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Preface

C’est avec grand plaisir que je vous présente les comptes rendus du Sixième
atelier de résolution de problèmes industriels de Montréal, qui a eu lieu au
Centre de recherches mathématiques du 17 au 21 août 2015. Les six problèmes
fournis par des entreprises étaient très différents les uns des autres, tant
par les domaines concernés (ordonnancement de la production, photonique,
aéronautique, visualisation, prévision de la valeur et fabrication additive)
que par les techniques mathématiques utilisées pour résoudre ces problèmes
(programmation mathématique, équations aux dérivées partielles, optimisation
combinatoire, géométrie algorithmique, statistique et méthodes d’éléments
finis).

Le CRM est particulièrement reconnaissant au Conseil de recherches en
sciences naturelles et en génie du Canada (CRSNG) d’avoir financé cet atelier,
par le truchement de la Plateforme d’innovation des instituts (PII), un projet
des trois instituts de mathématiques canadiens visant à susciter de nouvelles
collaborations entre mathématiciens et entreprises. Je voudrais aussi exprimer
ma reconnaissance aux entreprises qui nous ont proposé des problèmes (Rio
Tinto, Genia Photonics, Bombardier, Plotly, la Banque Nationale et Pratt
& Whitney Canada), ainsi qu’aux chercheurs qui ont généreusement accepté
de coordonner le travail des équipes (Charles Audet, C. Sean Bohun, Perouz
Taslakian, Maciej Augustyniak et José Urquiza). Finalement je remercie
chaleureusement Mlle Tina Mitre d’avoir accepté de rédiger une bonne partie
de deux des rapports inclus dans ces comptes rendus.

It is with great pleasure that I introduce the Proceedings of the Sixth Mon-
tréal Industrial Problem Solving Workshop, which took place at the Centre de
recherches mathématiques from August 17 to 21, 2015. The six problems sub-
mitted were quite different from one another, whether one considers the fields
where they arose (production scheduling, photonics, aeronautics, vizualisation,
lifetime value prediction, and additive manufacturing) or the mathematical
techniques used to solve these problems (mathematical programming, partial
differential equations, combinatorial optimization, computational geometry,
statistics, and finite elements methods).

The CRM is especially grateful to the Natural Sciences and Engineering
Research Council of Canada (NSERC ) for having supported this workshop
through the Institutes Innovation Platform (IIP), a project of the three Cana-
dian mathematics institutes whose goal is to foster new collaborations between
mathematicians and industry. I am also very grateful to the companies that
provided the problems studied during the workshop (Rio Tinto, Genia Photon-
ics, Bombardier, Plotly, the National Bank, and Pratt & Whitney Canada)
and the researchers who led the teams(Charles Audet, C. Sean Bohun, Perouz
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Taslakian, Maciej Augustyniak, and José Urquiza). Finally I would like to
thank Miss Tina Mitre, who wrote a substantial portion of two of the reports
included in the proceedings.

Montréal, le 15 août 2016 Odile Marcotte
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1
Planning of the Maintenance Outages for
a Set of Hydroelectric Units

Nadir Amaioua, Charles Audet, Emmanuel Bigeon, Pascal Côté,
Quentin Desreumaux, Amina Ihaddadene, Youness Mir,
Shahrouz Mirzaalizadeh, Daili Noureddine, Jesus Rodriguez, and
Luckny Zéphyr

Abstract Operation of the hydroelectric systems is affected by planned
outages for preventive maintenance. We analyze the hydroelectric operation at
Rio Tinto Aluminium in order to propose solution strategies for the generator
maintenance scheduling problem. We discuss a decomposition approach and
heuristic method. We also present preliminary computational results for the
proposed heuristic.

1.1 Introduction and Context

Rio Tinto (RT) is a multinational company that owns many aluminium
smelters throughout the world. In the Saguenay –Lac-Saint-Jean (SLSJ) region
RT operates four aluminium smelters that produce more than one million
tons of aluminium per year. The Québec Power Operation (QPO) manages
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2 Nadir Amaioua et al.

the production and distribution of energy. The six hydroelectric powerhouses
owned by RT (three on the Péribonka river and three on the Saguenay river)
produce on average 2,080MW per year, which amounts to almost 90% of
the energy required for its aluminium melting operation. The reliability of
generators is thus of utmost importance for the company.

In order to ensure the required level of reliability, QPO plans generator
outages for maintenance activities. This maintenance schedule is defined sev-
eral months in advance according to the available resources and maintenance
policies. For the time being QPO does not have any automated system for
building a maintenance schedule. The goal of this project is to formulate an
optimization model for scheduling the outages for the SLSJ region and to
propose algorithms for solving this model.

While building a maintenance schedule one must take several constraints
into account. First, the resources that can be allocated to maintenance work
are limited. Second, the required maintenance work must be carried out by
various trades, each of which having a limited work force. Overtime may
be used but in this case the labour costs will be higher. If a maintenance
outage has a longer than average duration, it may be split into two parts
when necessary. Finally, the main difficulty in building a schedule lies in the
random nature of the natural inflows. Indeed, during certain periods (spring,
summer, and autumn), there are large variations in the precipitations.

QPO uses a model to forecast the precipitations on the catchment basin.
This model generates several scenarios for the natural water supply stored in
the reservoirs. The schedule building must take these scenarios into account
and minimize losses due to the outages and losses due to a lack of efficiency.
Outage-related losses occur when the natural water supply (i.e., precipitations)
is abundant and the reservoirs cannot store the excess water. In this case
some extra turbo-generator must be switched on. If these turbo-generators are
not available because of an outage, the excess water must be evacuated and
“outage-related losses” will be recorded. The “lack-of-efficiency losses,” on the
other hand, are due to the operation of turbo-generators in areas with a high
flow rate, where the transformation of the flow into power is not efficient.

The solution to the optimization problem will produce a single schedule,
which minimizes the expected total losses (the sum of the outage-related losses
and the lack-of-efficiency losses) given a probability distribution on the set of
available scenarios.

1.2 High-Level Problem Formulation

A detailed and recent literature review of maintenance scheduling in the
electricity industry is found in [3].
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1.2.1 Current Situation

The current situation at RT is as follows. Decision-making is shared among
two entities. On the one hand, the Network Control Centre (NCC) proposes
a maintenance schedule by taking into account factors such as workforce and
available equipment. On the other hand, the Water Resources Management
group (WRM) evaluates the hydro-production costs by solving a nonlinear
optimization problem which takes as an input the maintenance schedule
proposed by the NCC.

If the WRM estimates that the value of energy production corresponding to
the proposed schedule is not satisfactory, a new maintenance plan is requested
from the NCC. Typically the new schedule consists of a slight modification to
the previous one. In the current practice, the interaction between the NCC
and the WRM continues until a consensus is reached. These iterations are
time-consuming.

The objective of our research is to propose an alternative way (more efficient
and integrated) of building schedules and production plans.

1.2.2 Problem Structure

We will use the following notation. Let Ω be the set of feasible maintenance
schedules. For a schedule s ∈ Ω, we define X (s) to be the set of feasible pro-
duction variables. The problem is naturally decomposable into a maintenance
scheduling problem (S) and a hydro-production (P) optimization problem. In
short the maintenance scheduling problem can be defined as

(S) max
s
p(s)−m(s)

s.t. s ∈ Ω,

where p : Ω → R is the optimal energy production (converted into dollars)
that can be achieved under schedule s, and m : Ω → R is the maintenance
cost corresponding to the schedule. The function m is analytically known,
thus easy to evaluate. The function p, however, is computed by solving the
following hydro-operation problem:

(P) p(s) := max
x

f(x)

s.t. x ∈ X(s),

where f : X (s) → R is the value of the energy production achieved under
maintenance schedule s and production plan x. In the current RT conditions,
problem (P) is solved using the IPOPT optimization solver [5]. The compu-
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tational time for solving an instance of the production problem for a given
schedule is approximately 30 seconds.

1.3 Two Approaches to the Scheduling and Production
Problem

We propose two approaches for solving the scheduling and production problem.
The first one makes use of the fact that p(s) is readily computed by launching
the IPOPT software. It consists of designing a heuristic local exploration of
Ω in some neighbourhood of the initial schedule proposed by the NCC. This
approach interprets the objective function p(s) as a black box and does not
attempt to use or extract information from the production problem (P). This
will be referred to as the Direct Search approach.

The second approach considers the same problem decomposition, but makes
use of dual values for constraints associated with specific maintenance periods
in problem (P). Those dual values enable one to derive optimality cuts for
the scheduling problem (S). The second approach will be refereed to as the
Decomposition approach.

1.3.1 Direct Approach

Currently, RT solves a stochastic optimization problem for determining the
hydro-operation plan and for estimating the value of energy production.
Clearly, adding maintenance variables and constraints to this problem would
increase its complexity. The direct approach would avoid this difficulty by
using as a black box the mathematical program (as currently implemented)
for estimating the value of energy production p(s) for candidate schedules
s. A neighbourhood search heuristic would be implemented for generating a
sequence of maintenance schedules.

A main advantage of the Direct Search approach is that convexity and
differentiability are not required for the problem functions.

Proposed Methodology

Figure 1.1 shows the interaction between the heuristic and the black box.
We propose a heuristic that, starting with a schedule s0 as the current

solution s∗, creates iteratively new schedules in the neighbourhood N (s∗).
Each new candidate solution is sent to the black box for the estimation of
the corresponding hydro-production energy value. A neighbour of the current
solution is obtained through shifting by one day (forward or backward)
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Heuristic

Input: s Output: p(s)

Input
transformation

(P)
IPOPT

Output
transformation

Fig. 1.1 The Direct approach

the starting date of a maintenance task. If a candidate schedule in the
neighbourhood improves the current solution, it is retained as the new current
solution s∗ and the neighbourhood around s∗ is explored. Otherwise a different
schedule is created by shifting the starting date of another task.

For describing the heuristic approach we define the following notation.

dj : Starting day of maintenance task j.
sdj±1: Candidate maintenance schedule generated by shifting one day for-

ward (+) or backward (-) the starting day of maintenance task j with
respect to the current solution s∗.

BB( · ): Energy value (obtained by means of the black box).

In Algorithm 1.1 several stopping criteria may be used. Here are some of
them.

• The algorithm stops if no improvement is detected in the neighbourhood
of the current solution (which is thus a local maximum).

• The algorithm stops if a predetermined number of iterations have been
performed.

1 Initialize s∗ ← s0;
2 while No stopping criteria met do
3 for j ∈ maintenance tasks do
4 Create a schedule sdj−1;
5 if BB(sdj−1) improves the solution then
6 s∗ ← sdj−1
7 else
8 Create a schedule sdj +1;
9 if BB(Sdj +1) improves the solution then

10 s∗ ← sdj +1
11 end if
12 end if
13 end for
14 end while

Algorithm 1.1 Heuristic approach
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• The algorithm stops if the execution time exceeds a predetermined value.

For the test run we chose the third option as a stopping criterion.
Two Matlab scripts were written: one for creating the input text file for the

black box (i.e., for the hydro-operation problem), and the other for processing
the output file of the black box in order to extract the objective value and
the problem solution.

Preliminary Numerical Results

RT provided us with an initial schedule and we used a remote connection in
order to test the heuristic on its computers. The evolution of the objective
value across iterations is shown in Figure 1.2. A 100% value represents the
utopian situation in which no maintenance is scheduled. The blue curve in
Figure 1.2 only reflects the improvements of the objective function value over
the iterations. It shows that the final solution was identified around the opti-
mization call number 195. In the same figure, the green line displays the values
corresponding to all of the candidate schedules, including those that failed to
improve the objective value. The heuristic reached an improvement over the
initial schedule of approximately 0.05%, which corresponds to approximately
$420,000 for the entire time period.

Figure 1.3 displays in black the initial schedule and in red the solution
computed by the direct search approach. The difference between the two
schedules is not significant, which can be convenient for the maintenance unit
at RT.

We were able to find a better objective value by modifying slightly the
initial schedule. This fact suggests that more rigorous approaches, such as the
one proposed in the next subsection, could lead to further improvements.

1.3.2 The Decomposition Approach

Instead of exploring the neighbourhood of the current solution, this approach
tries to exploit the structure of the problem in order to explore the whole
solution space efficiently. Nevertheless this is a challenging problem, because
in addition to the complexity of the stochastic hydro-power operation problem,
the maintenance scheduling problem may have a solution space of order 2mst,
where m denotes the number pf maintenance tasks, s the number of scenarios,
and t the number of time periods where the list of maintenance tasks can be
initiated.
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Fig. 1.2 Evolution of the objective function

Problem Formulation

The combined hydro-production planning & maintenance scheduling problem
(P&S) is a stochastic nonlinear combinatorial optimisation problem whose
optimal solution is difficult to compute. Decomposing this problem into
maintenance decisions and production decisions (see Section 1.2.2) leads to
smaller problems that are easier to solve. Following this idea we propose
to implement a solution method based on Benders decomposition. For this
approach, let us define the master problem (MP) as follows.

(MP) min
(s,z)

z

s.t. s ∈ Ω ∩ F
(s, z) ∈ O

Here z denotes the objective function value of the complete problem (P&S),
Ω the set of feasible decisions for the maintenance problem (S), F the set
of maintenance decisions that are feasible for the hydro-production problem
(P), and O the set maintenance decisions that are optimal for the complete
problem (P&S).
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Fig. 1.3 Comparison between the initial schedule and the improved solution

The subproblem (SP) is defined as the production problem

(SP) p(s) := max
x

p(x)

s.t. x ∈ X (s).

To connect the two problems (MP and SP), the maintenance decisions s in
(SP) are fixed and given by (MP). On the other hand, F and O in (MP) are
defined by feasibility cuts and optimality cuts, respectively, generated from
the dual solutions of (SP).

Relaxing F and O in (MP) yields a relaxed master problem (RMP), in
which cuts can be sequentially added whenever a trial maintenance plan s is
found to be infeasible or suboptimal. In each iteration the subproblem (SP)
provides “feedback” about the quality of the solution (e.g. dual prices and
dual extreme directions). This information is used in the (MP) for including
Benders cuts that can lead to a better solution. This iterative process is
repeated until the convergence criteria are met, i.e., the schedule is feasible,
the running time is acceptable, and the optimality gap is within a given
threshold. The decomposition approach is summarized in Figure 1.4.
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Solve RMP

s∗

Solve SP

p(s∗)
Satisfactory?

