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Motivation

Problem background

x = 2 cm

x = 0

y = 3 mm (-hp)

y = 0

z = 0z = 2 cm

vx = 1 m/s

vz = 2.5 mm/s

diameter = 0.1 mm

The laser polishing process.
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Motivation

Problem background

A workpiece of dimensions about 2cm × 2cm (a few mm depth) is
to be polished using a laser. Assume the workpiece is silicon
(glass).

The polishing process

The laser rapidly heats the glass until it reaches the melting
temperature. The molten silicon then flows so that bumps are
evened out. In this way the surface roughness on the glass may be
reduced, or removed.

Note

In ideal operation, no glass is vapourised. To machine by
vapourization, see the other INO problem!
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Motivation

Objectives

The main aims of the investigation to consider:

1 What kind (length scale) of non-uniformities might be
smoothed out by the process?

2 What are the main features of the heat transfer problem and
how does the laser heat the material?

3 Can we propose a predictive model for the smoothing of
non-uniformities?

4 When might we expect cracking to occur and can we predict
this?

Note

The dynamic viscosity µ of the glass is a strong function of
temperature T .
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Time and length scales

Identifying the dominant processes

Competing mechanisms: surface tension, viscosity, gravity. We
consider a bump to be smoothed of height h and length L.

What is doing the spreading?

Surface tension (worst case): h ∼ 1µm, L ∼ 100µm

γh

L3
∼ 3× 105 N m−3, bump over long distance

Gravity: ρg ∼ 104 N m−3.

Conclusion

Viscosity balances surface tension — gravity never important. The
timescale τ for a bump of height h and length L to smooth out
satisfies

γh

L3
∼ µL

τh2
.



Laser Polishing

Time and length scales

Identifying the dominant processes

Observation (h ∼ 1µm, L ∼ 1µm)

Only heat up the volume of a bump:

The diffusion time is
h2ρcp
k ∼ 4× 10−7s.

The time it takes for the bump to flow is µL4

γh3 ∼ 3× 10−1s which is
way too long.

Conclusion

What should be done and actually is done is to heat up a much
deeper layer so that more of the fluid is mobile and it takes longer
for the heat to diffuse away.



Laser Polishing

Time and length scales

Identifying the dominant processes

For the thermal diffusion replace h with the penetration depth
hp ∼ 50µm and consider flowing a bump of height h ∼ 1µm over
L ∼ 1µm. Heating a relatively deep patch to smooth out the
bumps.

Interesting and realistic bumps (h ∼ 1µm, L ∼ 1µm)

Time for viscous flow over distance L: Time for heat to diffuse
over a height h:

τdiffuse =
h2
pρcp

k
∼ 1× 10−3s,

τviscous =
µL4

γh3
∼ 3× 10−1s.

One can now expect reasonable smoothing with a number of
passes over the workpiece.
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Time and length scales

Problem statement

The problem was separated into three interrelated subproblems:

1 Thermal problem characterized by a rapid volumetric
heating by the laser which reduces the viscosity of the glass
and allows any defects to be smoothed away under the action
of surface tension.

2 Flow problem modelled assuming a thin viscous
incompressible fluid (lubrication theory) where the viscosity is
suitably reduced through heating.

3 Cracking mechanism that considers both the thermal stress
generated in either the heating and cooling of the material
and compensates for a variable viscosity.
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Temperature problem

Volumetric laser heating

Let v be the convection velocity and let k be the thermal
conductivity. The temperature T satisfies,

ρcp

(
∂T

∂t︸︷︷︸
1

+ v · ∇T︸ ︷︷ ︸
2

)
= k

(
∂2T

∂2x
+
∂2T

∂2y
+
∂2T

∂2z

)

︸ ︷︷ ︸
3

+ Φ(t)︸︷︷︸
4

, (1a)

Φ(t) =
α(T )β

πd2/4
I0(t)e−α(T )y . (1b)

1 Thermal transport

Let v be the convection velocity and let κ be the thermal conductivity. Let
I0(t) = 100 W 1{t0<t<t1} be the heat pulse. The temperature T satisfies the
following equation,

ρcp

(
∂T

∂t
+ v · ∇T

)
= κ

(
∂2T

∂2x
+

∂2T

∂2y
+

∂2T

∂2z

)
+
α(T )β

πd2/4
I0(t)e

−α(T )y . (1)
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To simplify the equation, for the laser heating process we solve





ρcp
∂T

∂t
=

α(T )β

πd2/4
I0(t)e

−α(T )y ,

T (0, y) = T0(y).

(2)

For the cooling process, we solve





ρcp
∂T

∂t
= κ

∂2T

∂2y
, for 0 < y < H,

κ
∂T

∂y
= σrad(T

4 − T 4
en), at y = 0,

κ
∂T

∂y
= 0, at y = H,

T (0, y) = T0(y), for 0 < y < H.

(3)

1

A typical short duration heating pulse of I0(t) = 100 watts for 10−4s.
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Temperature problem

Heat balances

ρcp

(
∂T

∂t︸︷︷︸
1

+ v · ∇T︸ ︷︷ ︸
2

)
= k

(
∂2T

∂2x
+
∂2T

∂2y
+
∂2T

∂2z

)

︸ ︷︷ ︸
3

+ Φ(t)︸︷︷︸
4

.

