
Optimisation de l’emballage pour envoi aux magasins
Optimization of the packing of boxes dispatched to retail stores

Cinquième atelier de résolution de problèmes de Montréal – Une activité CRM-
Mprime --- Fifth Montréal Problem Solving Workshop – A CRM-Mprime Event

Sh. A. Alizadeh, Chris Breward, Mahsa Elahipanah, Éric Prescott-Gagon, Maxime
Hoskins, Nahid Massoudi Renaud Masson, Gabrielle Gauthier Melançon, Jorge
Mendoza, Christophe Meyer, Louis-Martin Rousseau, Akanksha Srivastava,
Mohamed Sadoune, Winston Sweatman,

19 au 23 août 2013 - August 19-23, 2013

CRM, Université de Montréal

¤  Reduce number of pack configurations

¤  Satisfy as much as possible the store demands

¤  Understocking is more penalised (10x) than overstocking

¤  Hard limit on how much overstocking is allowed

Prepack problem

2

1

1

2

5

15
10

4

15
11 2

5 3

1

5 4

Mandate

¤  Identify and investigate a model of the problem
¤  Fast Heuristics Approach

¤  Exact Formulation

¤  Look at the advantages of building « rainbow » pack

Divide and Conquer

¤  Our team was quite large (10+) so we investigated
different approaches in parallel.
¤  Constraint Programming

¤  MIP – Compact Formulation

¤  A (very)Hybrid Metaheuristic

¤  HumanSearch

Constraint Programming
¤  Objective: Minimize over and under Stock

¤  Demand Constraint (non linear)

¤  Overstock should be less than demand

¤  We fix the number of boxes to given Value

X

b

fill(b, i, j)⇤
X

s

send(b, s) =
X

s

(dem(i, j, s)+over(i, j, s)�under(i, j, s))

over(i, j, s) 
X

j

Demand(i, j, s)
^

over(i, j, s)  overstock(i, j)

min
X

i,j,s

(10 ⇤ under(i, j, s) + over(i, j, s))

Constraint Programming
¤  Limit the number of item that go in a box to demand

¤  Ship enough Boxes to meet demand

¤  Lower Bound (based on Odd/Even property)

¤  What you Ship is What you Get

fill(b, i, j)  max

s
dem(i, j, s)

Obj �
X

s

mod (

X

i,j

dem(i, j, s), 2)

X

b

capa(b) ⇤ send(b, s) =
X

i,j

dem(i, j, s) + over(i, j, s)� under(i, j, s)

send(b, s) 
X

i,j

ddem(i, j, s)/4e

MINLP – Compact Formulation

• y

bi

= number of units of item i in packing b

• x

bs

= number of boxes (in the sense of packing) b shipped to store s.

• z

is

= total number of units i shipped to store s. We have immediately

the relation z

is

=
B

P

b=1

x

bs

y

bi

.

• t

bc

=

⇢

1 if packing b has size c 2 C.
0 otherwise

• e

is

= excess of item i at store s

• `

is

= lack of item i at store s

2.2 Objectives

The objective consisting in minimizing the number of packings can be expressed
by

min
B

X

b=1

X

c2C

t

bc

(1)

The objective consisting in minimizing the penalty cost of understocking and
overstocking can be expressed by

min ↵

X

s2S

X

i2I

`

is

+ �

X

s2S

X

i2I

e

is

(2)

where ↵ and � are penalties associated respectively with understocking and
overstocking. In practice ↵ = 10 and � = 1.

2

• y

bi

= number of units of item i in packing b

• x

bs

= number of boxes (in the sense of packing) b shipped to store s.

• z

is

= total number of units i shipped to store s. We have immediately

the relation z

is

=
B

P

b=1

x

bs

y

bi

.

• t

bc

=

⇢

1 if packing b has size c 2 C.
0 otherwise

• e

is

= excess of item i at store s

• `

is

= lack of item i at store s

2.2 Objectives

The objective consisting in minimizing the number of packings can be expressed
by

min
B

X

b=1

X

c2C

t

bc

(1)

The objective consisting in minimizing the penalty cost of understocking and
overstocking can be expressed by

min ↵

X

s2S

X

i2I

`

is

+ �

X

s2S

X

i2I

e

is

(2)

where ↵ and � are penalties associated respectively with understocking and
overstocking. In practice ↵ = 10 and � = 1.

