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Outline

I The scheduling problem
I The mandate:

1. Prove that Dumas’ algorithm is still optimal with the
wait time constraint

2. Add the Pick-up & Delivery Span constraint
3. Add the route span contraint

I Many ideas

I Further steps
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A first version of the scheduling problem

Given a sequence of n “stops” that must be serviced by a
vehicle, we wish to find the best times (x1, x2, . . . , xn) at
which the vehicle must arrive at those stops.

I Each stop (or node) corresponds to the pickup of a
client or the delivery of a client.

I Each client has a convex utility function, denoted by fi ,
describing his or her preference with regard to the
pickup (or delivery) time. The value xi at which fi
attains its minimum is the client’s preferred time.

I For each i the time xi must belong to the window
[ai , bi ].

I The xi must satisfy the so-called travel constraints, i.e.,
the constraints xi + Ti ≤ xi+1 for 1 ≤ i ≤ n.
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A more complete version of the scheduling
problem

In real life we need to consider further constraints.

I The xi must satisfy the maximum wait constraints
xi + Ti + Wi ≥ xi+1 for 1 ≤ i ≤ n.

I Each client has a maximum ride time. Thus if the client
is picked up at Stop i and delivered at Stop j , xj − xi
must not exceed a given upper bound. If the maximum
span were exceeded, a penalty could be imposed.

I The route span, which is equal to xn − x1, should be
minimized.
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Goals of the workshop

There was a theoretical goal as well as “algorithmic goals”.
I Solve the problem with three additional constraints:

1. wait max at each stop,
2. ride time max for each customer,
3. route span max.

I Either:

1. Extend the algorithm of Dumas et al. (for instances
with window and travel constraints) to instances with
window, travel, and maximum wait constraints.

2. Design an exact algorithm (not necessarily a fast one)
for the full version of the problem.

3. Design a fast heuristic returning a good solution for the
full version of the problem.

Reference: Dumas, Soumis, and Desrosiers have presented a linear-time

algorithm for solving the simple version of the scheduling problem

(Transportation Science, Vol. 24, No. 2, May 1990, pp. 145–152).
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Part I - Theoretical properties

The simple version of the problem, denoted by (P), can be
formulated as follows.

min
n∑

i=1

fi (xi )

subject to

ai ≤ xi ≤ bi for i = 1, 2, . . . , n − 1

xi + Ti ≤ xi+1 for i = 1, 2, . . . , n

Observe that if we know that some optimal solution satisfies
the constraint xi + Ti ≤ xi+1 at equality, then we can
eliminate a variable from the problem and solve a reduced
problem that is equivalent to the original one.
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The basic lemma

The relaxed problem is the problem described on the
previous slide minus the travel constraints. Dumas et al.
prove the following lemma.

Lemma

Let X denote an optimal solution of the relaxed problem. If
xk + Tk > xk+1 holds for some k , then there is an optimal
solution X ∗ of (P) satisfying x∗k + Tk = x∗k+1.

This lemma implies that (P) can be solved in linear time
(assuming that the minimization of a convex function f (x)
takes a constant time). Note that solving the relaxation of
the reduced problem only requires one function minimization.
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The simple version plus the maximum wait
constraints

We now include into (P) the maximum wait constraints.

min
n∑

i=1

fi (xi )

subject to

ai ≤ xi ≤ bi for i = 1, 2, . . . , n − 1

xi + Ti ≤ xi+1 for i = 1, 2, . . . , n

xi + Ti + Wi ≥ xi+1 for i = 1, 2, . . . , n

To extend the algorithm by Dumas et al., we need a more
general version of their lemma.
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Two new lemmas

Now the relaxed problem is the problem (P) without the
travel and maximum wait constraints. We first consider the
case where the solution of the relaxed problem violates one
of the maximum wait constraints.

Lemma 1

Let X denote an optimal solution of the relaxed problem. If
xk + Tk + Wk < xk+1 holds for some k, then there is an
optimal solution X ∗ of (P) satisfying one of the following
constraints:

1. x∗k + Tk + Wk = x∗k+1,

2. x∗k+1 + Tk+1 = x∗k+2, and

3. x∗k−1 + Tk−1 = x∗k .
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Two new lemmas (continued)

There is a similar lemma for the case where the solution of
the relaxed problem violates one of the travel constraints.

