhavan1 Patrice Castonguay2 Marina Chugunova3

Julio C. Góez4 Mikko Kivelä5 Odile Marcotte6 Christophe
Meyer7 Tina Mitre8 Ragheb Rahmaniani4

1Université de Montréal, 2Bombardier, 3Claremont Graduate University, 4École
Polytechnique de Montréal, 5University of Oxford, 6CRM and UQAM, 7UQAM,

8McGill University

August 21, 2015



Computational Fluid Dynamics

• The Advanced Aerodynamics Department uses the FANSC
software to solve the Navier-Stokes equations.

• These are coupled non-linear partial differential equations that
govern the motion of compressible, viscous fluids such as air.

• The Navier-Stokes equations are solved on a fluid volume
region discretized into a large number of cells.

• The solution of the equations yields the values of the density,
velocity, and pressure within each cell.

• The computation is distributed over many processors (1000
today, maybe 10000 in a few years from now...).



Multi-block Structured Grids

The discretization produces regions that “look like” grids.

The union of several regions may (or may not) look like a grid.



Allocating Computations to Processors: the Objectives

One must find a way of allocating groups of cells to processors. A group
of cells will consist of several grid-like regions called “blocks”.

• The computational load must be balanced, i.e., the difference
between the numbers of cells allocated to any two processors must
be as small as possible.

• The maximum communication cost between a processor and all the
other processors must be as small as possible.

• The number of blocks allocated to a given processor must not be
too large.

• None of the blocks allocated to a given processor must be too small
or too “thin.”



Decomposition of the Problem

Since the problem is too complicated to be solved as a whole, we
have decomposed it into subproblems.

1 Refine the original partition (produced by an engineer) so as
to obtain small blocks and create a graph with weights on
nodes and edges.

2 Partition the graph into clusters (i.e., groups of blocks
assigned to a given processor).

3 Reorganize the blocks within a given cluster so as to obtain
relatively large blocks that are grid-like and are not too “thin.”



Topology Refinement and Graph Structure

Figure 1: Topology file

Figure 2: Three dimensional
plot of the surface provided



Topology Refinement and Graph Structure

Figure 1: Topology file

Figure 2: Three dimensional
plot of the surface provided



Topology Refinement and Graph Structure

Figure 1: Topology file

Figure 2: Three dimensional
plot of the surface provided



Grid Examples Used For The Partitioning Model

Figure 3: 8× 10× 15
structured grid

Figure 4: T shape
object formed by 2
structured grids

Figure 5: Shape object
formed by 3 structured
grids



Partitioning Problem Of The Block Graphs (1)

Idea: Turn our problem into a balanced graph clustering problem.

Input: Graph G = (V ,E ), node weights wn : V 7→ N+, edge weights
we : E 7→ N+, number of colours k .

Objective: Find a colouring of nodes c : V 7→ P where P = {1, . . . , k}
such that T = c1 maxp∈P Vp + c2 maxp∈P Bp is minimized. Here the

volume of a partition is Vp =
∑

u∈V wn(u)δ(c(u), p) and the boundary of

a partition is Bp =
∑

(u,v)∈E we((u, v))[1− δ(c(u), c(v))]δ(c(u), p),

where δ denotes the indicator function.

Methods for balanced graph clustering:

• Heuristic based on label propagation

• Integer programming formulation

• Freely available programs: KaHIP and METIS (slightly different objective
functions)



KaHIP Applied To Structured Grids

Figure 6: 8× 10× 15
structured grid



KaHIP Applied To Structured Grids

Figure 6: 8× 10× 15
structured grid



Heuristic Partitioning Method Applied To Structured Grid

0. Initialize

• Set nodes to random partitions
• Use previous partition as a starting

point

1. For each node u ∈ V (in random order):

• Find colours in the neighborhood of
u: Ccandidates = {c(v) : (u, v) ∈ E}

• For each p ∈ Ccandidates find change in
the objective function ∆u,pT if c(u)
is set to p.

• Select p∗ that minimizes ∆u,pT . If
∆u,p∗T < 0, set c(u) to p∗.

2. Repeat point 1, if at least one colour was
changed in last run of point 1.



Heuristic Partitioning Method Applied To Structured Grid

Figure 7: 8× 10× 15 Structured Grid



Heuristic Partitioning Method Applied To Structured Grids

Figure 8: 8× 10× 15
structured grid
partitioned by our
algorithm

Figure 9: Partitions assigned to 5 processors



Heuristic Partitioning Method Applied To Structured Grids

Figure 8: 8× 10× 15
structured grid
partitioned by our
algorithm

Figure 9: Partitions assigned to 5 processors



Heuristic Partitioning Method Applied To T-shape Grid

Figure 10: Structure partitioned to 5 and to
8 processors



Heuristic Partitioning Method Applied To T-shape Grid

Figure 10: Structure partitioned to 5 and to
8 processors



Partitioning Problem Of The Block Graphs (2)

• Assign the work units to processors in order to minimize the
sum of the maximum load and the maximum communication
cost

• Mathematical formulation

minimizeC1maxp∈P

{∑
v∈V

wvyvp

}
+ C2maxp

∑
p? 6=p

∑
(v ,u)∈E

w(v ,u)yvpyup?




such that

1
∑

p∈P yvp = 1,∀v ∈ V
2 yvp ∈ {0, 1},∀p ∈ P, v ∈ V



Partitioning Problem Of The Block Graphs (2)

Here is an equivalent formulation.

minimize (C1T1 + C2T2)

such that

1
∑

v∈V wvyvp ≤ T1,∀p ∈ P

2
∑

p? 6=p

∑
(v ,u)∈E w(v ,u)yvpyup? ≤ T2,∀p ∈ P

3
∑

p∈P yvp = 1,∀v ∈ V

4 yvp ∈ {0, 1}, ∀p ∈ P, v ∈ V



Partitioning Problem Of The Block Graphs (2)

We now linearize the term yvpyup? .