2

2.3 Constraints

The constraints are

z

is

� e

is

+ `

is

= demand
is

i 2 I; s 2 S (3)

z

is

=
B

X

b=1

x

bs

y

bi

i 2 I; s 2 S (4)

X

i2I

y

bi

=
X

c2C

ct

bc

b = 1, . . . , B (5)

X

c2C

t

bc

 1 b = 1, . . . , B (6)

e

is

 maxOverstock
is

i 2 I; s 2 S (7)

t

bc

2 {0; 1} b = 1, . . . , B; c 2 C (8)

x

bs

integer and � 0 b = 1, . . . , B; s 2 S (9)

y

bi

integer and � 0 b = 1, . . . , B; i 2 I (10)

e

is

, `

is

� 0 i 2 I; s 2 S (11)

Constraints (3) express that the demand of the stores are satisfied, with possible
understocking and overstocking. Constraints (4) express that the quantities
shipped to the stores can be so be using boxes packed according to at most B
packings. Constraints (5)-(6) together with (8) express that the sizes of the
boxes belong to a finite set of possible values. Note that these constraints allow
some boxes (packings) to be empty. Finally constraints (7) express that the
overstock is limited for each item in each store.

2.4 Remarks

• The variables z
is

can easily be eliminated.

• The formulation needs a priori upper bound on the number B of di↵erent
packings.

• The constraints (4) are nonconvex quadratic, which means that the known
solvers cannot solve exactly the formulation. However it can be linearized;
see next section.

3

substitute the products by w

bis`

and add the constraints

wbis`  Y biubs` b = 1, . . . , B; i 2 I; s 2 S; ` = 0, . . . ,
⌅

logXbs

⇧

(14)

wbis`  ybi b = 1, . . . , B; i 2 I; s 2 S; ` = 0, . . . ,
⌅

logXbs

⇧

(15)

wbis` � 0 b = 1, . . . , B; i 2 I; s 2 S; ` = 0, . . . ,
⌅

logXbs

⇧

(16)

wbis` � ybi � Y bi(1� ubs`) b = 1, . . . , B; i 2 I; s 2 S; ` = 0, . . . ,
⌅

logXbs

⇧

(17)

where Y

bi

is an upper bound on the variables y
bi

.

Specifically constraints (4) have to be replaced by:

z

is

=
B

X

b=1

blogXbsc
X

`=0

2`w
bis`

i 2 I; s 2 S (18)

Remarks:

• The variables x
bs

can be eliminated.

• We can exchange the role of the variables x and y.

3.2 Upper bound Xbs

We can take X

bs

=
j

maxs
min(C)

k

where max
s

is the maximum number of items

that can be send to store s, including possible overstocking and min(C) is the
minimum value in C.

3.3 Upper bound Y bi

Recall that y
bi

is the number of units of item i in packing b. We can take

Y

bi

= min
n

max(C),max
s

demand
is

o

(19)

5

Linearizing to a MIP

¤  First make the x variable binairies

¤  Then Linearize the model

• The formulation contains several symmetry. Part of it can be removed
by adding constraints expressing that the packing are considered in de-
creasing order of their size. This will still leave symmetry associated with
packings of boxes of same size.

• When using the objective (1), it is necessary to add an upper bound
on the understocking, otherwise the optimal solution consists in sending
nothing to the stores.

3 Linearization

The formulation of the previous section can be linearized by standard technique
in order to make possible its solution by standard solver like Cplex.

3.1 Linearization

In order to do that, we first decompose variables x in their binary expression
by introducing binary variables u:

x

bs

=

blogXbsc
X

`=0

2`u
bs`

b = 1, . . . , B; s 2 S (12)

u

bs`

2 {0; 1} b = 1, . . . , B; s 2 S; ` = 0, . . . ,
⌅

logX
bs

⇧

(13)

where X

bs

is an upper bound on the value of the variables x
bs

.

When multiplying x

bs

by y

bi

, we will obtain products w

bis`

= u

bs`

y

bi

. We

4

substitute the products by w

bis`

and add the constraints

wbis`  Y biubs` b = 1, . . . , B; i 2 I; s 2 S; ` = 0, . . . ,
⌅

logXbs

⇧

(14)

wbis`  ybi b = 1, . . . , B; i 2 I; s 2 S; ` = 0, . . . ,
⌅

logXbs

⇧

(15)

wbis` � 0 b = 1, . . . , B; i 2 I; s 2 S; ` = 0, . . . ,
⌅

logXbs

⇧

(16)

wbis` � ybi � Y bi(1� ubs`) b = 1, . . . , B; i 2 I; s 2 S; ` = 0, . . . ,
⌅

logXbs

⇧

(17)

where Y

bi

is an upper bound on the variables y
bi

.

