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Prepack problem

O Reduce number of pack configurations 10
O Safisfy as much as possible the store demands S

O Understocking is more penalised (10x) than overstocking

O Hard limit on how much overstocking is allowed

11




O |dentify and investigate a model of the problem
O Fast Heuristics Approach
O Exact Formulation

O Look at the advantages of building « rainbow » pack




Divide and Conquer

O Our team was quite large (10+) so we investigated
different approaches in parallel.

O Constraint Programming

O MIP - Compact Formulation
O A (very)Hybrid Metaheuristic
O HumanSearch




Constraint Programming

O Objective: Minimize over and under Stock

min E (10 x under(i, j, s) + over(i, j, s))
1,7,8
O Demand Constraint (non linear)

Z fall(b, i,j)*z send(b, s) = Z(dem(z’,j, s)+over(i, j, s) —under(t, j, s))

b S S
O Overstock should be less than demand

over(i, j,s) < ZDemand(i,j, s) /\over(i,ja s) < overstock(i, j)

J
O We fix the number of boxes to given Value



Constraint Programming

O Limit the number of item that go in a box to demand
fill(b,1,7) < max dem(i, j, s)
O Ship enough Boxes to meet demand
send(b, s) < Z(dem(i,j, s)/4]
O Lower Bound (b%:’ged on Odd/Even property)
Obj > mod () demf(i,j,s),2)
O What youSShip is What y%’% Get
Z capa(b) x send(b, s) Z dem(i, j, s) + over(i, j, s) — under(i, j, s)

Z¥)




MINLP — Compact Formulation
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Linearizing to a MIP

O First make the x variable binairies

I_log Yst
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O Then Linearize the model
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Improving the formulation

We can further
improve this model by
adding tighter upper
bounds...

Computed via an
addifional MIP model

vps: binary variable equal to 1 if any box type b is sent to store s
ups number of box type b sent to store s

min wq Z Z (p1yi15 + pzyizs) + wa Z Z Ups,
i S b s
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We get the following as the output of this model:
Ups: upper bounds for total number of box type b sent to store s.
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Muesliristic

O A Good and Healty Combination of
O Construction Heuristics
O Memetic Algorithm
O Integer Program
O Large Neighborhood Search
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CONFIGURATION GENERATOR

Frequency

insertion

Best
insertion

Random
insertion

l

MEMETIC ALGORITHM

3 * Crossover operators

>

1 * Mutation

2 * Local search




CONFIGURATION GENERATOR

Frequency Best Random
insertion | |insertion||insertion

Mixed Integer Problem

Large Neighborhood Search

l

MEMETIC ALGORITHM

3 * Crossover operators

>

1 * Mutation

2 * Local search
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S.t.

Mixed Integer Problem
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The power of the humain Brain




CW's Secret Sauce

ldentify types of store demand vector (ST)

Find common vector (C) required by all stores

Calculate residual vector R=ST-C

Initially do one colour at a fime (demand is colour structured)
Find spanning set {S;} of R,

Divide common vector (C) into parts (C1, C2 etc)

Make boxes Bi= {S;}+ C1 fo form box vectors with 4,6,8,10 T-shirts

Take care with odd/even T-shirt demands, and in cases where 1
store has zero demand in a colour

Combine C2s between colours if possible



Blue T-Shirts only

O Consider blue T-shirts as a simple example.
O 4 different store types with vectors:
ST1=(1,2,2,5,3,1), S12=(1,2,3,3,4,1), ST3=(1,2,4,3,3,1), ST4=(1,2,3,4,3,1)

O Each store requires 14 blue T-shirts;
O Common vector C=(1,2,2,3,3,1)

O Residual vectors are
O R1=(0,0,0,2,0,0), R2=(0,0,1,0,1,0), R3=(0,0,2,0,0,0), and R4=(0,0,1,1,0,0)

O The spanning setis
O §1=(0,0,0,1,0,0), S2=(0,0,1,0,1,0), S3=(0,0,1,0,0,0)

R1=2S1, R2=52, R3=233 and R4=S1+S2

O Size of Cis 12 (bigger than max box size)



Blue T-Shirts only

The next step relies on considerable hindsight!

O Split C=2C1+C2, where C1 is oc’rive(gmr’r and C2 is passive part (C1 must be odd
and must have length 3). Pick C1=(0,1,1,1,0,0) and C2=(1,0,0,1,3,1)
O B1=C1+S1=(0,1,1,2,0,0) O B3=C1+S3=(0,1,2,1,0,0)

O B2=2C1+52=(0,2,3,2,1,0) O B4=C2=(1,0,0,1,3,1)

O Make boxes by adding the spanning vectors to multiples of the active box

O The supply is then

O ST1=2B1+B4 O S73=2B3+B4

O ST2=B2+B4 O ST4=B1+B3+B4
All stores get precisely the number of T-shirts they need, using 4 box types



Blue and Black

If we look at boxing up the blue and black T-shirts, two solutions are:

B1={1,0,2,2,4,1)0,0,0,0,0,0) B1=(0,1,3,1,1,0,0,1,1,1,1,0)
B2=1,0,4,2,2,1]0,0,0,0,0,0) B2=(0,1,1,3,1,0,0,1,1,1,1,0)
B3={1,0,2,4,2,1J0,0,0,0,0,0) B3=(0,1,1,1,3,0,0,1,1,1,1,0)
B4=(0,0,0,0,0,0(0,1,1,2,0,0 B4=(0,1,1,1,1,0,0,1,3,1,1,0)
B5=(0,0,0,0,0,00,2,3,2,1,0) B5=(0,1,1,1,1,0,0,1,1,3,1,0)
B4=(0,0,0,0,0,010,1,2,1,0,0 B4=(0,1,1,1,1,0,0,1,2,1,2,0)
B7=(0,2,0,2,0,0,1,0,0,1,3,1) B7=(1,0,0,1,0,1,1,0,1,1,1,1)

O In LHS solution, one box is multicoloured - the passive box that goes to everyone
O In the RHS solution, all boxes are multicoloured

Note that because all stores require 13 black T-shirts, all stores the all get an extra T-
shirt (black in LHS solution, blue in RHS)



With all four colours:

O Green T-Shirts decouple from the problem (takes 3 box types)

O Solutioninvolves 14 box types
O 10 boxes are monocolour, 4 boxes are mulficolour

O Multicolour boxes reduce the need for oversupply to stores which need odd number
of red T-shirts as well as odd number of black T-shirts

O 10 stores get exactly the right number; 20 stores get one extra black T-shirt; 1 store
(the one with no red T-shirts) gets one fewer black T-Shirt

O No way to improve this solution with 14 boxes

Fewer boxes than 14:
O Using fewer boxes than 14 necessarily increases the over/under supply.

For 13, best strategy is to take the overlap between two green boxes (taking care
to make box size even).

(m]
O Supply 32 fewer T-shirts overall.
(m]

Can reduce to one green type:
O supply 50 fewer T-shirts overall (2 per storel)



And the Winner s ...

O Constraint Programming (35 lines of AIMMS)
O Can solve monochrome problem instantly
O Slow on rainbow-pack... solution with understock

O Linearized MIP (XX lines of C++)

O Can solve monochrome problem easily
O Similar to CP on rainbow-pack

O Muesliristic (4845 lines of JAVA)

O Tackles the global problem, find a solution with 14 boxes 59 under stock
and 199 over stock. (out 47000 explored box-types)

O CW-brains ( 22 Kcal, ¢ Coffees, ¢ Excell Tabs)

O Find a solution to the global problem with 14 box, no under cover, 74
over cover
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