1

xpp
?

vu =

{
1 if node v (resp. u) belongs to cluster p (resp. p?)

0 otherwise

2 
xpp

?

vu ≥ yvp + yup? − 1

xpp
?

vu ≤ yvp

xpp
?

vu ≤ yup?

∀(u, v) ∈ E ; p, p? ∈ P : p? 6= p

3 The minimization structure of the model implies that x will
automatically be binary and the last two constraints are not
necessary. We redefine the variables.

xpe =

{
1 if e is an outgoing arc from cluster p

0 otherwise

4 xp(v ,u) ≥ yvp + yup? − 1,∀(u, v) ∈ E ; p, p? ∈ P, p? 6= p

5 xp(v ,u) ≥ 0,∀(u, v) ∈ E , p ∈ P



Partitioning Problem Of The Block Graphs (2)

Here is the final formulation, assuming that all vertex weights are
identical and all edge weights are also identical.

minimize C1w1T1 + C2w2T2

such that

1
∑

v∈V yvp ≤ T1,∀p ∈ P and
∑

p∈P yvp = 1, ∀v ∈ V

2
∑

e∈E xpe ≤ T2, ∀p ∈ P

3 xp(v ,u) ≥ yvp + yup? − 1, ∀(u, v) ∈ E ; p, p? ∈ P, p? 6= p

4 yvp ∈ {0, 1}, ∀p ∈ P, v ∈ V

5 xp(v ,u) ≥ 0, ∀(v , u) ∈ E ; p ∈ P



Partitioning Problem Of The Block Graphs (2)

Conclusions after implementing our algorithm.

• Our problem is a very challenging combinatorial problem.
• It is highly degenerate.
• The LP is very weak (the two halves of each node are in

different clusters).
• The network size is massive.

• We tried the following approaches.
• Cplex
• Benders decomposition
• MIP-based heuristic (I, II)

If we know the values of the y variables, the communication cost is
almost trivial to compute.



Pseudocode of MIP-based heuristic (II)

1 Find the degree of each node.

2 For each cluster (associated to a given processor), execute the
following steps.

1 Find the node with the smallest degree (i.e., v).
2 While the load limit is not reached and some neighbour exists,

do

1 Find all neighbours of v and add them to the current list;
2 Update v by selecting one of its neighbours for exploration.

3 Fix the binary variables associated with each node in the
cluster list.

3 Solve the “restricted MIP.”



Partitioning Problem Of The Block Graphs (2)

Results (the time limit was set to 30 minutes)

Approach Instance I Instance II

Cplex 149951 1966080
Benders 150480 N/A

Heuristic I 162240 369280
Heuristic II 130880 291136



Reorganizing the Blocks Assigned to a Given Processor

We have considered two approaches.

1 Treat the union of all the blocks as a single structure and try
to decompose it into “cuboids”, i.e., grid-like regions.

2 Attempt to merge the blocks themselves by applying some
algorithm (probably a greedy algorithm).

The first approach requires very complicated and time-consuming
algorithms and the second one does not guarantee that the
solution produced is optimal.



General Algorithm To Build The Final Blocks

Algorithm 1 General Algorithm
1: mark all the blocks with the labels of the original block from which they were extracted

2: if all the blocks belong to the same original block then

3: call function to get structured blocks

4: else if the original blocks are compatible (Call Routine to check for degeneracy) then

5: merge all the blocks

6: call function to build structured blocks
7: else
8: divide the blocks in 3D representable sets (TODO)

9: for all the 3D representable sets do

10: call function to build structured blocks
11: end for
12: end if

13: function build structured blocks(3D representable blocks)

14: call routine to detect concave edges (implemented)

15: if there are no concave edges then

16: all the blocks assigned to the processor form a structured block

17: return the blocks structure
18: else
19: call routine to build structured blocks (TODO)

20: return the blocks structure
21: end if
22: end function



General Algorithm To Build The Final Blocks

Comparison between the original set of blocks and the final result
where the concave edges are detected



A Greedy Algorithm for Merging the Blocks Assigned to a Given Processor

Let L denote the original list of cuboids. Repeat the following
steps as long as the list contains at least one mergeable cuboid.

1 Choose a mergeable cuboid (let it call A).

2 Among the cuboids that can be merged with A, select a
cuboid B.

3 Merge cuboids A and B, yielding a new cuboid C .

4 Replace cuboids A and B by cuboid C in the list L.



Future Directions

• Implement refinement and heuristic algorithm for a more
complicated structure.

• Compare with a deterministic optimization technique.

• Study various clustering methods for parallel optimization.



Thank You For Your Attention!