A very rapid heating phase implies that 1 balances 4.

No source for the cooling phase so 1 balances 3.

For heat diffusion the temperature varies predominantly with
respect to the depth (y) so that only ∂2T/∂y2 dominates 3.

Diffusion dominates convection on these time and space scales
so that 2 can be ignored to first order.
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Temperature problem

Heating/Cooling problems

Heating (0 < t < t1)



ρcp

∂Ta

∂t
=
α(Ta)β

πd2/4
I0(t)eα(Ta)y ,

Ta(0, y) = T0(y).
(2)

Cooling (t > t1)




ρcp
∂T
∂t = k ∂

2T
∂2y

, −hp < y < 0,

k ∂T∂y = σrad(T 4 − T 4
b ), y = 0,

k ∂T∂y = 0, y = −hp,
T (t1, y) = Ta(t1, y), −hp < y < 0.

(3)

The viscosity can be determined as a function of position and time.
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Temperature problem

Results (thermal)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−3

0

500

1000

1500

2000

2500

0 µs

100 µs

1000 µs

1 s

depth of glass (m)

te
m

pe
ra

tu
re

 (
K

)

2

Temperature rise as a function of depth into the workpiece for various times.
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Temperature problem

Boundary condition at the surface

Radiative versus no flux

Comparison of the numerical solution for the temperature with the
radiative and the no flux surface condition shows no appreciable
difference over the spatial domain.
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Comparison of the temperature rise for a radiative and a
no flux boundary condition at the surface y = 0.
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Flow problem

Governing equations

We start with the incompressible Navier-Stokes with variable
viscosity

∂v

∂t
+ v · ∇v = −1

ρ
∇p +∇ · σ + g, (4a)

∇ · v = 0 (4b)

where σ = µ[∇v + (∇v)T ], v is the velocity, µ the viscosity, ρ the
density, and p the pressure.

Vertical: hp ∼ 10−5 m (heated layer thickness near the
surface);

Horizontal: L ∼ 10−4 m (size of the laser beam).
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Flow problem

Surface and other boundary conditions

At the top free-surface y = h(t, x , z), we have the usual kinematic
and dynamic conditions v = 〈u, v〉

∂h

∂t
+ u · ∇xzh − v = 0, y = h, (5a)

p − σ · n = pa − γκ, y = h, (5b)

σ · τ = 0, y = h, (5c)

v = 0 y = −hp, (5d)

where u and v are the horizontal and vertical directions, pa the
atmospheric pressure, γ the surface tension coefficient, κ the
surface curvature, n and τ the unit normal and tangential vector.

Simplification 1: ignore z direction for now (easily included);

Simplification 2: small h (10−6 m).
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Flow problem

One-dimensional thin film equation

We arrived at an integral equation

∂h

∂t
+

∂

∂x

(∫ h

−∞

γ(y − h)2

2µ
dy
∂3h

∂x3

)
= 0. (6)

Note that in general we have to solve the equation numerically or
use Watson’s lemma to estimate the integral.
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Flow problem

Smoothing a bump over multiple heating passes
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(5 passes, No flux) (10 passes, No flux)
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(5 passes, Radiation) (10 passes, Radiation)
Evolution of the surface roughness.
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Flow problem

Residual heating of the material

After 10 passes there is some residual heat left in the material.
The amount depends on if the no flux or the radiation boundary
condition is used.
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Cracking problem

Cracking of the workpiece

If the thermal regime is to severe in some way then there may be
cracking (“crazing”) This will render the workpiece useless.
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Cracking problem

Cracking of the workpiece

Observations

1 When cracking does happen, the whole of the workpiece is
normally affected.

2 The length of the “crazy paving” cracks is typically 100µm.

3 The crack depth is maybe 10µm.

4 Experiments seem to show that the cracking does not occur
during heating (“boiling water on a freezing windscreen”) but
occurs later during cooling (“windscreen cracks in Rex’s car
when it gets cold in Calgary”).
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Cracking problem

Mechanisms

Competition

Thermoelasticity (elastic expansion when heated)

Viscosity (acts to dissipate the extra stress by flowing)

Note

When T is very large, the thermoelastic stress is high, but the
viscosity is low enough for flow and stress dissipation

When T is very small, the material is solid and there is no
flow - but there is also no significant thermoelastic stress.

Suggestion

There is a “in between” regime where cooling cracking can
happen. We should consider thermoviscoelasticity.
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Cracking problem

Simplest model: Ignore viscosity (thermoelastic)

1−D thermoelastic

Contraction of material during cooling is given by α(T − Tref).
(α = coefficient of linear thermal expansion).
This generates stress σ = αE (T − Tref).

