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Problem Setup

* Problem: Find temporal shape of
laser pulse optimizing ablation.

*Function to optimize

“Efficiency” =] = depth/(energy of pulse)

Needs: N
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Current Experiments

5,0 3
] anozecond TJns pulse
4 5 e e -~ Picozecond 10ns burst -
! = ! B i : MNanozecond 2Jne pules
40 7 ' - ™~ ' icozecond 200 s burst
! — e e H icasecond Jlns bursi
J : - ' NManosecond ddn= pulze
3,5 . ""‘_ﬂ_ —3— Picosecond 4Jns bursi
T T« SR - S ;
' — >

2 5 :_._._............E,............._._._._._._.‘,',_...;:.............._._._é._._._..........??Es.-c\.":-.‘_......._..a_'..:':;_.:-’.‘.’.........
! b : - : L T e

Material removal efficiency (um’fuJ)

05

T N o T )
* Typical results show :

—SI : about 1/2 of estimated max efficiency

— Al and steel : about 1/6 of estimated max
efficiency




Some Physics

 Expect different pulse shapes for
different materials

— Important physical parameters:

* Optical absorption coefficient
*Not available for the range of required values

* For silicon above melting temp (~1600 K), but need
value up to vaporization temp (~3500 K)

* Latent heat of vaporization
* This week: focused on silicon




Temporal Pulse Shape
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Computational Strategy

* 1. Solve PDE for heat transfer to obtain
depth of ablated material

2. Use depth from (1) to obtain value for
objective function for optimization

— We have explored two different
optimization methods

* Simulated annealing (logarithmic cooling
schedule)

* “Multistart optimization” to find global minima +
ensemble of local minima

— Tested on sample problems



Physical Model

* Heat transfer equation (BVP)
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* Boundary conditions
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* Initial condition
T(x,0)=T
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Physical Model

* Laser beam intensity

ol B
a—x(x,t)—(x(T)I(x,t)

* Vaporization velocity

- Moving Boundary
- Depends on surface temperature
- Given by Hertz-Knudsen equation

- Allows to compute depth of ablation
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General Algorithm

Initialization : |,

PDE solver from |

Optimization Efficiency : J,
loop

Update to | ,,

“Best” Pulse




Numerics

* Numerical Solver ((too) simple at this stage)
- Semi-implicit scheme
- Stability condition from convection term

- Necessitates linear system computation :-(
A(dt"\T™'=B(dt")T"+E(dt", BC,source)

— Careful computation of boundary conditions

* More specific solver for Stefan like
problems to be implemented




Simulated Annealing

* Simplest Monte Carlo type optimization
* Fasy to implement

* Normalization of pulse parameters to satisfy
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MultiStart Method

MultiStart explores energy landscape while
simultaneously finding both local and global
minima

MultiStart has two phases - global phase and
local phase

Global phase: Performs scatter search to cover
the domain

Local phase: Performs gradients to converge to
local minimum

Global Optimization Toolbox (Matlab)



Simple Test Function:
Six Camelback Hump Problem

Sz-rump carneback tunckon
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* Properties of six camelback hump problem: (1) six local
minima
 The MultiStart method finds all minima



Challenges with Using
MultiStart on our Industrial
Problem

* Determining which local minima are
relevant but return all local minima

* Because method uses gradient, may be
intractable for large problems

* Numerical instability in calculations may
occur unless preconditioner is used for
Hessian



Issues

* Get accurate PDE code to work with
physical values of parameters

* Uncertainty in physical parameter
values and physical model (!)
necessitates caution with answers from
optimization
— E.g. Importance of local minima to explore

different parts of solution space (i.e., find

different pulses with different qualitative
features)



Pulse shape

Pulse Shapes

 Experiments
suggested left-
heavy ones for Si,
though only small
number of shapes
(see figure on
right) were
checked

* Also obtain left-
heavy pulses with
optimization...




Numerics

* From physical experiments
* Number of Bins = 50

|
* Results very sensitive to physical data, in
particular




Temperature curve
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Optimization curve based
on S.A.
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Pulse shape

T T

6 -

5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
. L ! ) - L L L
5 10 15 20 25 30 35 40 45
X 1v
5.5 I I I I I I I
5
4.5
4
3.5
3
25
2
1.5
1
0.5
- . . L m .
10 15 20 25 30 35 40




The Importance of Being Local

e Need to find ensembles of local minima

* Gives qualitatively different pulses to use as
Inputs in experiments

* A local minimum could become global with
changes in physical parameters, models, etc
(all of which are rather uncertain)



Outcomes for Company

* Preliminary Matlab code, including PDE
simulator and two optimization methods
(simulated annealing for global optimum and
‘multistart’ for local optima)

* Outcomes of optimization could suggest
experiments with specific pulse shapes for
silicon

 Few percent of efficiency improvement can
result in monetary benefits



Conclusion and
perspectives

* Improvement of the numerical code/model

* Optimization on multipulses laser ablation
(repetition rate, scanning speed,...)

* Other useful objective functions
* Test result experimentally
* Multi-D