Yes

End

No

Benders cuts

Fig. 1.4 Illustration of the decomposition approach

1.4 Discussion

The direct search optimization approach is conceptually simpler and easier to
implement than the decomposition approach, and can lead more quickly to
tangible numerical results. The decomposition approach, however, uses more
efficiently the solution information provided by the subproblem and could
thus yield global optimal solutions faster than by solving the complete P&S
problem.

Future work within the direct search approach could consist of the following.

• Take into account the true scheduling constraints, including those on work
force and overtime.

• Use a broader neighbourhood strategy around a schedule, together with a
more sophisticated optimization solver (such as the Nomad software [4])
to solve the black-box scheduling optimization problem.

• Exploit the surrogate of function p(s) under the surrogate management
framework [2] of the Mesh Adaptive Direct Search algorithm [1].

• Apply a warm start with the IPOPT solver (i.e., in a given iteration,
make IPOPT use the solution obtained at the previous iteration).

Future work within the decomposition approach includes the following.

• Formulate the maintenance scheduling problem and the complete hydro-
operation & maintenance scheduling problem.

• Use Benders decomposition techniques to solve the scheduling and pro-
duction problem.

• Develop an algorithm to solve the master problem efficiently. An important
issue with respect to Benders decomposition is the efficient solution of the
master problem. Column generation techniques or dynamic programming
algorithms could be investigated for solving this problem.
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• Use the nonlinear model of RT (instead of the current linear approxima-
tion) for the production subproblem. Indeed the linear approximation
may have a significant and unwelcome impact on the solution. One way
to avoid the linearization is to obtain dual variables directly from the
IPOPT solver.
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2.1 Background

2.1.1 Tuneable Lasers

While a classical laser is thought of as having a single wavelength at which
it operates, tuneable lasers are characterized by the ability to control this
wavelength. There are many different types of tuneable lasers but in this
report we will focus on dispersion-tuned, actively mode-locked, fibre lasers.
With this particular type of laser, a highly dispersive element is combined
with a modulator to select a particular wavelength. The dispersion causes
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each wavelength to have a distinctive propagation time in the cavity, and
a wavelength is selected electronically by varying the repetition rate of the
pulse with time modulation. Because of the way a wavelength is selected,
many wavelengths can be produced within a very short time. This particular
capability has direct applications to the life sciences, the biomedical industry,
spectroscopy, and high-resolution imaging. Figure 2.1 shows both the external
and schematic views of a tuneable laser developed by the industrial participant,
Genia Photonics [2].

The cavity consists of an amplifying Erbium (Er) fibre and a highly disper-
sive element (CFBG) that act on the optical energy injected with a 980 nm
fixed-frequency source laser. Working together, these two elements spread the
energy through a wide range of frequencies that can be individually selected.
By imposing a variable electronic modulation window onto this collection of
dispersed frequency modes within the cavity, only those wavelengths that
traverse the cavity while coinciding with the modulation frequency are se-

Fig. 2.1 Left: A tuneable pulsed fibre-based laser from Genia Photonics, offering a
wide and quick wavelength range selectivity. Right: Schematic diagram of a tuneable
laser consisting of an electrooptics modulator (EOM); optical coupler (OC); wavelength
division multiplexer (WDM); and chirped fibre Bragg grating (CFBG).

Fig. 2.2 Typical output signal from a tuneable fibre-based laser as reported in [1]. The
short duration necessitates the averaging of the pulse over many iterations.
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lected. The resulting pulse is sampled from the cavity with an optical coupler
and utilized downstream. Figure 2.2 shows a typical pulse obtained with this
technique. A more detailed discussion of the theory of operation can be found
elsewhere [5, 7, 8].

An inherent difficulty in this sector is the very short duration of the pulses, ∼
100 ps, that challenges the limitations of modern detection equipment. Pulse
shapes have to be determined from autocorrelation measurements [6] or cross-
correlation techniques [4], since the pulses are too short to be measured
directly.

2.1.2 Wave Breaking

One of the main challenges with respect to the design of the laser is the
elimination of an effect known as wave-breaking, whereby the pulse becomes
unstable and ultimately unsustainable. Although the exact wave-breaking
mechanics in the cavity are not entirely clear, what is observed experimentally
is that there is a power threshold beyond which the nonlinearity of the fibre
generates new frequency components appearing as fringes in the outer range
of the pulse envelope. These different frequencies interfere with one another
when they coexist at the same time within the pulse, leading to the generation
of additional frequency components. The wave pulse deteriorates progressively
as the fibre produces this cascade of additional frequencies. While modulating
the signal in time can remove some of these frequencies, it also shapes the
pulse; this makes the exact operation of the laser difficult to predict.

The functionality of tuneable lasers is made possible by the inherent
nonlinearity arising from the interplay between the dispersive element, the
time modulation window, and the deformation of the pulse as it travels through
the fibre. This essential nonlinear behaviour, however, is also responsible for the
breaking of the pulse at higher power levels. To make progress towards solving
some of the design challenges for a tuneable laser, the optical nonlinearity of
the glass fibre must also be considered (in any model). In the model described
below each of the laser elements is considered independently as a nonlinear
map. The stable operating point of the laser cavity is then described as a fixed
point in the functional composition of these maps. One of the important new
aspects with this technique is that the maps do not commute: the ordering of
the elements in the cavity thus becomes important.

2.2 Problem Statement

Measuring the effect of the various experimental parameters is prohibitively
expensive and difficult to carry out. Therefore we need high-resolution models
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that predict the experimental observations. In addition, the modelling effort
can provide further insight into the hierarchy of the processes involved and
identify which processes dominate the observed behaviour.

Much of the team work revolved around the discussion of the wave-breaking
effect, parameter sensitivity, and the determination of the wave profile. These
issues can be summarized with four crucial questions:

1. Why does the wave break?
2. What is the range of the effective parameters yielding a wave with specific

properties?
3. How do the parameters interact with one another?
4. Can a particular wave profile be specified?

In the work described below, each of these questions was examined using
insights based on the structure of the various elements in the cavity and their
interactions for a particular ordering.

2.3 Modelling Efforts

Traditional modelling efforts have focused on using a single equation describing
the evolution of the average electric field. If one ignores the nonlinearities
in the fibre itself and assumes small perturbations in the signal during its
propagation within the cavity, then one is led to the expression [3]

∂A

∂z
= −iβ2

2
∂2A

∂T 2 −
ε

2T
2A+ g

2A.

In this relationship, A = A(T, z) is the complex-valued electric field and is
described as a function of T , the time in the frame of the moving pulse, and
z, the number of roundtrips in the cavity. The various parameters (β2, ε,
and g) respectively control the second order dispersion, the bandwidth of the
modulation, and the gain within the cavity.

Solutions of this model describe indeed some of the characteristics of the
pulse, but it provides limited insight into the role of the various elements
within the cavity, because of the effects of averaging. For example, there is a
lack of separation between the dispersion within the fibre and the dispersion of
the CFBG. Moreover, the model treats the gain as a single tuneable parameter,
neglecting the effect (observed experimentally) of a gain that saturates with
the pulse energy. Another effect lost in the averaging is the unique behaviour
of the propagation within the fibre, without the other nonlinearities playing
a role. For the lengths under consideration, only the phase of the field is
changed within the fibre, while the energy is preserved.

One possible way to enhance the predictions of the single-equation model
is to consider a sequence of four models, each of which has its parameters
tuned to a particular element of the cavity: Dispersion, Modulation, Gain,
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and the Output coupler/loss. Research along these lines has been shown to
yield models reproducing the experimental results in a more precise fashion,
especially at higher pulse energies [3]. In this report we have suggested and
described a hybrid version of this idea, in which the nonlinearity of the
individual components is embraced and used to derive a nonlinear map for
each of the processes. This approach has the advantage that higher-order
effects can be included into the various components in a systematic manner.

2.3.1 Hybrid Model

We treat the cavity as consisting of five distinct processes {Gain,Loss,
Modulation,Fibre,Dispersion}, each of which generates a nonlinear map act-
ing on the waveform. For this report a fixed ordering of these elements is
considered, for the purposes of illustration. It would be straightforward, how-
ever, to modify the model by changing the order of the elements or including
multiple copies of some elements.

Each of the elements is characterized by a dominant physical process and
this behaviour was built into the derivation of each map. The following features
were taken into account.

• The gain should saturate with the pulse energy.
• The modulation must reflect the experimental profile that was chosen.
• The fibre should be a map with nonlinear phase evolution and minimal
dispersion.
• The dispersion element should correspond to a known built-in frequency
dependence.

With these features as a guide, we now give a map for each of the components.

2.3.1.1 Saturated Gain

Gain within the optical cavity results from the gain fibre saturating with the
amount of pulse energy. To model this effect we propose two characteristic
parameters: a small signal gain g0 and a saturation energy Esat setting the
energy level where the gain begins to saturate. Using these two parameters an
appropriate model for the propagation of the pulse through the gain element
becomes

∂A

∂z
= g0A

2(1 + E/Esat)
, E(z) =

∫ ∞
−∞
|A(T, z)|2 dT.(2.1)

Multiplying by Ā, the complex conjugate of A, and integrating over T yields
the relationship
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Fig. 2.3 The first two branches of the Lambert function.

(2.2) dE
dz = g0E

1 + E/Esat
,

which can be solved implicitly for the energy as a function of z. Setting
E(0) = E0 yields the relationship

(2.3) E(z)
Esat

eE(z)/Esat = E0

Esat
eE0/Esateg0z

for any z within the gain fibre and by inverting (2.3) (using the Lambert
W -function) we obtain

(2.4) E(z)
Esat

= W0

(
E0

Esat
eE0/Esateg0z

)
.

Finally we note that

(2.5) 1
E

dE
dz = g0

1 + E/Esat
= 1
|A|2

∂

∂z
|A|2

holds and conclude that the gain fibre affects the amplitude of the pulse
according to the relation

(2.6) A1(z, T ) = A0(T )
(
Esat

E0

)1/2
(
W0

(
E0

Esat
eE0/Esateg0z

))1/2

,
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with A0(T ) being the input pulse profile at z = 0.
Therefore the net effect of the gain component as a map from the input

A(T ) to the output G[A](T ) is

G[A] = A

(
Esat

E

)1/2
(
W0

(
E

Esat
eE/Esateg0`G

))1/2

,(2.7)

E =
∫ ∞
−∞
|A|2 dT,(2.8)

where `G is the length of the gain component.

2.3.1.2 Saturated Loss

The whole circuit has a net loss described by the map L[A] = Ae−αL/2, where
α denotes a loss coefficient and L the length of the whole circuit.

2.3.1.3 Modulation

The modulation component simply multiplies A by a specified function of T :

(2.9) M [A] = T (T )A,

where the transfer function is given by the relation

(2.10) T (T ) = 1
2 −

ν

2 cos
(
µπe−T

2/T 2
M
)
,

with TM being the width of the modulation window. The parameters µ and ν
are both equal to one in the ideal case.

2.3.1.4 Fibre (no dispersion)

The fibre dispersion is negligible when compared to the dispersion of the
grating. Neglecting the fibre dispersion yields a fibre amplitude that satisfies
the equation

(2.11) ∂A

∂z
= iγ|A|2A,

where γ is in principle a known parameter. In this limit, the fibre only affects
the phase and the solution for A is given by

(2.12) A(z, T ) = A0(T )eiγ|A0(T )|2z,
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where once again, A0(T ) is the profile input at z = 0. Therefore, the net effect
of the fibre component is described by the map

(2.13) F [A] = Aeiγ|A|2`F ,

where `F is the length of the fibre.

2.3.1.5 Dispersion

The dispersion is specified by its action in the frequency domain. If we define
the Fourier transform of A as

(2.14) F [A](Ω) =
∫ ∞
−∞

A(T )eiΩT dT,

then the effect on F [A] is given by

(2.15) D : F [A] 7→ F [A]eiβ̄2Ω
2
,

where β̄2 is a known dispersion coefficient. This can be expressed as a convo-
lution of A with the dispersion action to yield

(2.16) D[A] = eiπ/4

2
√
πβ̄2

∫ ∞
−∞

A(τ)e−i(τ−T )2/4β̄2 dτ.

2.3.2 Non-Dimensionalization

Looking back at the derivation of the various maps, we can shed light on their
structure by choosing appropriate scalings for the time T , the energy E, and
the amplitude A. In particular, we choose to scale the time with respect to
the period of modulation TM , the energy with respect to the saturation value
Esat, and the amplitude in a fashion consistent with these two choices. We
obtain

T = TM T̂ , E = EsatÊ, A =
(
Esat

TM

)1/2
Â.(2.17)

When dropping the hats, the normalized maps take the form
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G[A] = 1
E1/2

(
W0(aEeE)

)1/2
A, L[A] = hA,(2.18)

M [A] =
(

1
2 −

ν

2 cos
(
µπe−T

2))
A, F [A] = eib|A|2A,(2.19)

D[A] = σeiπ/4
√
π

∫ ∞
−∞

A(τ)e−iσ2(τ−T )2
dτ,(2.20)

where each component has a corresponding non-dimensional parameter that
characterizes its behaviour:

a = eg0`G ∼ 30, h = e−αL/2 ∼ 0.1,(2.21)

b = γ`FEsat

TM
∼ 10, σ = TM

2
√
β̄2
∼ 5.(2.22)

Each of these can be individually tuned by varying either the length or
the material properties of the various components within the laser cavity.
An interesting point is that the modulation, gain, and loss terms reduce
to multiplicative operators acting on the amplitude, whereas the fibre and
dispersion mix the amplitude and phase information (the former at a localized
point and the latter across the whole spectrum).

2.3.3 Problem Restatement

Forming a circuit within the cavity consists of concatenating the various
elements and joining them with various lengths of fibre. Using the blocks that
have been derived above, the output of each component is fed directly into
the input of the next so that circuit formation is associated with functional
composition of the maps. For example, consider a cavity with a single dominant
fibre component and then loss, modulation, and gain elements that feed directly
into a dispersion element. Here is a schematic representation of the circuit.