Result: if α is large then there could be cracks.
Limitation: no flow effects included.
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Cracking problem

Next simplest model: Maxwell kludge (viscoelastic)

Simple physics model in the literature (Allcock et al., 95)

Add viscous effects kludge: 1−D Maxwell model where

ε = ux =
σ

E
+

1

µ

∫ t

σdt ∼ σ

E
+
σt

µ
(7)

where t = relaxation time (Note: u is displacement). Then just do
thermoelasticity, but with

E = Eeff =
1

1
E + t

µ

. (8)

“relaxation time scale decreases E to Eeff to allow for viscosity”.
Maxwell version seems inconsistent in 1−D — (no time for details).
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Cracking problem

Our model A: Voight (thermoviscoelastic)

Voight model

In one dimension we have

σx = 0, σ = E (ux − α(T − Tref)) + µuxt (9)

where in general µ = µ(T (x , t)).

Heating problem

First do µ = constant. Flow is over 0 ≤ x ≤ 1 for t > 0. Assume
material is confined so that always u(0, t) = u(1, t) = 0. We have:

t = 0 : T (0, x) = 0, (Tref = 0, u(0, x) = 0), (10a)

t > 0 : T (t, x) = (1− e−qt)x(1− x). (10b)
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Cracking problem

Our model A: Voight (cont)

Solve equation for u etc. - we find that

u(x , t) = αE

(
x2

2
− x3

3
− x

6

)
g(t;µ,E , q) (11a)

g(t;µ,E , q) =

[
1

µ

(
1− e−µt/E

)
− 1

µ− qE

(
e−µt/E − e−qt

)]

(11b)

which gives σ(t) = −α
6 . This does not depend on µ, but does give

a non-zero value as t →∞ (“locked-in stress”)

Note

If µ is a function just of t then the same conclusion holds, but in
general if µ is a function of temperature (in particular x) this can
affect the final stress state.
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Cracking problem

Our model B: Maxwell (thermoviscoelastic)

We extend the Maxwell model in space one-dimension (between
0 ≤ z ≤ 1)

σ

E
+

∫ t

0

σ

µ
ds = α(T − Tref )− uz , (12a)

σz = 0, (12b)

where σ is the stress and uz strain rate. We assume that u = 0 at
z = 0 and 1 and initially T = Tref . Our model is more general
than the one in Allcock et al. (1995) as

T could depend on z and t; and

µ could depend on z and t (as a function of temperature).
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Cracking problem

Simplification of the Maxwell model

From σz = 0, we can immediately conclude that σ = σ(t).
Integrate the first equation in z and apply u = 0 at z = 0 and 1 to
obtain

σ

E
+

∫ t

0

σ

µ̄(t)
ds = αT , (13)

where

1

µ̄(t)
=

∫ 1

0

1

µ(t, z)
dz , T (t) =

∫ 1

0
(T (t, z)− Tref )dz . (14)

Equivalently, we have

σ̇ +
E

µ̄(t)
σ = αEṪ (t). (15)

This is an ODE we can solve numerically in general; and

It is exactly the same form when the temperature and viscosity
in Allcock et al (1995) are integrated as the space average.
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Cracking problem

Solution of the Maxwell model

We consider a simple case where µ̄ is constant. We find the
solution

σ = αE

∫ t

0
Ṫ eE/µ̄(s−t)ds. (16)

Special case: T = (e−t/p − 1).

Elastic µ̄ = 0: σ = αE (e−t/p − 1);

Viscoelastic

σ(t) =
αE

1− pE
µ̄

(
e−t/p − e−

Et
µ̄

)
. (17)

Remark

When p � µ̄/E (rapid cooling), viscoelasticity has a small impact.
However, if pE/µ̄� 1 (slow cooling), the viscoelastic effect is
significant.
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Conclusion

What have we learned?

1. What kind (length scale) of non-uniformities might be
smoothed out by the process?

Defects on the size of 1µm can be completely removed after about
ten passes if there are no radiative losses. This is made possible by
heating a significant depth of the material hp = 50µm. There is a
residual heating affect that is accumulative. After five passes the
temperature rise is about 500K (less if there are radiative losses).
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Conclusion

What have we learned?

2. What are the main features of the heat transfer problem and
how does the laser heat the material?

The defect removal is consistent with a rapid heating phase over
the penetration depth and a relatively long cooling time over this
depth. Heat flux is essentially dissipated into the workpiece and in
comparison very little heat escapes through the surface.
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Conclusion

What have we learned?

3. Can we propose a predictive model for the smoothing of
non-uniformities?

A predictive model using lubrication theory and a simplified model
for the volumetric heating has been effective at reproducing the
smoothing out of the defects through a coupling of a reduction of
the viscosity and the reducing surface tension. Heating a sufficient
volume of the material is crucial to having this mechanism work.
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Conclusion

What have we learned?

4. When might we expect cracking to occur and can we predict
this?

Cracking is suspected to be a result of an excessive rate of cooling
of the material (Allcock, 1995). Using a Voight model we show
that the formation of excess stress is related to spatial variations in
the viscosity. Preliminary analysis of a thermoviscoelastic Maxwell
model indicates that it is possible to generate large stresses that
could cause cracking if the material is hot enough to generate
significant thermal stress yet not so hot as to have that stress
dissipate through the flow of the material due to the reduced
viscosity.



Laser Polishing

Conclusion

Thank-you!
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