Lemma 2

Let X denote an optimal solution of the relaxed problem. If
xk + Tk > xk+1 holds for some k , then there is an optimal
solution X ∗ of (P) satisfying one of the following
constraints:

1. x∗k + Tk = x∗k+1,

2. x∗k+1 + Tk+1 + Wi+1 = x∗k+2, and

3. x∗k−1 + Tk−1 + Wk−1 = x∗k .

We don’t know yet how to use these lemmas for designing
fast algorithms.
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Part II - Algorithmic ideas and developments

I Dynamic Programming to solve P with the three
additional constraints

I Heuristic Algorithm to optimize the ride time (two
steps)

I Heuristic Algorithm to tighten the time windows and
generate a (good?) initial solution
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A- A dynamic programming algorithm

I A label L = (i(L), x(L), f (L), (tk)Kk=1) is a tuple as
follows:

1. i(L) : the current stop being visited
2. x(L) : the arrival time to node i , which includes the

waiting time
3. f (L) =

∑
i≤i(L) fi(L)(xi (L)) : accumulated cost

4. tk(L) : accumulated traveling time of customer k

I The beginning of the recursion is represented by a label
L0 = (0, 0, 0, (0)Kk=1)
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A- A dynamic programming algorithm

I When the route is extended from a label L we do as
follows:

I If i(L) + 1 is a delivery node:
I We create a single label L′ as follows:
I i(L′) = i(L) + 1
I x(L′) = max{ai+1, x(L) + Ti}
I f (L′) = f (L) + fi(L′)(i(L

′))
I (tk)Kk=1(L′) = (tk(L) + x(L′)− x(L))Kk=1)

I If i(L) + 1 is a pickup node:
I We create wi(L) labels L′, each of which corresponds to

a different waiting time
I For a given waiting time w ∈ [0,wi(L)], L

′ is as follows:
I i(L′) = i(L) + 1
I x(L′) = x(L) + Ti + w
I f (L′) = f (L) + fi(L′)(i(L

′))
I (tk)Kk=1(L′) = (tk(L) + x(L′)− x(L))Kk=1)

I An extension is performed only if it respects the time
windows and/or ride time constraints
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A- A dynamic programming algorithm

Dominance rule

I A label L dominates another label L′ if
I i(L) = i(L′)
I x(L) = x(L′)
I f (L) ≤ f (L′)
I tk(L) ≤ tk(L′) for all k except for current customer if

i(L) is a delivery

I In this case, label L′ is discarded
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A- A dynamic programming algorithm

Pseudocode

1. L = {L0}
2. while(L 6= ∅)

2.1 Pick L ∈ L and do L ← L \ {L}
2.2 Extend L to create one or several labels L′

2.3 For each label L′ apply dominance rule
2.4 If L′ is not discarded, do L ← L ∪ {L′}

3. Return the optimal schedule
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A- A dynamic programming algorithm

Acceleration techniques

I Decremental state-space relaxation (DSSR)
I If for a certain customer the ride time constraint is

discarded, the extension rule for its pickup node is as for
a delivery one

I ⇒ Discard all ride time constraints and add them as
needed

I Completion bounds
I DSSR provides lower bounds on the optimal solution
I IDEA: Use the previous iterations to detect and fathom

unpromising labels
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B- Heuristic method to include the ride time

Let C = Set of customers, C ⊂ I .
I Generate the initial solution X 0 with Dumas’ algorithm

while:

1. Updating the ride time ri , i ∈ C for each customer;
2. Updating σ+

i = bi − x0
i and σ−i = x0

i − ai the tolerance
at each stop i ∈ I plus depot ;

I If ri > r∗i , i ∈ C : Solve P ′.
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B- The Model P ′

Let:

I δ+
i = additional wait time at stop i , ∀i ∈ I ;