· · ·Gain→ Disp.→ Fibre→ Loss→ Mod.→ Gain · · ·

This corresponds to the iterated nonlinear map

(2.23) G[A] = M

[
L

[
F
[
D
[
G[A]

]]]]

for each cycle around the cavity.
With this particular sequence of components, the determination of the

invariant profile amounts to finding a fixed point in the map A 7→ G[A]. Ques-
tions about the instability caused by wave-breaking (observed experimentally)
correspond to questions about loss of stability of the fixed point.
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2.3.4 Stationary Phase

The non-dimensional parameters b and σ associated with the fibre and the
dispersion (respectively) are consistent with the experimental observation
that the phase of A changes rapidly as a function of T while the amplitude
varies slowly. This remark allows one to use the method of the stationary
phase to approximate the convolution.

Letting A(T ) = |A(T )|eiσ2ψ(T ), we find in the limit as σ → ∞ that the
dispersion, to leading-order, takes the form

(2.24) D[A] ∼
(

1− ψ′′(τ∗)
2

)−1/2
A(τ∗)e−iσ2(τ∗−T )2

,

where t∗ satisfies the condition

(2.25) ψ′(τ∗) = 2(τ∗ − T ).

2.4 Results

Initial numerical computation of the fixed point shows that iteration of this
map can indeed result in a stable profile and that at higher energies, an
instability seems to be associated with the breakdown of the pulse. These
results reflect the experimental observations and are encouraging for this new
model.

2.4.1 Simple Iteration Using an FFT

In this first method the Fast Fourier Transform is used to compute the
dispersion so that

(2.26) D(A) = F−1(eiω2(/4σ2)F(A)
)

holds. The other components are left unchanged and the modulation is
considered to be ideal (µ = ν = 1), so that

G(A) = 1
E1/2

(
W0(aEeE)

)1/2
A, L(A) = hA,(2.27)

M(A) = 1
2(1− cos(πe−T

2
))A, F (A) = eib|A|2A,(2.28)

and the amplitude is discretized by taking N points within a numerical
time window (−Tm, Tm). The energy E was computed by using a simple
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trapezoidal numerical integration of |A|2 over the time window. For the
simulations N = 16384, Tm = 8, and the nominal values of a = 30, h = 1,
σ = 5 were chosen. We assigned several values to b in order to contrast the
non-breaking and the breaking waves.

2.4.1.1 Non-Breaking

Choosing b = 0.01 (effective fibre length) results in a stable pulse with an
observed kurtosis of 2.645, less peaked than a Gaussian with a kurtosis of 3.
The convergence to the final energy over 200 iterations and the instantaneous
amplitude squared, |A|2, phase, ω, and negative chirp dω/dT are shown in
Figure 2.4. The real and imaginary components of the pulse and the associated
frequency spectrum are displayed in Figure 2.5.

Fig. 2.4 No breaking in the wave. Left: Energy over 200 iterations, showing no wave-
breaking. Right: The corresponding instantaneous frequency and pulse power.

Fig. 2.5 No breaking in the wave. Left: Real and imaginary components of the amplitude
as functions of time. Right: Instantaneous amplitude squared, |A|2, phase, ω, and negative
chirp ω′.



22 C. Sean Bohun et al.

2.4.1.2 Breaking

Increasing the value of b causes the pulse shape to flatten and eventually it
breaks (at b = 0.1), where the kurtosis has dropped to 2.37 before the onset
of the instability. Figures 2.6 and 2.7 detail the characteristics of the pulse at
this point.

The beginnings of a stability diagram for the parameter set can be mapped
out by modifying each parameter in turn. Given the assignments a = 30
and h = 1, we have observed the following upper bounds of stability for b at
several values of σ: σ = 2: b . 0.008; σ = 5: b . 0.015; σ = 10: b . 0.02.

Fig. 2.6 Breaking in the wave. Left: Energy over 200 iterations, showing wave-breaking.
Right: The corresponding instantaneous frequency and pulse power.

Fig. 2.7 Breaking in the wave. Left: Real and imaginary components of the amplitude as
functions of time. Right: Instantaneous amplitude squared, |A|2, phase, ω, and negative
chirp ω′.
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Fig. 2.8 The amplitude of the stationary phase in the dispersion.

2.4.2 Stationary Phase Approximation

We tried to use the stationary phase approximation for the dispersion, where
the following values were chosen: a = 30, b = 10, h = 0.25, σ = 5. The
approximation uses the stationary phase representation of the dispersion and
assumes that ψ′′ is essentially constant, so that the point where it is evaluated
does not matter. As for the gain, loss, modulation, and fibre blocks, the
components are used in the manner described previously. Figure 2.8 shows
the results of this second approximation, which are very similar to the results
obtained with the full Fourier transform technique.

2.5 Summary

2.5.1 Conclusions

The various schemes all show that there is a set of parameters that does
mimic the shape of the pulses observed in the laboratory. Pulses can be
shaped by modifying the parameters but some more work must be carried
out to determine the viable range preventing the wave from breaking. Further
analysis is required to describe in detail the effects observed with the proposed
hybrid model, but the results are tantalizing.

Although they are preliminary, our results shed some light on the manner in
which a stationary profile is generated. If one considers the fibre and dispersion
only, one sees that

F [A] = Aeib|A|2 , D[A] ∼ A(τ∗)e−iσ2(τ∗−T )2
.(2.29)

This implies that if one ignores higher-order effects, the shape of the profile is
driven by e−iσ2(τ∗−T )2 , which comes from the dispersion element. Nonlinear
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effects in the fibre could be compensated by a modified phase resulting from
the dispersion element.

2.5.2 Further Questions

With this initial analysis indicating that the hybrid model can reproduce the
experimental wave-breaking phenomena, the industrial partner suggested new
research directions that would enhance the capabilities of the tuneable lasers
found on the market. In particular, there is extreme interest in:

1. Determining the “best” pulse shape so as to obtain the most linear chirp
possible. This would enable efficient pulse compression;

2. Using the internal characteristic frequencies of the cavity determined by
spreading the pulse out and modulating so as to clip the pulse. This infor-
mation may be useful in determining a number of the effective parameters
in the single-equation model.
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The problem proposed by Bombardier Inc. consisted of minimizing the solving
time of fluid flow equations and balancing workload on parallel processors.

Section 3.1 of this report presents the context of the project; contains a
description of the Bombardier company, a brief overview of computational
fluid dynamics, and Navier–Stokes equations; and ends with the presentation
of the categories of grids used for solving fluid-flow equations. Section 3.2
contains our optimization goals and our decomposition of the project into three
main subproblems, each having a particular focus. In Section 3.3 we present
the first one of the list, describing our approach for designing a graph with
weighted nodes and edges. Section 3.4 is dedicated to the second subproblem
and focuses on cluster-optimization algorithms. Section 3.5 presents the third
and last step of our project, which is the design of block-formation algorithms
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given a number of available processors. Preliminary results accompany each
of the subproblems.

3.1 Background Information

We first consider the industrial context of this project: Bombardier is one of
the leading manufacturers in the aircrafts and rail industry, with over 74,000
employees. Their transport solutions include but are not limited to business
jets, commercial planes, high-speed trains, light rail, and trolley buses. Since
the company focuses on the design, the manufacture, and the reparation of
these structures and their components, computational fluid dynamics is a
main area of research and specialization of the company.

By definition, computational fluid dynamics uses tools from numerical anal-
ysis for simulations of viscous surfaces. The physical models are represented
by Navier–Stokes equations, which are non-linear partial differential equations
describing the physics and the motion of the fluidic substances in a region of
space and time.

To initialize the problem, the equations of motion require boundary con-
ditions defining the geometrical and physical bounds of the modelled object.
Next, the volume on which the equations must be solved requires discretization
and becomes a computational mesh of hexahedral cells in three-dimensional
space.

Finding innovative numerical tools for the Navier–Stokes equations, how-
ever, is not the topic of our project. There is a wide area of research in the
field, and Bombardier is currently using the algorithmic tool entitled FANSC,1
which was developed in 1999. With the advent of parallel computations and
high-efficiency multi-processors, an optimization challenge arises: how do we
minimize the computational time by balancing the workload between the
processors and considering the work of each cell?

Depending on the characteristics of the object or the problem to be solved,
the mesh used for the solver may be structured, unstructured, or a hybrid of
these two kinds of meshes. A structured grid, as seen in Fig. 3.1(A), contains
regular connectivities between quadrilaterals or hexahedra, in two- or three-
dimensional space, respectively. Unstructured grids, like the one shown in
Fig. 3.1(B), are composed of triangles or tetrahedra and do not allow a one-
to-one mapping into a structured domain. Because of efficiency considerations
and in order to use the convergence properties of the first type of grid, fluid
dynamics equations are often solved on multi-block structured grids, which
are large areas composed of structured domains with potentially different
dimensions (see Fig. 3.1(C)).

1 Full Aircraft Navier–Stokes Code
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Fig. 3.1 Example of two-dimensional grids used for solving equations representing fluid
flow dynamics: A. Structured domains composed of quadrilaterals, B. Unstructured grids
composed of triangles, C. Multiblock structured grids, where each block represents a
structured grid as in case A but the connectivities between the blocks exhibit irregularities
similar to those in case B.

Since each block (in the last scenario) is a structured grid on its own, the
problem becomes computationally tractable. The challenge in the next step
is the distribution of the tasks. A complete algorithm for the development
of multi-block structured Navier–Stokes is found in [7], and requires that a
block have a minimum of 8 cells in each direction. The following question
arises: is the solution presented in this article optimal if we allow splitting and
merging of the initial blocks? Can we generalize the solution and parallelize
the workload, given a particular number of available processors?

3.2 Defining Objectives and Subproblems of the Project

As previously mentioned, we are working with a multi-block structured grid
and the overall objective is to find the optimal way of allocating particular
groups of blocks to a certain number of available processors.

The constraints of our problem, which will be formulated in a mathematical
fashion in Section 3.4, are the following:
• The computational load must be balanced, i.e., the difference between
the numbers of cells allocated to any two processors must be as small as
possible;
• The maximum communication cost between a processor and all the other
processors must be as small as possible;
• The number of blocks allocated to a given processor must not be too large;
• None of the blocks allocated to a given processor must be too small.

To propose a complete solution, we decompose our problem into three main
stages:
1. Refine the original partition so as to obtain small blocks and create a graph

with weights on nodes and edges;
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Table 3.1
Subproblem Input Output

1. Graph design Connectivity matrix, Graph with weighted vertices
as used by FANSC software and edges

2. Cluster optimization Graph with weighted vertices Cluster formed by given
and edges optimization constraints

3. New block formation Cluster formed by given New multi-block structured-grid
optimization constraints for the given set of

processors

2. Partition the graph into clusters (i.e., groups of blocks assigned to a given
processor);

3. Reorganize the blocks within a given cluster so as to obtain relatively large
blocks that are grid-like and are not too “thin.”

3.3 Graph Design

Our method was initially tested on a generic example provided by Bombardier.
We have read the code 3.1, which can be found in the appendix, and produced
the three-dimensional structure in Fig. 3.2 by subdividing the structure
into cells of dimension 8 × 8 × 8 and colouring each initial block. We have
considered the size of each of the five blocks, the position of the blocks in
three-dimensional space, and the connectivities between the adjacent faces
(note that the green, yellow, and red blocks should be connected and form
a ring). The figure presented here was made using MATLAB. Since the second
step of our solution required the connectivities to be described as graphs
with weighted edges and vertices, we had to describe the figure from a new
perspective.

Afterwards we created weighted graphs for the three shapes shown in
Fig. 3.3. For example, in order to obtain the weight of each node (or 8×8×8 cell)
forming the cube in Fig. 3.3(A), we consider that a corner has 3 neighbours,
an edge four neigbours, the inside of a face five neighbours, and a node inside
the cube six neighbours (as in Table 3.2). We also consider the weight of each
edge connecting two nodes, or cells, to be the sum of the volumes of these
two nodes. In more elaborate examples, some cells might not have the shape
8× 8× 8, but they should be chosen so that they are as close as possible to
this cuboid shape. In Fig. 3.3(B), cells or nodes creating the adjacent face
would contain an extra neighbour. A similar rationale can be used for case C
of Fig. 3.3.

After creating a graph with weighted vertices and weighted edges, the next
step consists of optimizing the allocation of cells or blocks to processors, with
each cluster of cells or blocks corresponding to a single processor. For the
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Fig. 3.2 Three-dimensional plot of the surface provided

Table 3.2 Excerpt from
the *.txt file containing the
graph of a 7× 8× 9 block,
composed of 8× 8× 8 cells.

Node Neighbours

1 (2, 8, 57)
2 (1, 3, 58, 114)
3 (2, 4, 59, 115)
4 (3, 5, 60, 116)
5 (4, 6, 61, 117)
6 (5, 7, 62, 118)
7 (6, 14, 63)
8 (15, 1, 64, 9)
9 (8, 10, 16, 2, 65)
10 (9, 11, 17, 3, 66)

Fig. 3.3 Types of grids used in the tests of our algorithms

optimization problem we use the constraints given in Section 3.2 (formulated
in mathematical terms in the following section).
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3.4 Optimization Algorithms for Cluster Formation

Actually the problem described in the previous section is very similar to the
balanced graph clustering problem, which we now define formally.

Input: Graph G = (V,E), node weights wn : V 7→ N+, edge weights
we : E 7→ N+, number of colours k.

Objective: Find a colouring of nodes c : V 7→ P (where P = {1, . . . , k})
such that T = c1 maxp∈P Vp+c2 maxp∈P Bp is minimized. Here the volume
of a partition is defined as Vp =

∑
u∈V wn(u)δ(c(u), p) and the boundary of

a partition as Bp =
∑

(u,v)∈E we
(
(u, v)

)[
1− δ

(
c(u), c(v)

)]
δ(c(u), p), where

δ denotes the indicator function.

For solving the balanced graph clustering problem, one can
• use software products such as KaHIP and METIS, which are free and
available (they have slightly different objective functions),
• use a heuristic based on label propagation, or
• formulate the problem as an integer programming problem and solve it.

Figure 3.4 displays the result of the application of KaHIP to cluster
formation in a specific case.

We now describe a heuristic partitioning method applied to structured
grids. Algorithm 3.1 contains the description of the heuristic in pseudocode
and Figure 3.5 a schematic description of the same heuristic.

