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Context : Additive manufacturing (3D printing)

Figure: Source : http://openi.nlm.nih.gov/

Goal : use ultralight lattice structures to reduce weight of pieces of machinery
while preserving or improving their characteristics.
Problem : Because of the small size of the cells (≤ 1mm), number of Finite
Elements required for the computational analysis is huge.
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Figure: Adapted mesh for a 2D plate lattice

Figure: Zoom in

(Group 6) Finite element analysis of ultralight metallic lattices
Sixth Montreal Industrial Problem Solving Workshop 4

/ 10



Goal of the project : Find a model (equations for the displacement,
temperature) that can be discretized and solved numerically at a reasonable
cost and within a reasonable time

Research avenues :
1 use beam models (but struts are irregular and struts diameters are not small

compared to cells sizes)
2 use directly a discrete model of interacting nodes dictated by the lattice

structures (but we need to find the laws of interaction between the nodes)
3 find a replacement homogeneous solid with equivalent mechanical properties

to those of the original piece

We followed the 3rd avenue, using homogenization theory.
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Specificities of the applications

The engine parts that PWC has in mind are very thin (with shell like shape), thus
with only a very small number of cell layers (between 4 and 10).

Figure: 3D plate lattice (source : http://architectedmaterials.com/)
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A model diffusion problem on a plate

Ω=horizontal plate in the (x1, x2, x3) coordinate system, with periodic
inhomogeneities.
ε = characteristic length of a cell{

−div
(
A
(x

ε

)
∇uε(x)

)
= f in Ω,

A∇uε · n = 0 on ∂Ω. (0.1)

Two-scale method (see G. Allaire [2007]) :

uε(x) = u0(x , y) + εu1(x , y) + ε2u2(x , y) + ...

where y = x/ε ∈ Y = [0, 1]3 (scaled unit cell) is a microscale variable.
Inserting this expansion into the PDE we obtain equations for u0, u1, u2,
....beginning with the lowest order (in ε) terms.
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After a few manipulations :
u0(x, y) = u(x).

u1(x, y) =
3∑

i=1

∂u(x)
∂xi

wi (y).

where wi is the solution of{
divy (A(y)(ei +∇ywi (y))) = 0 in Y ,

wi (y) periodic on ∂Y . (0.2)

−divy (A∇yu2) = divy (A∇xu1) + divx (A (∇xu +∇yu1)) + f .

and, last but not least, the (very nice) homogeneous problem

−divx (A∗∇xu) = f (x) in Ω, (0.3)

where A∗ is called the homogenized tensor and can be computed at the cell level :

A∗
ij :=

∫
Y

A(y) (ej +∇ywj) · ei dy .
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But we are not comfortable with applying this to our situation :
- the plate has only a small number K of layers of cells and this technique
disregards the boundary layers
- The plate thickness converges to 0 as ε→ 0.

These weaknesses can be overcome by :
- replacing the unit cell with a cell column :Y = [0, 1]2 × [0, K ] ;
- looking for a plate model (2D model) with solution u(x1, x2).
We thus modify the expansion :

uε(x) = u0(x , y) + εu1(x , y) + ε2u2(x , y) + ...

where x = (x1, x2), y = x/ε. Again, this gives that u0(x , y) = u(x) = u(x1, x2)
and that u is solution of{

−divx (A∗∇xu) = Kf in Ω∗, (0.4)

where Ω = Ω∗ × [0,K ] and A∗ has a form similar to the previous one.

(Group 6) Finite element analysis of ultralight metallic lattices
Sixth Montreal Industrial Problem Solving Workshop 9

/ 10



Remarks :
In the case of a domain with holes (a lattice !), the homogenized problem
takes the form {

−divx (A∗∇xu) + θu = θKf in Ω∗, (0.5)

where θ is the volumic fraction occupied by the solid material.
What could be done next :
- extend the present study to shell-like lattice structure and to the elasticty
system ;
- litterature review on the modelling of plate-like and shell-like lattice
structures.
- Compare numerically the proposed homogenized plate and shell models with
the starting models.
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