I δ−i = wait time reduction at stop i , ∀i ∈ I ;

I yi ∈ 0, 1 ensuring either δ+
i or δ−i 6= 0;

I Zi = excessive ride time for i and Zi = ri − r∗i ;

I Ai = Cumulative variation of wait time at stop i ,
Ai =

∑i−1
k=0(δ+

k − δ−k ).
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B- The Model P ′ (continued)

Minimize
X
i∈C

Z 2
i (1)

subject to:

δ−i ≤ wi ∀i ∈ I (2)

δ−i ≤ σ
−
i+1 × yi ∀i ∈ I (3)

δ+
i ≤ σ

+
i+1 × (1− yi ) ∀i ∈ I (4)

Ai + δ+
i ≤ σ

+
i+1 ∀i ∈ I (5)

Ai + δ+
i ≥ −σ

−
i+1 ∀i ∈ I (6)

Ai − δ−i ≥ −σ
−
i+1 ∀i ∈ I (7)

(x0
j + Aj)− (x0

i + Ai )− r∗i ≤ Zi ∀i ∈ C (8)

xi = Ai + x0
i ∀i ∈ I (9)

Ai =
i−1X
k=0

(δ+
k − δ

−
k ) ∀i ∈ I (10)

Zi , δ
+
i , δ
−
i ≥ 0 ∀i ∈ I (11)
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C - Heuristic to tighten the time windows

1. Set: a′0 = 0, b′0 =∞, t0 = 0 and w∗0 = 0

2. For i = 1 to n

2.1 a′i = max{ai ; a′i−1 + ti−1}
2.2 b′i = min{bi ; b′i−1 + ti−1 + w∗i−1 }

3. Set: a′′n+1 = 0 and b′′n+1 =∞
4. For i = n to 1

4.1 a′′i = max{a′i ; a′′i+1 − ti − w∗i }
4.2 b′′i = min{b′i ; b′′i+1 − ti }

5. Set: x1 ∈ [a′′1 ; b′′1 ]

6. For i = 2 to n

6.1 xi =

{
min{b′′i ; xi−1 + ti−1 + wi−1∗} if i ∈ C

max{a′′i ; xi−1 + ti−1} otherwise
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Illustration

[0, 30] [30, 100] [30, 120] [60, 120] [150, 180] [150, 240] 

t1= 30 

w1=15 

t2= 30 

w2=15 

t3= 15 

w3=10 

t4= 30 

w4=30 

t5= 30 

w5=15 

First Phase: 𝑎𝑖
′ = max⁡{𝑎𝑖 , 𝑎𝑖−1

′ + 𝑡𝑖−1} 𝑏𝑖
′ = min⁡{𝑏𝑖 , 𝑏𝑖−1

′ + 𝑡𝑖−1⁡ + 𝑤𝑖−1 } 

[0, 30] [30, 60] [60, 105] [75, 120] [150, 180] [180, 225] 

Second Phase: 𝑎𝑖
′′ = max⁡{𝑎𝑖

′, 𝑎′′
𝑖+1

− 𝑡𝑖 − 𝑤𝑖} 𝑏𝑖
′′ = max⁡{𝑏𝑖

′, 𝑏𝑖+1
′′ − 𝑡𝑖} 

[0, 30] [30, 60] [65, 105] [90, 120] [150, 180] [180, 225] 

𝑎0
′ = 0 𝑏0

′ = ∞ 

𝑎𝑛+1
′′ = 0 𝑏𝑛+1

′′ = ∞ 
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Preliminary results

∑
i∈I

Z 2
i

∑
i∈I

Zi Z̄i Route Span

Initial Sol. (Dumas) 2904 298 6.48 594
Heuristic 2147 233 5.07 572
CPLEX with Dumas’ 172.67 21 0.45 594
CPLEX version 2 385.25 70 1.52 589
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Further research

I Exploit the two new lemmas to develop an efficient
algorithm

I Test the acceleration techniques for the dynamic
programming algorithm

I Analyze and test P ′ to find better solutions

I Analyze the performance of the heuristic based on the
TW tightening