Figure 3.6 displays a structured grid and Figure 3.7 the partition obtained
for this grid by applying the heuristic algorithm.

Figure 3.8 displays a T-shaped grid and decompositions obtained by our
heuristic algorithm (for 5 and 8 processors, respectively).

Fig. 3.4 8× 10× 15 structured grid
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1 Set nodes to random sets forming a partition. Use the previous partition as a
starting point. foreach node u ∈ V (in random order) do

2 Find colours in the neighbourhood of u: Ccandidates = {c(v) : (u, v) ∈ E}.
foreach p ∈ Ccandidates do

3 Find change in the objective function ∆u,pT if c(u) is set to p. Select p∗
that minimizes ∆u,pT . if ∆u,p∗T < 0 then

4 Set c(u) to p∗.
5 end if
6 end foreach
7 end foreach
8 if at least one colour was changed in last run of point 3 then
9 Repeat point 3.

10 end if

Algorithm 3.1 Description of the heuristic in pseudocode

Fig. 3.5 Schematics of the heuristic

Fig. 3.6 8× 10× 15 Structured grid
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Fig. 3.7 8× 10× 15 Structured grid partitioned by our algorithm

Fig. 3.8 Structure partitioned into 5 processors and into 8 processors
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We now turn to a mathematical formulation of our problem. Recall that
our goal is to assign the work units (blocks) to processors in order to minimize
a weighted sum of the maximum load and the maximum communication cost.
Let yvp be a binary variable taking the value 1 if and only if the block v is
assigned to the processor p. The objective function can be expressed as

minimize
(
C1 max

p∈P

{∑
v∈V

wvyvp

}
+ C2 max

p

{∑
p? 6=p

∑
(v,u)∈E

w(v,u)yvpyup?

})
.

The constraint that a block is allowed to a single processor can be expressed
as ∑

p∈P
yvp = 1, ∀v ∈ V.

Finally the constraint that yvp is a binary variable can be expressed as

yvp ∈ {0, 1}, ∀p ∈ P, v ∈ V.

We obtain an equivalent formulation by introducing the variables T1 and
T2.

minimize (C1T1 + C2T2)

such that ∑
v∈V

wvyvp ≤ T1, ∀p ∈ P∑
p? 6=p

∑
(v,u)∈E

w(v,u)yvpyup? ≤ T2, ∀p ∈ P

∑
p∈P

yvp = 1, ∀v ∈ V

yvp ∈ {0, 1}, ∀p ∈ P, v ∈ V

In the latter formulation we can linearize the term yvpyup? . We do this by
introducing the binary variables xpp?

vu , where xpp?

vu equals 1 if and only if block
v is assigned to processor p and u to processor p?. To enforce the definition of
xpp

?

vu , we include the following constraints into the model, for every arc (v, u)
and any pair of distinct processors p and p?.

xpp
?

vu ≥ yvp + yup? − 1
xpp

?

vu ≤ yvp
xpp

?

vu ≤ yup?

Because the model is a minimization program, the constraints xpp?

vu ≤ yvp
and xpp?

vu ≤ yup? are redundant and the constraint xpp?

vu ≥ 0 can replace the
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constraint that xpp?

vu is a binary variable, since xpp?

vu ≥ 0 will always equal 1 or
0.

It is difficult to solve the model including the xpp?

vu because there are too
many of those variables. If we assume that all the wv (i.e., vertex weights)
are equal and all the w(v,u) (i.e., arc weights) are equal, we may introduce
instead the variables xp(v,u), where x

p
(v,u) equals 1 if and only if (v, u) is an

outgoing arc from the cluster assigned to processor p. We can replace the
above constraints by

xpvu ≥ yvp + yup? − 1, p? 6= p

xpvu ≥ 0.

We then obtain the following formulation.

minimize C1w1T1 + C2w2T2

such that ∑
v∈V

yvp ≤ T1, ∀p ∈ P∑
p∈P

yvp = 1, ∀v ∈ V

∑
(v,u)∈E

xp(v,u) ≤ T2, ∀p ∈ P

xp(v,u) ≥ yvp + yup? − 1, ∀(v, u) ∈ E,∀p, p? ∈ P, p? 6= p

yvp ∈ {0, 1}, ∀p ∈ P, v ∈ V
xp(v,u) ≥ 0, ∀(v, u) ∈ E,∀p ∈ P.

Solving this model is a very challenging combinatorial problem, because
the model is highly degenerate and the linear programming relaxation is very
weak: in many cases a node is “split into two halves” and those halves belong
to different clusters. Of course the model needs to be solved for huge networks.
We experimented with three approaches:
• using Cplex;
• using Benders decomposition; and
• designing an MIP-based heuristic.
Note that if we know the values of the y variables, it is almost trivial to
compute the communication cost.

Here is the description of our MIP-based heuristic.

1. Find the degree of each node.
2. For each cluster, execute the following steps.

a. Find the node with the smallest degree (i.e., v).
b. While the load limit is not reached or no available neighbours exist, do
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i. Find all neighbours of v and add them to the current cluster list;
ii. Update V by selecting one of its neighbours for exploration.

c. Fix the binary variables associated with each node in the cluster list

3. Solve the restricted MIP.

The following table summarizes our computational results (the time limit
was set to 30 minutes).

Approach Instance I Instance II
Cplex 149,951 1,966,080
Benders 150,480 N/A
Heuristic I 162,240 369,280
Heuristic II 130,880 291,136
Table 3.3 Computational results, in seconds

3.5 Multi-Block Reformation

Let us recapitulate: in Section 3.3 the given blocks were decomposed in small
blocks of size 8× 8× 8. Then in Section 3.4 each small block was assigned to a
processor. The final step consists of merging the small blocks assigned to the
same processor into larger blocks, in such a way as to increase the efficiency
of the computation. This is the topic of the current section.

Consider a particular processor and the set of small blocks assigned to it.
This set of blocks must be partitioned in such a way that the small blocks of
each cluster form a larger hexahedral block. The Navier–Stokes flow solver
will be applied on each of these larger blocks, with some communications
involved on the boundaries. Here we will only consider the communication
cost arising from communications within a processor, since communications
between different processors have been considered in Section 3.4. In order
to maximize the efficiency of the algorithm that solves the Navier–Stokes
equations, the partition should have the following properties:
• it should have a small number of blocks;
• each block should be as close as possible to a cube (i.e., it should have
roughly the same number of cells along each direction); and
• all blocks should have roughly the same size.

This suggests the modelling of the problem of merging the small blocks
into larger blocks as a multi-objective programming problem including the
two objective functions below:
• Minimize the number of blocks; and
• Maximize the minimum size over all three directions and over all blocks.
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Fig. 3.9 Non-reductibility to a problem on a polyhedron

3.5.1 A Difficulty: The Volume Defined by a Set of
Small Blocks Cannot Be Assumed to be a
3D-Polyhedron

Whereas each small block can individually be seen as a 8× 8× 8 cube, the
volume defined by the union of such small blocks cannot be assumed to be a
3D-polyhedron.

To see why, consider the 2D example of Fig. 3.9. Block 1 can be considered
as a rectangle because the number of cells on the side AB matches the number
of cells on the side CD, and the number of cells on the side AD matches the
number of cells on the side BC. Similarly, each of Blocks 2, 3, 4, and 5 can
be considered as a rectangle. Considering the adjacency between Blocks 1
and 2, between Blocks 2 and 3, and between Blocks 3 and 4, we are tempted
to represent the surface defined by these four blocks as shown in the right-
hand part of Fig. 3.9. This representation, however, is not correct, because
it suggests that blocks 1 and 4 are adjacent, which is not the case (see the
left-hand part of Fig. 3.9).

The case where the volume defined by the small blocks can be considered
as a 2D- or a 3D-polyhedron has already been partially addressed in the
literature. First notice that as suggested by Fig. 3.9, the resulting polyhedron
will be orthogonal, in the sense that all the faces of the polyhedron will be
parallel or orthogonal to one another.
• The problem of partitioning an orthogonal 2D-polygon into fat rectangles

has been considered by O’Rourke and Tewari [6]. This problem consists of
finding a partition into rectangles that maximizes the shortest rectangle
size over all rectangles. The most general algorithm has a complexity of
O(n42), where n is the number of vertices of the polygon, while algorithms
with lower complexities have been proposed for restricted versions of the
problem. We are not aware that this problem has been considered in 3D.
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• The problem of partitioning an orthogonal polyhedron into the minimum
number of rectangles has been considered both in 2D and in 3D. In 2D the
problem can be reduced to finding a maximum matching in a particular
bipartite graph. The first polynomial algorithm that runs in O(n5/2) has
been proposed by Lipski et al. [5] in 1979. Since then, algorithms with lower
complexities have been proposed. Currently the best complexity seems to
be O(n3/2 logn) (see the survey by Keil [3] for references). In contrast,
the 3D version of the problem was shown to be NP-hard by Dielissen and
Kaldewaij [1], leading to the proposal of several heuristics (see, e.g., [2] and
references therein).
• In the 2D version of the problem, a third objective function has been
considered, which is to minimize the total length of the lines used to
describe the decomposition. Lingas et al. [4] proposed a O(n4) algorithm
for the case where the polygon has no hole and showed that the problem
becomes NP-hard when holes are allowed.

Finally we mention that in his survey, Keil [3] considers the general problem
of partitioning/covering a polygon by different kind of geometrical shapes,
particularly rectangles and triangles.

3.5.2 Reduction to the Case Where the Union of
Blocks Can Be Considered as a 3D-Polyhedron

When solving our problem, a possible approach is to test first whether the
union of the blocks can be considered as a 3D-polyhedron. If the answer is
“yes,” we can apply one of the various heuristics developed to partition a
3D-polyhedron. When minimizing the number of resulting blocks, we might
however have to slightly adapt those heuristics in order to guarantee that all
these blocks have a minimum size of 8× 8× 8.

If the union of the given blocks cannot be considered as a 3D-polyhedron,
two approaches could be entertained:
• Generalize the aforementioned heuristics to the more general case where
the volume cannot be considered a 3D-polyhedron; or
• Partition first the set of blocks into subsets such that for each subset, the
union of the blocks in that subset can be considered as a 3D-polyhedron.
The aforementioned heuristics would then be applied separately to the
blocks of each subset. In this second approach, an important question to
address is of course the choice of the algorithm for computing the initial
partition into subsets.

In the next section we propose a much simpler heuristic using the “greedy”
paradigm.
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Input: List L of blocks.

Repeat the following steps as long as the list L contains at least one mergeable block.

Step 1. Choose a mergeable block (let us call it A).
Step 2. Among the blocks that can be merged with A, select a block B.
Step 3. Merge blocks A and B, yielding a new block C.
Step 4. Replace blocks A and B by block C in the list L.

Fig. 3.10 A simple heuristic

3.5.3 A Simple Greedy Heuristic

In this section we propose a simple greedy heuristic for the general case, i.e.,
without assuming that the volume defined by the blocks can be considered as
a 3D-polyhedron. This heuristic merges two blocks at each iteration until it is
not possible to do so any more.

3.5.3.1 Basic Description

The heuristic takes as input a list L of blocks and outputs a new list of blocks.
A block is said to be mergeable if there exists another block in the list with
which it can be merged in such a way that the result is a (rectangular) block.
The heuristic is described in Fig. 3.10.

In order to define completely the heuristic, we have to explain how to select
a block in Steps 1 and 2 (section 3.5.3.2), how to detect whether two blocks
are mergeable (section 3.5.3.4), and how to merge them (section 3.5.3.5).

3.5.3.2 Selection of Blocks

We considered the following strategies for the selection of a block in Steps 1
and 2 of the heuristic.
• Select the block with the smallest volume.
• Select the block with the smallest size along the three directions.
• Select the block that is the most difficult to merge, in the sense of having
the smallest number of blocks with which it can be merged.

3.5.3.3 Representation of a Block and of the Intersection of 2
Blocks

In order to explain how to test whether two blocks are mergeable and how to
merge two blocks, we first have to describe the format of the data.
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=====Block Imax Jmax Kmax Total surfaces=====================
1 17 17 49 7

---BCtype Ista Jsta Ksta Iend Jend Kend icomp---
FAR 1 1 1 1 17 49 0
CON 17 1 1 17 17 25 0
65 1 1 1 1 17 25 1 2

CON 17 1 25 17 17 49 0
67 1 1 1 1 17 25 1 2

FAR 1 1 1 17 1 49 0
CON 1 17 1 17 17 49 0

3 1 1 1 17 1 49 2 0
SYM 1 1 1 17 17 1 900
CON 1 1 49 17 17 49 0

5 1 1 1 17 17 1 0 1
=====Block Imax Jmax Kmax Total surfaces=====================

2 17 17 49 7
---BCtype Ista Jsta Ksta Iend Jend Kend icomp---

CON 1 1 1 1 17 25 0
70 25 1 1 25 17 25 1 2

Fig. 3.11 Example of input file

Each block has its own 3-dimensional basis (O,~ı,~,~k), whose origin corre-
sponds to one of its vertices. The origin has coordinates (1, 1, 1) with respect
to this basis while the opposite vertex has coordinates (imax, jmax, kmax). The
intersection of the two blocks B1 and B2 can be viewed as a subface F1 of B1
and as a subface F2 of B2. Those subfaces are two-dimensional rectangles.
Each subface is defined in the basis of its respective block.

For each block, we are given the list of intersecting subfaces. For each
subface of the list, the coordinates of two opposite corners defining the
rectangle are given first in the basis of the block. If the intersecting subface
corresponds to an intersection with another block, the identifier of that block
is given, followed by the description of the rectangle in the basis of that block.

Example 1. Figure 3.11 shows part of a data file.
The second line tells us that block 1 has 7 intersecting subfaces. Subfaces

that correspond to an intersection with another block are labeled “CON.”
Lines 5 and 6 tell us that the second subface results from the intersection

of block 1 with block 65. The fifth line gives the definition of the subface in
the basis corresponding to block 1. We see in particular that the subface is
orthogonal to the vector ~ı (since istart = iend = 17). The rectangle is defined
by the two opposite vertices (17, 1, 1) and (17, 17, 25).