Specifically constraints (4) have to be replaced by:

z

is

=
B

X

b=1

blogXbsc
X

`=0

2`w
bis`

i 2 I; s 2 S (18)

Remarks:

• The variables x
bs

can be eliminated.

• We can exchange the role of the variables x and y.

3.2 Upper bound Xbs

We can take X

bs

=
j

maxs
min(C)

k

where max
s

is the maximum number of items

that can be send to store s, including possible overstocking and min(C) is the
minimum value in C.

3.3 Upper bound Y bi

Recall that y
bi

is the number of units of item i in packing b. We can take

Y

bi

= min
n

max(C),max
s

demand
is

o

(19)

5

Improving the formulation

M�c �
X

s

xcs, 8c 2 C (4)

To remove the non-linearity in constraint (1) we can replace the integer

variable xcs, given their upper-bounds Uc obtained by the following model.

Model II

We run the model independently for each box type b:

vbs: binary variable equal to 1 if any box type b is sent to store s

ubs number of box type b sent to store s

minw1

X

i

X

s

⇣
p1y

1
is + p2y

2
is

⌘
+ w2

X

b

X

s

ubs,

s.t.: X

b

ubscb +
X

i

y

1
is =

X

i

dis +
X

i

y

2
is, 8s 2 S (5)

y

2
is  oi, 8i 2 I, s 2 S (6)

Mvbs � ubs, 8b 2 B, s 2 S (7)

We get the following as the output of this model:

Ubs: upper bounds for total number of box type b sent to store s.

Ucs = Ubs ⇥
h
I|B| ... I|B|

i

|B|⇥|M |

Jcs = {0, ..., log2 Ucs} , 8c 2 C, 8s 2 S

In constraints (1) and (4) we do the following replacement for the inte-

ger variable xcs as a linear combination of new binary variables zjcs. This

combination gives us the range of variable xcs limited to Uc values.

X

c

X

j

2

j
zjcsyic + y

1
is =

X

i

X

s

dis + y

2
is, 8i 2 I, s 2 S (8)

M�c �
X

s

X

j

2

j
zjcs, 8c 2 C (9)

2

We can further
improve this model by
adding tighter upper

bounds…

Computed via an
additional MIP model

Muesliristic
¤  A Good and Healty Combination of

¤  Construction Heuristics

¤  Memetic Algorithm

¤  Integer Program

¤  Large Neighborhood Search

P S

1 3 2 0

1 2 2 3

P1 :

P2 :

S

P2 :

1 0 1

2 1 0

P1 :

P

P1 :

P2 :

1 3 2 0

1 2 2 3

CONFIGURATION GENERATOR

Frequency
insertion

Best
insertion

Random
insertion

MEMETIC ALGORITHM

3 * Crossover operators

1 * Mutation

2 * Local search

P S

Mixed Integer Problem

Large Neighborhood Search CONFIGURATION GENERATOR

Frequency
insertion

Best
insertion

Random
insertion

MEMETIC ALGORITHM

3 * Crossover operators

1 * Mutation

2 * Local search

P S

Mixed Integer Problem Large Neighborhood Search

The power of the humain Brain

CW’s Secret Sauce
¤  Identify types of store demand vector (STi)

¤  Find common vector (C) required by all stores

¤  Calculate residual vector Ri=STi-C

¤  Initially do one colour at a time (demand is colour structured)

¤  Find spanning set {Sj} of Ri

¤  Divide common vector (C) into parts (C1, C2 etc)

¤  Make boxes Bi= {Sj}+ C1 to form box vectors with 4,6,8,10 T-shirts

¤  Take care with odd/even T-shirt demands, and in cases where 1
store has zero demand in a colour

¤  Combine C2s between colours if possible

Blue T-Shirts only
¤  Consider blue T-shirts as a simple example.

