
Drawing Huge Plots on
the Web

Mikola Lysenko and Perouz Taslakian
plot.ly

http://plot.ly
http://plot.ly

Requirements

• > 1 million data points

• Exact rendering

• Interactive

• Important for plot.ly’s business!

http://plot.ly

Plots

1. Scatter plots

2. Line plots

Main Question

Is it possible to render > 10 million

points/lines?

WebGL
• Low level rendering API for drawing triangles, uses

GPU

• Executes asynchronously and in parallel

• Performance factors:
■ Draw calls
■ Fragment processing
■ Vertex processing
■ Bandwidth

• Extremely fast performance possible

Source: http://romain.vergne.free.fr/teaching/IS/SI03-pipeline.html

GPU Pipeline

Source: http://romain.vergne.free.fr/teaching/IS/SI03-pipeline.html

GPU Pipeline

BOTTLENECK

Fill rate
• Observation:

Large scatter plots are fill
rate limited.
■ Can process many vertices

easily, as long as most end
up outside viewport.

• For huge plots, many
points end up on same
pixel, so it is enough to
draw just one sprite for
whole group.

level (pi) = min j

● Let P = {p0, p1, ... pn} be a set of primitives with pi ∈R2

● s0 > s1 > … > sk = 0 be a set of scales (pixel sizes)

● The cover order of P is the filtration

F0 ⊆ F1 ⊆ …. ⊆ Fk = P

 such that ∪P ⊆ ∪Fj ⊕ Bsj

Cover Order

pi ∈ Fj

● We want a cover order of the points (for scatter plots)
or line segments (for line plots) so that given a zoom
level, we can quickly determine the points/segments
that need to be rendered by the GPU (i.e. those that
are not covered or hidden behind others).

Cover Order

● We preprocess the points as follows:

1. Construct a quadtree of the given pointset using a
depth-first traversal of the points and keeping
track of their level in the tree.
Store the points in array Q.

2. Sort the points of Q in increasing order of level,
and of x-coordinate.

3. Keep track of point levels using an array of indices
of size equal to total number of levels.

100 million points

Source: http://www.cs.berkeley.edu/~demmel/cs267/lecture26/lecture26.html

Quadtrees

Source: http://www.cs.berkeley.edu/~demmel/cs267/lecture26/lecture26.html

Quadtrees

● We send all the points (array Q) to the GPU.

● To render for a given level, we ask the GPU to draw
some superset of the points that are visible on the
screen and are not hidden behind others.

Rendering

1. Compute the size of a pixel in the data
coordinate to get the current zoom level Z.

2. Compute the xmin and xmax of the screen.

3. Starting at level Z, for each level above Z

i. Find the predecessor p of xmin and successor
s of xmax

ii. draw the points whose x-coordinates are
between p and s.

Rendering

Quadtrees

xmaxxmin

Quadtrees

● Preprocessing may take a long time if the quadtree
ends up having height O(n).

● This happens when the input consists of a big
cluster of points that are far from the rest of the
points.

● To avoid such a bad case, we introduce a small
change to the way we construct the quadtree.

Quadtree Bad Cases

● The idea is as follows.

1. After every split of the area into four quadrants,
check each quadrant to see if they contain greater
than 90% of the points.

2. If such a quadrant is found, then split the point
cluster arbitrarily into two equal sets and
construct a new quadtree for each one separately.

● Doing this will preserve the level information for each
node, which is all that we need to render effectively.

Trick with Quadtrees

● For points that are semi-transparent, “hiding” the
ones that are behind others will not give the desired
result.

Transparent Points

● Instead we need to
“blend” colors for the
points that are stacked.

● For transparent points having the same color and
marker, we need to know the number of points that
a given point “hides”.

● We can compute this
information while building
the quadtree -- for every
node of the tree,
store the number of its descendants.

Transparent Points

● Want to sort lines in cover order (reduce fragment
processing cost on GPU).

● Quadtrees don’t work.

Line Plots

Might hit O(2h)
boxes in level h

Cover Order for Lines
● Build covers inductively, solve for Fj \ Fj-1:
● Want smallest set of line segments that cover

P \ Fj-1 at scale sj

Line Plots: Ideas
1. Set Cover Approximation.

○ The cover ordering problem for line segments can be
reduced to the problem of Set Cover (which is NP-complete).

○ This allows us to use the Set Cover approximation algorithm
that has an approximation factor of ᶚ(log n).
Running time: O(n3).

2. Greedy Longest Segment.
○ Sort the segments and process them by decreasing order of

length. Running time: O(n2).
3. Divide-and-Conquer.

○ Recursively split the segments (arbitrarily) into two equal
groups and process. Running time: O(n log n).

Summary of results
● Scaled from 10 million points to 100 million

interactively.

● Solved transparent rendering for a special case of
scatter plots.

● New heuristics for line plots (to be investigated
further).

● Beginnings of theoretical framework for rendering
large data sets.

What needs work

• Preprocessing time

• Transparent lines, complex scatter plots

• SVG export

• Analysis and implementation of line cover

Thank you