Line 6 gives the definition of the subface in the basis corresponding to
block 65. In this basis the subface is spanned by the vectors ~′ and ~k′ (the
vectors defining the basis are noted differently to emphasize that they may be
different). The rectangle is defined by the two opposite vertices (1, 1, 1) and
(1, 17, 25).
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3.5.3.4 Testing if Two Blocks Are Mergeable

In this section we assume that there is at most one intersecting surface for each
given pair of blocks (exactly one surface if the blocks intersect, 0 otherwise).
Under this assumption two blocks B1 and B2 are mergeable if the following
conditions are satisfied.

1. There is a surface S12 in the list of surfaces of B1 whose block identifier is
B2 and this surface coincides with the appropriate face of B1.

2. There is a surface S21 in the list of surfaces of B2 whose block identifier is
B1 and this surface coincides with the appropriate face of B2.

Example 2. Consider again the example described in Fig. 3.11. Blocks 1 and
65 are not mergeable (merging them would not result in a block) because the
size of block 1 along the ~k axis is kmax = 49 whereas kend = 25 holds. Blocks
1 and 3, however, can be merged, although the figure does not give all the
information necessary to reach this conclusion.

3.5.3.5 Merging Two Blocks

The operation of merging two blocks is too complicated to be described fully
here. Basically, the operation involves a change of basis of one of the blocks
so that the vectors of the two bases coincide whenever the 2 pairs of opposite
corners of the intersecting surface are made to coincide. In particular this
forces us to rewrite in the new basis all the intersecting surfaces of the block
whose basis has been changed. Once the two bases are made compatible, the
origin of one of the two bases does not belong to the intersecting surface,
whereas the origin of the other basis does. We choose the basis of the former
block as the basis of the merged block. Then it is not difficult to compute the
dimensions of the merged block. The last step consists of constructing the
intersecting surfaces of the merged block with the other blocks.

3.5.4 Computational Results

We considered three instances among those provided by Bombardier and
assumed that each instance described the set of blocks allocated to a specific
processor. Recall that the heuristic first selects a mergeable block A, then
chooses a block B among the blocks that can be merged with A (see Sec-
tion 3.5.3.1). The four strategies below were considered for the selection of
Blocks A and B.

Strategy 1: Each of Blocks A and B is chosen as the block that is the most
difficult to merge, i.e., the block that has the smallest number of blocks
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Table 3.4 Numerical
results for instance
dlrf4_wb_eu_74b

Strategy Cardinality Size Volume
- 74 [16; 64] [4096; 18432]

Strategy 1 28 [16; 192] [16384; 92160]
Strategy 2 25 [16; 160] [16384; 92160]
Strategy 3 30 [16; 160] [16384; 61440]
Strategy 4 34 [16; 160] [12288; 61440]

Table 3.5 Numerical
results for instance
fansc_coarse

Strategy Cardinality Size Volume
- 11 [24; 84] [36864; 276480]

Strategy 1 5 [24; 168] [36864; 645120]
Strategy 2 5 [24; 168] [110592; 645120]
Strategy 3 5 [24; 168] [110592; 645120]
Strategy 4 5 [24; 216] [55296; 829440]

Table 3.6 Numerical
results for instance onera

Strategy Cardinality Size Volume
- 32 [24; 40] [24576; 30720]

Strategy 1 16 [24; 64] [49152; 61440]
Strategy 2 7 [24; 256] [49152; 196608]
Strategy 3 12 [24; 112] [49152; 86016]
Strategy 4 16 [32; 48] [49152; 61440]

with which it can be merged. Ties are broken by choosing the block with
the smallest volume.

Strategy 2: We choose for Block A a block that is the most difficult to
merge, with ties broken by choosing the one with the smallest volume.
Among the blocks that can be merged with Block A, we choose for Block
B the one with the smallest volume, with ties broken by choosing the one
that is the most difficult to merge.

Strategy 3: We transpose the two selection criteria that were considered in
Strategy 2: we choose for Block A a block with the smallest volume, with
ties broken by choosing the block that is the most difficult to merge. Then
among the blocks that can be merged with Block A, we choose for Block B
a block that is the most difficult to merge, with ties broken by considering
the volume.

Strategy 4: Each of Blocks A and B is chosen as the block with the smallest
volume. Ties are broken by choosing the block that is the most difficult to
merge.

The results for the 3 instances are given in Tables 3.4, 3.5, and 3.6, re-
spectively. Each line in the table corresponds to a partition, with the first
line describing the initial partition. For each partition we give its cardinality,
the smallest and largest sizes over the three directions and over all blocks
of the partition, and the smallest and largest volumes over all blocks of the
partition.

These limited computational experiments are sufficient to demonstrate that
different strategies give quite different partitions. Here it seems that the best
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strategy is Strategy 2, with respect to the minimization of the cardinality, the
maximization of the minimum size, and the maximization of the minimum
volume. Recall that Strategy 2 selects Block A as the most difficult to merge,
and Block B as the one with the smallest volume.

A lot of work remains to be done. In particular we would like
• to model the partitioning problem in a more formal way, i.e., as a multi-
objective programming problem in which the different objective functions
are well defined;
• to explore additional strategies for the selection of the blocks to be merged
in the greedy heuristic; and
• to embed the greedy heuristic in a meta-heuristic like tabu search, VNS,
. . .

.
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Appendix
# BLOCKS

5
===== Block Imax Jmax Kmax Total surfaces =================

1 65 65 97 6
---BCtype Ista Jsta Ksta Iend Jend Kend icomp iiconnect ---

CON 1 65 1 65 65 97 0
2 97 1 1 161 1 97 2 0

SYM 1 1 1 1 65 97 0
SYM 65 1 1 65 65 97 0
SYM 1 1 1 65 1 97 0
WAL 1 1 1 65 65 1 100
FAR 1 1 97 65 65 97 0

===== Block Imax Jmax Kmax Total surfaces =================
2 257 65 97 10

---BCtype Ista Jsta Ksta Iend Jend Kend icomp iiconnect ---
CON 97 1 1 161 1 97 0

1 1 65 1 65 65 97 2 0
CON 1 1 1 1 65 97 0

2 257 1 1 257 65 97 1 2
CON 257 1 1 257 65 97 0

2 1 1 1 1 65 97 1 2
CON 1 1 1 33 1 97 0

5 33 1 1 1 1 97 2 0
CON 225 1 1 257 1 97 0

5 65 1 1 33 1 97 2 0
CON 1 65 1 257 65 97 0

3 1 1 1 257 1 97 2 0
SYM 33 1 1 97 1 97 0
SYM 161 1 1 225 1 97 0
WAL 1 1 1 257 65 1 100
FAR 1 1 97 257 65 97 0

===== Block Imax Jmax Kmax Total surfaces =================
3 257 33 97 6

---BCtype Ista Jsta Ksta Iend Jend Kend icomp iiconnect ---
CON 1 1 1 257 1 97 0

2 1 65 1 257 65 97 2 0
CON 1 1 1 1 33 97 0

3 257 1 1 257 33 97 1 2
CON 257 1 1 257 33 97 0

3 1 1 1 1 33 97 1 2
CON 1 33 1 257 33 97 0

4 1 1 1 257 1 97 2 0
WAL 1 1 1 257 33 1 1
FAR 1 1 97 257 33 97 0

===== Block Imax Jmax Kmax Total surfaces =================
4 257 65 97 7

---BCtype Ista Jsta Ksta Iend Jend Kend icomp iiconnect ---
CON 1 1 1 257 1 97 0

3 1 33 1 257 33 97 2 0
CON 1 1 1 1 65 97 0

4 257 1 1 257 65 97 1 2
CON 257 1 1 257 65 97 0

4 1 1 1 1 65 97 1 2
CON 1 65 1 129 65 97 0

4 257 65 1 129 65 97 2 0
CON 129 65 1 257 65 97 0

4 129 65 1 1 65 97 2 0
WAL 1 1 1 257 65 1 1
FAR 1 1 97 257 65 97 0

===== Block Imax Jmax Kmax Total surfaces =================
5 65 129 97 7

---BCtype Ista Jsta Ksta Iend Jend Kend icomp iiconnect ---
CON 1 1 1 33 1 97 0

2 33 1 1 1 1 97 2 0
CON 33 1 1 65 1 97 0

2 257 1 1 225 1 97 2 0
SYM 1 1 1 1 129 97 0
SYM 65 1 1 65 129 97 0
SYM 1 129 1 65 129 97 0
WAL 1 1 1 65 129 1 100
FAR 1 1 97 65 129 97 0

Code 3.1 Example of connectivity file





4
Visualizing Huge Plots on the Web

Mikola Lysenko and Perouz Taslakian

Abstract We consider a small subset of problems that arise in Plotly—an
online graphing tool that renders a visualization of a set of data points inside a
browser, where computational power is limited and memory is scarce. We show
techniques that improve the total number of points that can be visualized in
an interactive scatter plot, and give a few possible approaches for solving the
same problem in the case of line plots.

4.1 Introduction

The best data visualizations illustrate hidden information and structure
contained in a data set. As access to large data sets has grown, so has
the need for interactive and scalable solutions connecting computer science,
mathematics, and industry.

Plotly is an online data visualization tool designed to render graphs quickly
in web browsers. The user base of the tool consists of a wide variety of clients
from industry and scientific laboratories. As these clients have gained access
to larger data sets in recent years, demand to enable the rendering of huge
two-dimensional plots has grown. There are various successful methods for
rendering such huge point clouds efficiently. Not many studies, however, have
addressed this problem when the rendering needs to be done within a browser
(see for example [3]). One of the main challenges of plotting a large number
of points within a browser is doing so efficiently while using a limited amount
of memory (typically 1GB). With the current online Plotly interface, the
maximum number of points that one can plot is about 100,000 points. The
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primary goal of this report is to find an executable solution that improves the
efficiency of point rendering and allows the plotting of data sets of up to 1
million elements, while preserving interactive and exportable features that
the clients expect.

At the lowest level, rendering is handled by the GPU (Graphics Processor
Unit), which is very efficient in processing a huge number of points, especially
when many end up outside the viewport. The bottleneck in GPU processing,
however, lies in the rasterization step, i.e., when a large number of points are
mapped to the same screen pixel. WebGL is a low-level graphics API that
uses GPUs directly for extremely fast rendering. It is based on OpenGL but
designed for the web. To render an image in WebGL, functions send data to
your GPU for processing and images are drawn on top of a canvas element.
Shapes are created by scripts that contain vertex and fragment shaders, which
assign colours to each pixel contained in the shape. WebGL is fast and offers
high-performance rendering, good interactivity, and excellent control.

In this report, we address the problem of rendering (using WebGL) a huge
number of points (i.e., at least one million) within a browser (i.e., a context
where memory is limited). In addition to drawing considerations, our solution
requires thinking about how plots are stored on the server and how stored
data is downloaded to the browser. Specifically, we require an efficient way to
store and retrieve data on the server side based on a plot viewport. Because
of the potential bottleneck at the rasterization step of the GPU, the problem
is the following: given a viewport, choose quickly (whether on the server or
the client) the points that will be sent to the GPU for rendering so that the
plot looks effectively just as it would look if one plotted everything. The client
can then query the server on zoom/pan events to update the data.

It is also essential that existing plot features are maintained. In particular,
advanced styling features (such as custom glyphs, colors, sizes, borders, etc.)
must be preserved, and users must be able to highlight individual points (this
is done by hovering the mouse over a point in the plot).

We concentrate on two types of two-dimensional plots: scatter plots and
line plots. Our goal is to render over one million data points n by allowing
at most O

(
n polylog(n)

)
steps during preprocessing and using O(n) amount

of working memory. In addition, the algorithms we develop must be simple
enough to allow an implementation in a reasonable amount of time (i.e., the
implementation must be cost-effective).

Given a set of n vectors in 2D and a shape S (which we call the marker),
a scatter plot (see Figure 4.1) is the image formed by the union of n copies of
S translated by each vector. A line plot (see Figure 4.2) is a piecewise linear
curve (i.e., a polyline).

Let P = {p0, p1, . . . , pn} be a set of primitives (i.e., objects represented as
sets of points) with pi ∈ R2 for all i = 0, 1, . . . , n. Let s0 > s1 > · · · > sk be a
set of scales (in our case, pixel sizes). The cover order of P is the filtration

F0 ⊆ F1 ⊆ · · · ⊆ Fk = P,
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such that
⋃
P ⊆

⋃
(Fj ⊕ Csj

) for each j = 0, 1, . . . k, where Csj
is a circle of

radius sj . The level of a primitive is defined as follows: level(pi) = minpi∈Fj
j.

In other words, given a pixel size sj , we would like to determine a subset of
objects P ′ ⊆ P such that every primitive overlaps with one or more primitives
of P ′ dilated by the circle of radius sj (ideally, we want the minimum number
of objects that would cover all others). This means that for a fixed zoom level,
we only need to render the primitives in P ′ since all the other primitives are
“hidden.” Therefore, given a set of points/line segments, our problem can be
reduced to the problem of finding a cover order of these primitives for a given
zoom level (see Figure 4.3).

For pointsets in 2D, a cover order can be easily computed by using a spatial
data structure called quadtree; computing a cover order is not so evident in
the case of line plots, however.

In what follows, we describe a method that will allow us to render and
process a scatter plot of 100 million points within a browser. We then discuss
the challenges of using the same technique for rendering scatter plots and
propose a few alternatives.

Fig. 4.1 A scatter plot of 100,000 points in 2D.
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Fig. 4.2 A line plot of 100,000 points in 2D.

Fig. 4.3 The three thick line segments constitute a cover for all the segments for a given
zoom level. Only these three segments need to be rendered by the GPU.
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4.2 Progressive Loading of 2D Scatter Plots

In this section we describe an algorithm that allows us to render 100 million
points. The key idea behind the algorithm is the use of the quadtree data
structure and the building of this data structure in a way that minimizes the
use of working memory.

A quadtree of a set of points in the plane is a geometric data structure that
is constructed by recursively splitting the area (usually the square bounding
box of the input pointset) into four equal-sized squares until every square
contains at most one point [1].

Let A be a set of n points in the plane, and let z be a zoom level (which is
a function of the current pixel size and screen resolution/size).

Preprocessing

Once the points A are loaded in the client (we will assume A is an array of
points), we preprocess them as follows.

1. Construct a quadtree of the pointset A using a depth-first traversal of the
points and store the level of each point in the quadtree in a new array L.
Store the points in array Q. Thus the level of point Q[i] is stored as L[i].