¤  4 different store types with vectors:
ST1=(1,2,2,5,3,1), ST2=(1,2,3,3,4,1), ST3=(1,2,4,3,3,1), ST4=(1,2,3,4,3,1)

¤  Each store requires 14 blue T-shirts;
¤  Common vector C=(1,2,2,3,3,1)

¤  Residual vectors are
¤  R1= (0,0,0,2,0,0), R2=(0,0,1,0,1,0), R3=(0,0,2,0,0,0), and R4=(0,0,1,1,0,0)

¤  The spanning set is
¤  S1=(0,0,0,1,0,0), S2=(0,0,1,0,1,0), S3=(0,0,1,0,0,0)

¤  R1=2S1, R2=S2, R3=2S3 and R4=S1+S2

¤  Size of C is 12 (bigger than max box size)

Blue T-Shirts only

¤  B1=C1+S1=(0,1,1,2,0,0)

¤  B2=2C1+S2=(0,2,3,2,1,0)

¤  ST1= 2B1+B4

¤  ST2=B2+B4

¤  B3=C1+S3=(0,1,2,1,0,0)

¤  B4=C2=(1,0,0,1,3,1)

¤  ST3=2B3+B4

¤  ST4=B1+B3+B4

The next step relies on considerable hindsight!

¤  Split C=2C1+C2, where C1 is active part and C2 is passive part (C1 must be odd
and must have length 3). Pick C1=(0,1,1,1,0,0) and C2=(1,0,0,1,3,1)

¤  Make boxes by adding the spanning vectors to multiples of the active box

¤  The supply is then

All stores get precisely the number of T-shirts they need, using 4 box types

Blue and Black
If we look at boxing up the blue and black T-shirts, two solutions are:

 B1=(1,0,2,2,4,1,0,0,0,0,0,0) B1=(0,1,3,1,1,0,0,1,1,1,1,0)
 B2=(1,0,4,2,2,1,0,0,0,0,0,0) B2=(0,1,1,3,1,0,0,1,1,1,1,0)
 B3=(1,0,2,4,2,1,0,0,0,0,0,0) B3=(0,1,1,1,3,0,0,1,1,1,1,0)
 B4=(0,0,0,0,0,0,0,1,1,2,0,0) B4=(0,1,1,1,1,0,0,1,3,1,1,0)
 B5=(0,0,0,0,0,0,0,2,3,2,1,0) B5=(0,1,1,1,1,0,0,1,1,3,1,0)
 B6=(0,0,0,0,0,0,0,1,2,1,0,0) B6=(0,1,1,1,1,0,0,1,2,1,2,0)
 B7=(0,2,0,2,0,0,1,0,0,1,3,1) B7=(1,0,0,1,0,1,1,0,1,1,1,1)

¤  In LHS solution, one box is multicoloured - the passive box that goes to everyone

¤  In the RHS solution, all boxes are multicoloured

Note that because all stores require 13 black T-shirts, all stores the all get an extra T-
shirt (black in LHS solution, blue in RHS)

All colours
With all four colours:
¤  Green T-Shirts decouple from the problem (takes 3 box types)

¤  Solution involves 14 box types
¤  10 boxes are monocolour, 4 boxes are multicolour
¤  Multicolour boxes reduce the need for oversupply to stores which need odd number

of red T-shirts as well as odd number of black T-shirts
¤  10 stores get exactly the right number; 20 stores get one extra black T-shirt; 1 store

(the one with no red T-shirts) gets one fewer black T-Shirt

¤  No way to improve this solution with 14 boxes

Fewer boxes than 14:
¤  Using fewer boxes than 14 necessarily increases the over/under supply.

¤  For 13, best strategy is to take the overlap between two green boxes (taking care
to make box size even).

¤  Supply 32 fewer T-shirts overall.

¤  Can reduce to one green type:
¤  supply 50 fewer T-shirts overall (2 per store!)

And the Winner is …

¤  Constraint Programming (35 lines of AIMMS)
¤  Can solve monochrome problem instantly
¤  Slow on rainbow-pack… solution with understock

¤  Linearized MIP (XX lines of C++)
¤  Can solve monochrome problem easily
¤  Similar to CP on rainbow-pack

¤  Muesliristic (4845 lines of JAVA)
¤  Tackles the global problem, find a solution with 14 boxes 59 under stock

and 199 over stock. (out 47000 explored box-types)

¤  CW-brains (?? Kcal, ? Coffees, ? Excell Tabs)
¤  Find a solution to the global problem with 14 box, no under cover, 74

over cover

Many thanks to

¤  Workshop organizers and sponsors

¤  JDA / Éric Prescott Gagon for his help and support

¤  All the member for their enthusiasm and collaborative spirit.