2. Sort the points of Q in increasing order of level and x-coordinate using an
in-place sorting algorithm (such as Quicksort). The maximum value stored
in array L will be equal to the height of the quadtree.

The ordering of the points by their level in the quadtree gives us a cover
order for the points of the scatter plot. For a given zoom level z, this ordering
of points by level gives us a way to choose the points that will be rendered
(the other points being hidden behind the rendered points). Consider a square
area of the quadtree, which corresponds to a node p at some level ` in the
tree. If the zoom level of the rendering matches with `, then the quadtree
structure tells us that all nodes in that single square area will be mapped on
top of one another on the screen in the final rendering. Therefore, instead of
rendering all the points (p and its descendants), we can instead render only
point p.

Rendering

Once array Q is constructed and sorted, we can flush array L and send Q
to the GPU. To render for a given level, we request the GPU to draw some
superset of the points that are visible on the screen and are not hidden behind
others.
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Fig. 4.4 The partitioning of the points into quadtree partitions. The pink/bold rectangle
represents the area that will appear on the screen.

1. Compute the size of a pixel in the data coordinates to get the current zoom
level z.

2. Compute the xmin and xmax of the screen.
3. Starting at level z, for each level at most z do the following.

a. Find the predecessor xp of xmin and successor xs of xmax.
b. Ask the GPU to draw the points whose x-coordinates are between xp

and xs.

Conceptually, given a zoom level z, we request the GPU to draw all the
points that have level at most z, thus ignoring all points that are deeper
than z in the quadtree. We further trim the number of rendered points by
excluding those that are outside the vertical strip enclosing the sides of the
screen (ee Figure 4.4).

Analysis

A quadtree of depth d storing a set of n points has O
(
(d+ 1)n

)
nodes and

can be constructed in O
(
(d+ 1)n

)
time. In general, the depth of a quadtree

of a set of points in the plane is at most log(s/c) + 3
2 , where s is the length of

one the edges of the bounding box and c is the distance between the closest
pair of points. Thus the depth of a quadtree can be arbitrarily bad.

Preprocessing may take a long time if the quadtree ends up having height n.
This happens when, for example, the input consists of a big cluster of points
that are far from the rest of the points. To avoid such bad cases, we introduce
a slight modification to the way we construct the quadtree. After any split of
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the current area into four quadrants, we check every quadrant to see whether
it contains more than 90% of the points. If such a quadrant is found, then we
split the point cluster arbitrarily into two equal sets and construct a quadtree
for each one individually. Doing this will preserve the level information for
each point, which is all that we need to render effectively, while at the same
time decreasing the height of the tree.

The algorithm described in this section has made it possible to render 100
million points within a browser while maintaining reasonable interactivity.

A Note on Transparent Markers of the Same Colour
and Shape

So far we have assumed that the markers we are rendering are of solid colour.
This assumption made it possible to replace all the points that are stacked
on top of one another with a single point on the screen. If the markers are
partially transparent, however, replacing overlapping points with a single,
transparent marker will not work, because we need to blend the colours
of all the markers that are hidden. Blending different colours assumes an
ordering of the points, which makes the problem even more complex. Here we
propose a simple fix for the case of partially transparent markers that have
the same colour and shape. To blend colours properly, we need to know the
number of points hidden behind the point we wish to render. We can save
this information while creating the quadtree in the preprocessing step— for
each node of the quadtree, we keep track of the number of descendants in
its subtree and store this number in a separate array. During the rendering
process, we can then use this information to blend the colours appropriately.

4.3 Displaying 2D Line Plots

Computing a (reasonable) cover order for line plots is a much more challenging
task than for scatter plots. In the line plot setting, the use of quadtrees is
not efficient because a segment may hit O(2h) boxes in level h, resulting in a
huge quadtree.

In the line plot setting, we want to build covers inductively, i.e., build
Fj \ Fj−1 in order of increasing j. In other words, we want the smallest set of
line segments covering P \ Fj−1 at scale sj .
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Ideas

1. Set Cover Approximation. The cover ordering problem for line segments
can be reduced to the problem of Set Cover (which is NP-complete [2]).
This allows us to use a known approximation algorithm for finding set
covers. One such algorithm has an approximation factor of logn, with a
running time of O(n3).

2. Greedy Longest Segment. In this approach, we sort the segments and process
them by decreasing order of length. The running time is O(n2).

3. Divide-and-Conquer. We recursively split the segments (arbitrarily) into
two equal groups and process the groups individually. The running time is
O(n logn).

Acknowledgements We would like to thank the participants and organizers of the
Sixth Montreal Industrial Problem Solving Workshop (Montréal 2015) where the problem
was first posed.
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Lifetime Value in the Bank Industry

Maciej Augustyniak, Wyean Chan, Jean-François Forest-Désaulniers,
Maïkel Geagea, Ryan Halabi, Cody Hyndman, Francis Lafontaine, Huimei Li,
Kevin Luk, Hervé Mensah, Manuel Morales, Younes Ommane, Raphaël
Ramora, Seyedhossein Rezaeilalami, Olivier Trottier, Shohre Zehtabian, and
Farshid Zoghalchi

5.1 Introduction

5.1.1 Context

In today’s hyper-competitive banking market, acquiring and retaining prof-
itable customers is more challenging than ever. Customer demographics,
buying behaviour, and needs are evolving rapidly. Banks now need a 360-
degree view of each customer in order to target the right products, cross-sell
and up-sell, and adapt to customers’ changing needs.

Because of these challenges the National Bank of Canada seeks to under-
stand its Customer Lifetime Value (CLV) at an individual customer level,
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across all their financial products (deposits, loans, investments, credit cards,
etc.). The CLV can be defined as the revenue that a client is expected to
generate for the bank throughout his or her involvement with the bank.

The Client Intelligence & Modelization Team of the National Bank of
Canada has been assigned the task of developing methods that evaluate
precisely the projected cash flows for each client. Although the CLV is a
simple concept, it is very difficult to implement in a complex business context.

5.1.2 Problem

One of the tasks assigned to this team is to analyze and predict a client’s varied
behaviours and infer from them a value representing the revenue generated
for the bank by the client over his or her involvement with the bank. The
team’s goal is therefore to propose a method or algorithm for estimating the
CLV. The CLV will then help the National Bank define, understand, and
predict in a novel way the relationship between a given client and the National
Bank. For example, one intended use of the model is to predict which group
of clients will respond positively to a marketing offer.

In order to develop a method for computing the CLV that is specific to
the banking sector, one must take into account the notions of acquisition
and disposal for diverse banking products and services, their volume, usage,
and profitability, as well as the clients’ characteristics (such as geographical,
demographic, or market data). Obviously the profiles, products, or services of
the Bank’s clients vary greatly; so do their behaviours and expectations.

5.1.3 Objectives

The task was divided into three objectives.

1. Identify and segment the variables that are relevant for measuring the CLV.
The variables that are available in the data can be separated into three
groups.

(i) Products held by the client: savings (e.g, savings account, mutual
funds, deposit certificates), loans (e.g., mortgage, line of credit, credit
card), transactions (e.g., checking account);

(ii) Demographics: age, gender, marital status, income, zip code region;
(iii) Client profile and behaviour: credit score, average balance in checking

account, number of transactions.

2. Develop a model that measures the CLV as a function of these variables.
3. Develop a predictive model to help determine future marketing strategies

for customers based on estimated CLVs.
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5.2 Description of the Data

To perform data mining or data analysis is it critical to have good quality
data. A perfect data set would contain a large quantity of observations (or
inputs), contain all relevant variables or attributes (ideally all observable
variables), and be clean (i.e., it would contain neither input errors nor missing
values). In practice it is hard to get perfect data sets.

This section describes two data sets that the National Bank made available
to the team members: a commercial data set and a retail data set.

5.2.1 Commercial Data Set

The commercial data set is generated from the monthly statements of the Bank
commercial clients between 2013 and 2015. The original data set was used by
the bank to produce a preliminary study of the CLV using discrete-time Markov
chains. There are three classes of products: savings, loans, and transactions.
Each product class consists of several bank products: savings consists of 3
products, loans of 5 products, and transactions of 16 products. Hence there are
24 products in total. A client can possess several products, including several
products of the same class. A binary vector x = (x1, x2, . . . , x24) is used to
represent the products owned by a client at the end of the month, where
element xi equals 1 if that client owns product i and 0 otherwise. Elements x1
to x3 correspond to the savings product types, x4 to x8 to the loans product
types, and x9, . . . , x24 to the transactions product types. Vector x represents
the state of a client at the end of the month. For a person who is not yet a
client the vector is (0, 0, . . . , 0).

We received a truncated data set for this workshop. We note that the data
does not include any client-specific information (e.g., age, gender, etc.). The
following variables are included in the data set:

1. VECT_IN: The set of observed states x, say X . This set contains 1,479
states.

2. NB_CLIENTS_VECT_IN: The total number of times state x was ob-
served over the relevant time period for all clients.

3. VALUE_MOD: The average customer value generated within a given
month for each state x. This value is the sum of owned products averaged
over all observations of x. We note that the data set does not include the
customer value for every combination of product and client.

Table 5.1 shows a sample of the data. For example, the first state represents
clients that own(ed) 6 particular products and this state has been observed
27,240 times. A state can be observed multiple times for the same client, and
the count will be incremented at each observation. There is a total of 268,293



58 Maciej Augustyniak et al.

observations over all x ∈ X , where 268,293 is the sum of the elements in
column NB_CLIENTS_VECT_IN.

To simplify data manipulation, we created an alternative data set where
column VECT_IN (or vector x) is subdivided into 24 columns with headings
from x1 to x24. Table 5.2 presents a sample of this alternative data set.

The commercial data set has the following limitations. It does not allow
us to infer transition probabilities from one state to another and it does not
specify the value corresponding to every product owned by the client.

5.2.2 Retail Data Set

The retail data set contains information on 4,831 retail clients (individuals)
at the end of a particular month and 6,130 attributes are included for each
client (for a total of 4,831 rows and 6,130 columns). The data has been
partially cleaned up and some attributes have been anonymized (i.e., removed
or modified). With the help of experts from the Bank, we proceeded to clean
and rearrange the data, which led us to a new data set with only 88 attributes
per client. We now describe the retained attributes:

1. Demographic attributes:

• Segmentations (types 1, 4, and 5) with the following possible modalities:
age, region, savings balance, etc. (predefined by the Bank experts).
• Individual demographic attributes (age, gender, marital status, geograph-
ical area, etc.).

2. Channel usage (internet, ATM, phone, etc.).
3. Credit score.
4. Products: the 16 most important products according to the Bank experts.

We note that the three principal categories of products are transactional,
financial, and investment.

• Holding: A binary variable (1 if the client owns the product, 0 otherwise).

Table 5.1 Sample of data set 1 (for commercial clients).
VECT_IN NB_CLIENTS_VECT_IN VALUE_MOD

000001011010000001100000 27,240 189.2424
000001011010000001110000 21,855 204.9733

Table 5.2 Sample of the alternative table for data set 1.
x1 x2 . . . x24 NB_CLIENTS_VECT_IN VALUE_MOD
0 0 . . . 0 27,240 189.2424
0 0 . . . 0 21,855 204.9733
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• Tenure: The number of consecutive months during which the client
owned the product.
• Balance: The ranked score of the balance value over all clients, which is
a modified version of the real data.

5. Attributes related to the categories of products and services (also known
as spheres) held by the client. These attributes take into account different
possibles cases, namely the ones judged to be the most interesting for the
Bank experts, such as: monospherical clients (transactional sphere, financial
sphere, and investment sphere), and the shiftings from one sphere to another
(e.g., mono-transactional to mono-investment, and mono-financial to mono-
investment, etc.).

6. The EFT (Electronic Fund Transfers): the total amount for the current
month.

7. The AML (Anti-Monetary Laundering): the total amount for the current
month.

8. Fees (generated by all products):

• Total sum of fees in current month.
• The average amount of fees paid over a period of exactly 6 months
(respectively 12 months). If the period is less than 6 months, the value
is 0.
• The maximum monthly fee amount during the last 6 months (respectively

12 months).
• The maximum monthly fee frequency during the last 6 months (respec-
tively 12 months).

To respect confidentiality, all amounts in EFT, AML, and Fees were replaced
by ranked scores.

5.3 Literature Review

The problem proposed by the Client Intelligence & Modelization Team of
the National Bank of Canada is focused on an indicator called Customer
Lifetime Value (CLV). This is the value to the Bank of the revenue gener-
ated by a customer over his period of involvement with the Bank. The team
wishes to develop a model or algorithm for estimating and predicting the CLV
in order to make better decisions in marketing and customer relationship
management. A preliminary review of the academic literature found several
studies focusing on CLV in the retail banking industry. The approaches of
[1–3] informed our analysis and approach to modelling the CLV.

Working with a German bank, Haenlein et al. [3] proposed a customer
valuation model based on a combination of Markov chains and classification
and regression trees (CART). The motivation for developing a CLV model



60 Maciej Augustyniak et al.

provided by Haenlein et al. [3] is the consolidation of the European banking
sector and the resultant need, during mergers and acquisitions, to evaluate
the business being acquired and enable the acquiring company to manage the
combined business more efficiently and profitably.

The features of the CLV model presented in Haenlein et al. [3] that are
relevant for our problem include the ability to handle discrete one-off transac-
tions that occur infrequently and continuous revenue streams. The focus of
Haenlein et al. [3] is on providing an easy-to-implement parsimonious model
based on homogeneous customer segments. The model depends on four main
factors: age, demographics and lifestyle, type and intensity of product usage,
and activity level. Each of these factors, or profitability drivers, is measured
by multiple indicators that are used as predictor variables of contribution to
profit.

In examining the impact of the potential profitability drivers as predictors
of profit contribution (or contribution margin) to CLV, Haenlein et al. [3] use
CART analysis to cluster the client base into several homogeneous subgroups.
In the second step each homogeneous subgroup was considered a state of
a certain Markov chain. In that chain customers move from state to state
over time with transition probabilities estimated by counting the number of
customers moving between two states and dividing by the total number of
customers. The calculation of the CLV is accomplished by backward-induction
on the customer age group, which was used to segment the customer base,
and utilizing the transition probabilities and the sum of the state-dependent
contribution margins. The summing over all states of the Markov chain for
each age group and the discounting back one period allow the calculation,
recursively backward in time, of the CLV of a client in a particular state at
the start of the period under consideration.

Glady et al. [2] use the CLV as the basis for the modelling and prediction
of a certain type of customer behaviour called “churn,” where a customer’s
CLV is decreasing over time, in order to avoid losing profitable customers. In
our project we could not utilize the CLV to drive marketing decisions, but it
may be of interest to do so in the future. Classifying the factors having an
impact on the CLV in order to attain marketing and profitability objectives,
however, is a key step in the eventual implementation of a useful model.

Following earlier work Glady et al. [2] use the variable xi,j,t to represent
the usage of the product j, during the time period t, by the customer i. In
order to define customer churn the authors consider the model

xi,j,t+1 = αi,j,txi,j,t,

where αi,j,t is the slope of the product usage. A slope value greater than 1
represents growth, a value of 1 represents retention, and a value smaller than
1 represents churn. In the case of a business offering multiple products, a
customer might be loyal for certain products or considered a “churner” for
other products. Using the above notation, the CLV for customer i from the
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period t to t+ h is defined as

(5.1) CLVi,t =
h∑
k=1

q∑
j=1

1
(1 + r)kCFi,j,t+k,

where CFi,j,t is the net cash flow yielded by the transaction on product j
and r > 0 is a relevant discount rate for the time period [t, t+ 1) (which may
represent a day, a week, a month, or some other unit of time).

The definition of CLV given by equation (5.1) is forward looking and
disregards sunk costs. If the average marginal profit per unit of product usage
(for the jth product) is denoted by πj , then the cash flow associated with a
customer’s utilization of the product is

CFi,j,t = πjxi,j,t

and the CLV of customer i related to product j becomes

(5.2) CLVi,j,t =
h∑
k=1

∏k−1
v=0 αi,j,t+v
(1 + r)k πjxi,j,t.

Our analysis was guided by the definitions and notation found in Glady et al.
[2]. We did not want, however, to use the slope of the product usage (denoted
by αi,j,t). Rather we wanted to model xi,j,t (or a vector xi,t representing all
product usage for customer i) as a Markov chain.

Glady et al. [2] define a measure based on CLV (given by equation (5.2))
as follows:

MAPi,j,t = CLVi,j,t(with action)− CLVi,j,t(without action).

In so doing they define churn in a novel way, in order to guide certain marketing
decisions. Using data from a Belgian financial services company, Glady et
al. [2] carry out a classification of customers as non-churners with the goal
of avoiding misclassification based on a CLV-sensitive loss function. Various
statistical tools and methods (including logistic regression, decision trees, and
neural networks) were used and compared for classifying the customers.

Much of the existing research on CLV is focused on companies that offer
only one type of product. The aim of Ekinci et al. [1] is to provide a model to
guide future marketing decisions via MDP (Markov decision processes), in
the case of banks that offer a variety of products. Also, in contrast to existing
literature, Ekinci et al. [1] provide real-world applications with their proposed
model. In particular they test their model using data from a Turkish bank.

The proposed model of [1] is as follows. First, the decision areas and the
variables of CLV are determined via information obtained from both previous
literature and in-depth interviews with banking experts. Using the variables
obtained in this fashion, the authors proceed to build regression models
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(ANN and LSE) to estimate future customer values. For their segmentation
technique, they use a customer pyramid approach that clusters customers
by different states. After segmentation, transition probabilities between the
different states are determined and these form the elements of a Markov chain
model. The final (and critical) step of the model of Ekinci et al. [1] is to use
MDP to compute the maximum CLV for customers in each state.

The model is applied to the monthly data of 10000 customers at a Turkish
bank. The 29 variables used for CLV measurement in Ekinci et al. [1] were
determined via interviews with Turkish banking experts. The customers are
clustered into four different states and the transitional probabilities for each
state are computed. Applying the MDP process, Ekinci et al. [1] are able
to determine a number of optimal strategies to move customers into more
profitable states.

5.4 Methods Considered

5.4.1 Self-Organizing Maps (SOMs)

5.4.1.1 Non-Technical Overview

In this section, we report on our results on the success and applicability of
self-organizing maps (SOMs) to customer segmentation in the retail banking
context. The general aim of customer segmentation is to identify cohorts
of customers that share similar demands, priorities, or characteristics. This
will in turn shape the business marketing/development strategies in a more
intelligent and targeted way, through a better understanding (by management)
of the firm’s most influential customer cohorts.

There are different statistical techniques employed for customer segmen-
tation: techniques using a single discrete variable; k-means clustering; finite
mixture modelling; and self-organizing maps. The focus of this project is on
SOMs (self-organizing maps).

A self-organizing map is a form of unsupervised learning via neural net-
works. The training input of the algorithm is a set of vectors. Every vector
represents a sample (in our context, a bank’s customer) and its coordinates
represent different attributes of that specific sample (customer’s demographic
information, products used by the customer, etc). The output will be a 2-
dimensional arrangement of these samples having the property that vectors
that are close (in terms of the Euclidean norm) correspond to points that are
close to one another in the plane.

A simple example is the following: suppose we ask everyone attending a
ceremony to stand up and start comparing attributes among themselves (e.g.,
gender, age, weight, salary, language). They will then move around and try to



5 Lifetime Value in the Bank Industry 63

stand near the persons that are closest to them (by taking the attributes into
account). After some time we ask them to stop. This final arrangement will be
an example of SOM output. If one, then, assesses a single attribute in the final
arrangement, he can determine how influential that specific attribute is in the
final clustering. For example, if we ask people to hold up a card indicating
their age, one can see to what extent people within the same age category
are close to one another. We have just illustrated the notion of heatmap in
a SOM algorithm. In what follows we will focus on the commercial banking
context.

5.4.1.2 Introduction

SOM (as a nonlinear principal component analysis method) is an unsupervised
data visualization technique that can be used to represent high-dimensional
data sets in low-dimensional (typically 2-dimensional) spaces. By using 2-
dimensional visualization, SOM finds a pattern within the data by using
their topology instead of their distance. For example, if two high-dimensional
objects in data space are very similar, then their positions in a 2-dimensional
space should be very similar as well.

SOM maps the data objects onto a grid of nodes. To train the data, it
starts by assigning a codebook vector to every node. The codebook vector
plays the role of a typical pattern corresponding to that node. A subset of the
data is usually randomly assigned to all the nodes. Throughout the training
process, the objects are randomly presented to the map. The node which is
the most similar to the current training object is called the “winning node”
and will be updated through the iterations to become more and more similar
to the objects presented. The updated value of this winning node, which is a
weighted average, is kept as the new object. The weight, called “learning rate,”

Fig. 5.1 Simple example with 2 nodes
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is one of the training parameters of the SOM and has in general a small value
(ex. 0.01). Over the training iterations, this value is increased (to a maximum
of 0.05) in order for the map to converge. The SOM algorithm updates not
only the winning node, but also its neighbours (i.e., nodes having similar
codebook vectors). The size of the neighbourhood decreases throughout the
algorithm and after a while the winning nodes are the only ones to be updated.

5.4.1.3 Visualization of the Data by SOM

The SOM vizualisation consists of a grid of multiple nodes. Each node vector
has:

• a fixed position on the grid;
• a weight vector of the same dimension as the input space. For instance, if

the input data, representing the bank’s customers, has the variables “age,”
“sex,” “language,” and “geographical area,” then each node on the grid will
also have values for these variables;
• associated objects from the input data. Each object in the input space
is “mapped” to a node on the grid. One node can represent several input
objects.

As mentioned before, the main feature of SOMs is that the topological
features of the original input data are preserved on the map. What this means
is that similar input objects (customers) are positioned on the SOM grid at
nodes that are close to one another. In the case of bank customers, similarity
is defined in terms of the input variables such as age, sex, language, and
geographical area. For example, all 55-year-old females who speak English and
live in Montréal-Nord will be mapped to nodes in the same area of the grid.
The French-speaking females will be mapped elsewhere, taking all variables
into account. French-speaking males living in Montréal-Sud will be closer to
French-speaking females living in Montréal-Sud than English-speaking males
living in Montréal-Nord, and so on.

Typically SOM visualization is helped by “heatmaps.” A heatmap shows
the value distribution of a specific variable across the SOM. Imagine the
SOM as a room full of customers. We ask each customer in the room to
hold up a coloured card representing his geographical area. The result is a
SOM heatmap. Customers with similar geographical areas would normally be
aggregated in the same area. The same process can be repeated for age, sex,
and language. Diverse heatmaps can help us explore the relationship between
the input variables.

5.4.1.4 CLV Data Analysis by SOM

To analyze the retail data, we focus on 13 variables, whose list is given below.
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age: age of the customer, in years
gender: gender of the customer (female/male)
language: preferred language of the customer (English/French)
EFT_Amount_1: the total amount in “Electronic Fund Transfers” during

the last month
AML_Amount_1: the amount in NON-EFT transactions during the last

month
FEE_Amount_1: the total fee amount during the last month
FEE_Number_1: the total fee number during the last month
FEE_Avg_A_Total_12: the average total amount during the last 12 months
FEE_Avg_A_Total_6: the average total amount during the last 6 months
FEES_Max_A_Total_12: the maximum total amount during the last 12

months
FEES_Max_A_Total_6: the maximum total amount during the last 6

months
FEES_Max_T_Total_12: the maximum total fee number during the last

12 months
FEES_Max_T_Total_6: the maximum total fee number during the last 6

months

It is possible to plot the heatmaps of the variables to find a pattern. In a
heatmap the quantitative variables have minimum and maximum values that
are displayed on the map by blue and red colours (respectively). In the case
of qualitative variables such as gender, women are displayed in red and men
in blue. The areas of the maps coloured with colours other than red and blue
represent a mix of customers. We note that all of the visualizations have been
carried out without the Not Available (NA) data and that the scaling of the
heatmaps is a normalized scaling.

5.4.1.5 Gender

In gender heatmaps red and blue colours show female and male customers,
respectively. On the maps the completely red nodes represent the groups in
which the clients are predominantly (predom.) female and the completely blue
nodes represent the opposite, i.e., groups of clients who are predominantly
male. The nodes with colours other than red and blue represent groups in
which the customers are mixed and it was not possible to find a similarity
between them based on their gender.

By comparing the gender heatmap with other variables we can infer that

• the maximum amount of e-fund transfers and
• the maximum amount of AML transactions

have been associated with a group of predom. female customers during the
last month. Apart from this group, the rest of female and male customers
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Fig. 5.2 Gender

have predom. low EFT and AML amounts and also low amount and number
of fees.

5.4.1.6 Language

In language heatmaps red and blue colours represent English-speaking and
French-speaking customers, respectively. On the maps the completely red
nodes represent the groups in which the customers are predom. English-
speaking and the completely blue nodes represent the opposite, i.e., groups
of customers who are predom. mostly French-speaking. In nodes coloured
differently, the customers are not grouped in accordance with their preferred
language.

The heatmaps comparisons reveal that the majority of customers are
French-speaking and

• the maximum amount of e-fund transfers,



5 Lifetime Value in the Bank Industry 67

Fig. 5.3 Gender

• the maximum amount of AML transactions, and
• the maximum number of fees

are associated with a group of predom. French-speaking customers during the
last month. Also

• the highest fee during the last month and
• the highest fee over the last 12 months on average

are associated with a group of predom. English-speaking customers.

5.4.1.7 EFT_Amount_1

In EFT heatmaps the red and blue colours represent the maximum and
minimum amount (respectively) of e-fund transfers during the last month.
The colours in the range between red and blue represent diverse values between
maximum and minimum. From these heatmaps we can obviously see that the
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Fig. 5.4 Language

majority of customers have had a very low (minimum or close to minimum)
e-fund transfer and there is a single group that has a high EFT.

Comparing EFT_AMOUNT heatmaps with other variables, we see that
• the maximum amount of AML transactions during the last month,
• the highest fee and the maximum fee number during the last month, and
• the highest fee over the last 12 months on average
are associated with a group of customers who have predom. the lowest
EFT_AMOUNT. On the other hand, the only group with the maximum
e-fund transfer has paid predom. minimum fees and had the minimum AML
(NON-EFT) transaction amount.

5.4.1.8 AML_Amount_1

In AML heatmaps, red and blue colours represent the maximum and minimum
amounts (respectively) of AML (NON-EFT) transactions during the last
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Fig. 5.5 Language

Fig. 5.6 EFT_Amount_1
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Fig. 5.7 EFT_Amount_1

month. The colours in the range between red and blue represent diverse values
between the maximum and minimum values. The heatmaps show that in
general the customers have had low AML transactions and there are a few
groups of customers with higher AML transactions.

Comparing AML_AMOUNT heatmaps with the rest of variables, we see
that

• the highest fee and the maximum fee number during the last month and
• the highest fee over the last 12 months on average

are associated with a group of customers who have predom. a low AML
amount. The only group with the maximum AML amount has paid predom.
minimum fees.

5.4.1.9 Clustering

In order to find a suitable number of customer clusters, we first run a k-means
algorithm on the average characteristics of nodes (i.e., on the codebooks). In
this way we obtain a “within cluster sum-of-squares” plot that displays the
sum-of-squares of customers’ variables when there are k clusters (where k is
at most 100 since there are 100 nodes on the map). The point on the plot at
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Fig. 5.8 AML_Amount_1

which the sum of squares is minimized gives an indication of how many main
clusters should be chosen.

Considering the k-means plot, we recognize that 6 may be a suitable number
of clusters. We now apply SOM clustering, which is basically a hierarchical
clustering, on the map of trained data. In this process each node is initially
considered as a cluster. Then similar nodes are combined if they are neighbours
and the process continues until all the nodes have been combined.

This analysis allowed us to find the following clusters (or groups):

• A group in which female customers with maximal amounts of EFT and
AML predominate;
• A group in which French-speaking customers with maximal amounts of
EFT and AML and a maximal number of fees predominate;
• A group in which English-speaking customers with maximal fees predomi-
nate;
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Fig. 5.9 Choosing the number of clusters by applying the k-means algorithm

Fig. 5.10 Clustering

• A group in which customers with minimal fees, minimal AML amount, and
maximal EFT amount predominate;
• A group in which customers with minimum fees and maximum AML amount
predominate.

The rest of the customers can be clustered using some other common char-
acteristics such as: French-speaking, paying low fees, barely using e-fund
transfers, etc. The SOM includes all these customers within a large cluster on
the map. Therefore we have defined six clusters.

The clusters and heatmaps are summarized in Figures 5.10 and 5.11.
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Fig. 5.11 Summary

5.4.1.10 Conclusion and Future Work

• We managed to identify some particular customer groups and determine,
by looking at some of the available demographic data, which customers are
most likely to use e-fund transfers and AML transactions, which customers
pay the maximal fees, etc.
• We have considered only 13 variables (out of 88 variables from the clean
retail data), but it is possible to take more variables into account, cluster
the clients based on these variables, and find out which group of clients
belongs to a given cluster. This will be the subject of future work.
• Provided that more complete and high-quality data sets become available,
we could pursue our investigations and try to predict which group of
(potential) customers may be of interest to the bank.
• By using SOM, it is possible to analyze each variable or characteristic over

the whole set of customers and find out how dominant that variable could
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be from the bank’s point of view. We could then make suggestions for
maximizing the CLV.

5.4.2 Stepwise Regression

One of the goals of the present project was to decrease the dimension of the
set of available variables. Stepwise regression is one of the methods that can
be used to achieve this goal. Stepwise regression attempts to determine which
variables have a coefficient equal to zero in a multilinear regression (then these
variables are not statistically significant). There are three variants of stepwise
regression: the Forward variant, the Backward variant, and the combined
variant. The Forward variant consists of beginning the multilinear regression
without any explanatory variable and adding those variables that improve
the model. The process is iterated until the model cannot be improved any
more. The Backward variant is similar to the Forward variant, except that
it begins the multilinear regression with all the explanatory variables and
removes some variables at each iteration instead of adding some variables.
Finally the combined variant compares the p-value of a statistic F with a
certain threshold and the result of the comparison determines whether the
parameter is added to or removed from the model.

Note also that some explanatory variables may be included in the model a
priori. In this case the resulting model may be a “local” but not a “global”
optimum. We applied this method with the 24 products of our data base; the
CLV was the dependent variable. The stepwisefit function was used. Since
there was no real correlation between the products, the Stepwise regression
was not very useful. Indeed the number of products was reduced to 18. We
have also reason to believe that this decrease reflects the presence of outliers.

5.4.3 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) consists of replacing correlated variables
by linearly independent variables. This allows us to determine a set of variables
giving the “best explanation” of the other variables. In many cases only 2 or
3 variables are necessary to explain the other variables. The PCA algorithm
consists essentially of computing the eigenvalues of the matrix of correlations
between the variables for centered and normalized data. Note that the PCA
is very sensitive to scaling. We applied PCA to 16 products and observed that
the line-of-credit variable explained more than 50% of the variation in the
other producs and the personal-loans variable explained more that 45% of
this variation.
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5.4.4 Dependent Transition Probabilities through a
Logistic Regression

The objective here is to make transition probabilities dependent on many
factors that are client-specific. In this fashion we model separately the value
of a state and the probability that a client ends up in that state. In a
linear regression the value of the dependent variable (i.e., the variable to be
explained) is a real number. Hence we cannot use a linear regression because
our dependent variable is a state transition probability, whose value is in [0, 1]
by definition. We will use a logistic regression instead.

Definition. The logistic function is defined as:

σ(t) = et

et + 1 = 1
1 + e−t

Its value is always between 0 and 1 and the graph of this function is a sigmoid
curve.

We want to be able to use several explanatory variables in a regression in
order to determine the probability of going from one state to another state.
Suppose we have a vector x of dimension 1 × n, where n is the number of
variables. Let us define the t in the logistic function as:

t = βTx,

where β is the vector of parameters and is also of dimension n. In that case
the logistic regression will be defined as

y = σ(t)
= σ(βTx)

= 1
1 + e−t(βT x) .

We will now look at multiclass logistic regression, in which the number of
outputs is greater than 2. The probability of being in class Ck is defined by
the following equation:

P (Ck | x) = exp(tk)∑m
j=1 exp(ti)

,

where m is the number of different classes and

ti = βTi x.

Hence there are m× n parameters to estimate.



76 Maciej Augustyniak et al.

The objective is to find an accurate model for the state transition proba-
bilities, which we will then insert in a semi-Markov chain. Therefore each and
every client will have his own probability distribution model. A classification
can also be carried out by using these results. Indeed, after computing the
probability of being in each class, we can put the sample in the class with the
highest probability value.

5.4.5 Product Profile Matching

5.4.5.1 Product Codes

In the commercial banking data set we are given a product code, the number
of clients who own it, and the average value of the product held by the clients.
Product codes represent the products (Table 5.3) owned by a customer.

For example the product code

y =


1
0
...
0


represents the class of clients who own Deposit Certificates only.

5.4.5.2 Finding Product Code Values for Underpopulated Data

Since there are 24 products, the set of all possible product profiles

Table 5.3
Savings Loans

1 Deposit Certificates 5 Personal Loans
2 Savings Accounts 6 Mortgage
3 Mutual Funds C5 7 Letter of Credit

8 Credit Card
Transactions

9 Checking Account (CAN $) 17 Conciliation de cheques
10 Checking Account (US $)) 18 Client Card (ATM)
11 Package 19 Internet Banking
12 Point of Service 20 Individual Insurance
13 EFT (debit) 21 Collective Insurance
14 EFT (credit) 22 Foreign Exchange
15 Gestion de l’encaisse 23 Affacturuage
16 Serice de Paie 24 Import/Export
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A = {y = (y1, . . . , y24) : yi ∈ {0, 1}}

is of size 224 = 16,777,216. There are many product profiles in A in which the
number of clients is too small for us to have confidence in the accuracy of the
given average value.

In Figure 5.12 we see that most products are used by a small number of
clients while a few are very popular. A simple approach is to partition the set
of clients A into the following sets.

B = {y ∈ A | # of customers of y ≥ N}
C = {y ∈ A | # of customers of y < N}

Note that N is a suitable cut-off value: we trust the accuracy of the average
value given for product profiles with more than N customers.

To generate a value representing the similarity between y and z, it is natural
to use the function f(y, z) defined below.

Fig. 5.12 Each point represents a Product Code with the position indicating its value
and the number of clients using it.
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f(y, z) =

v1
...
vk


t

·

α1
...
αk

 = v1α1 + · · · vkαk with αi =


1 if yi = zi = 1
−1 if yi 6= zi

0 if yi = zi = 0

When assessing the similarity, some products are more important than
others. Thus the values of the vi should reflect the ranking of products by the
bank. At the present time we do not have access to this information and we
assumed that the Loans variable (mortgages) is the most important, followed
by the Transactions variable (checking accounts) and then Savings Accounts.
Therefore we chose the following values.

v1 = · · · = v3 = 1, v4 = · · · = v8 = 2, v9 = · · · = v24 = 3

In summary, for an underpopulated product code y ∈ C, we find the z ∈ B
that is closest to it by maximizing the function f(y, z).

5.4.5.3 Finding V

More systematic approaches are readily available for assigning values to the
vi. One such approach would be a numerical method analyzing the effect of
the ownership of a product on a customer’s value: given the set of populated
product profiles contained in B, find the vector V that minimizes the error
given by

‖V · y −ActualValue(y)‖.

One could use for instance the L2 norm, defined as

‖V · y −ActualValue(y)‖L2 =
(∑
y∈B

(
V · y −ActualValue(y)

)2)1/2

.

The minimal value of V can be found by the Conjugate Gradient method
but we still have the problem of verifying the results of these computations. A
possible approach (which is also easy to implement) is to partition B into a
training set and a test set in order to evaluate the effectiveness of this method.

5.4.5.4 Nonlinear Approach

The function f(y, z) given above is linear. It might be relevant to choose a
nonlinear function, for instance the following function (when there are only 3
savings products):

f(y, z) = c1σ1e−d1,2σ2−d1,3σ3 + · · ·+ c3σ3e
−d3,1σ1−d3,2σ2 .
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We note that if y and z differ in 2 products, the value of f will not simply be
twice the value it takes when y and z differ in 1 product.

5.4.5.5 Retail Data

While the commercial data includes Products Codes, their associated average
values, and the number of customers owning them, the retail data provided
is much larger. Data is available over an 18-month period for different users
including: asset values, fees, length of ownership, etc. As for the commercial
data, the goal is to create a model that could identify a customer’s value based
on his (or her) readily available information: age, gender, etc. The method
used for the commercial data could be used by averaging over the different
products to create data similar to the commercial data.

Banks are mostly interested in a customer’s future lifetime value. For this
reason a temporal method that takes into account a customer’s potential
would be ideal. For example, banks offer credit cards to students in the hope
of building brand loyalty among future High Earners. In the models discussed
in this report, we only give a snapshot of a customer’s current value, based
on data collected over a short time span. Any method for making future
predictions will either rely upon data collected over a long period of time,
or put more emphasis on customer properties that influence future value
(education, for instance).
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6
Finite Element Analysis of Ultralight
Metallic Lattices

Thomas Briffard, Guillaume Fortier, Alireza Khademi, Yves Martin,
Judith Müller, Argyrios Petras, Benoît Pouliot, Serge Prudhomme,
Patrick Terriault, José Urquiza, Yingjun Wang, Tyler Wilson, and Huang Xu

6.1 The Problem

6.1.1 Context

Pratt & Whitney Canada is considering the possibility of producing ultralight
lattice structures through 3D printing (also called additive manufacturing),
in order to reduce the weight of some pieces of machinery while preserving or
improving their characteristics.

These three-dimensional structures are obtained by assembling (in a peri-
odic or non-periodic fashion) a huge number of unit cells consisting of nodes
and ribs. Several specific cell geometries are proposed in the literature in
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order to achieve certain mechanical behaviours that are required for particular
applications.

Because the cell size is usually of the order of a millimeter, the number of
elements required for the analysis of the structure corresponding to the entire
piece is enormous, and it becomes difficult or impossible to use finite element
analysis.

6.1.2 Project Goal and Research Avenues

In order for a finite element analysis of pieces including lattice structures to
be carried out at a reasonable cost and within a reasonable time, it would
be highly desirable to define a replacement solid with properties equivalent
to those of the original piece (elasticity modulus, shear modulus, Poisson
coefficient, in particular).

Here are a few important considerations:

1. The cell geometries proposed in the literature are in general anisotropic.
Their orientation and the orientation of the overall structure have a big
impact on the characteristics obtained.

2. The cell geometries vary a lot and will change over time, because of the
evolution of design and manufacturing technology. The solution we are
looking for must be adaptable and take this possible evolution into account.

3. Many applications would benefit from an adaptive meshing, which varies
through the piece, in order to allow one to do the following (among other
things):

a. Adjust the properties locally according to the requirements (load restora-
tion, heat transfer, energy absorption, variation in rigidity, etc.); and

b. Follow a curved or irregular surface.

4. Homogenization is a standard technique applied to periodic lattice struc-
tures. It allows one to obtain an approximation (to a given order) of the
lattice using a (plain) homogeneous 3D equivalent material (i.e., equivalent
from a mechanical point of view). Replacing the lattice geometry with a
plain homogeneous body will ensure that there are much fewer degrees of
freedom in the computational analysis.
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Fig. 6.1 3D homo-
geneous plate lattice
(Url)

Fig. 6.2 3D lattice (Url) Fig. 6.3 3D plate lattice (Url)

6.2 The Team’s Results

6.2.1 Pratt & Whitney Specific Needs

First of all we had to ascertain the needs of Pratt & Whitney. There is
currently an observation/evaluation process at Pratt & Whitney. They want
to study the current methods used to model linear elasticity in lattice-shaped
domains (note that “lattice” is translated as (treillis in French). A good look
at the literature would be interesting for them.

Also they have not yet chosen the macroscopic configuration of their lattices.
For example a fully shaped solid with a 3D lattice will not behave in the same
way as a shell/plate lattice (coque de treillis, in French).

A plate lattice can be obtained by considering an infinite solid lattice in x
and y but with only a few layers in z, whereas a full lattice is obtained by
considering an infinite solid lattice in x, y and z (see Figures 6.1, 6.2, and 6.3
for some examples).

Let l denote the relative size of a cell in the lattice and L the depth of the
plate lattice (the smallest length in x, y or z). The ratio

ε := l

L

characterizes the type of lattice we are dealing with. If ε < 1
7 , then we may

consider the region as a full lattice. On the other hand, if ε > 1
7 , then the

theory of full lattices cannot be applied to the region (the discriminating
value 1

7 is purely heuristic and comes from our discussions – some of us having
already performed computational analysis of lattice structures for biomedical
applications).

The third aspect of the problem proposed by Pratt & Whitney is their
need for a fast method of resolution. One may consider using a finite element
method applied to the entire lattice region. This is not appropriate because
the number of elements required increases rapidly. Neither is it possible to

http://www.alibaba.com/product-detail/Steel-Lattice-Plate_402009112.html
http://gracebyte.com/lattice/index.html
http://architectedmaterials.com/product/3d-printed-architected-executive-table-gls
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use adapted meshes as a workaround. Figures 6.4 and 6.5 show an adapted
mesh in a simulated 2D plate lattice.

Fig. 6.4 Adapted 2D plate lattice

Fig. 6.5 Zoomed adapted 2D plate lattice
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6.2.2 The Literature

We consider two distinct situations (both in the 3D case): that of a full domain
lattice and that of a partial plate lattice.

We can find a substantial literature for those two situations. We only cite
some interesting articles and books (which we found during the workshop).

6.2.2.1 Full Lattices

First of all, the Pasini Lab (at McGill University) specializes in lattice struc-
tures. Many reports and articles (for instance [2, 7–9]) can be found on their
web pages (http://pasini.ca).

Popular ideas for solving the lattice problem are the RVE (representa-
tive volume element) decomposition and the homogenization method, which
have the same goals. The aim is to approximate the lattice structure by a
homogeneous plain domain (see the references [1, 3, 6]).

6.2.2.2 Plate Lattices

Plate lattices are a special case and need specialized processing (see for
instance [4, 5]).

6.2.3 Examples of Computations for the Full Lattice
and the Plate Lattice

We used the two-scale asymptotic expansion (an homogenization technique),
which is described in the book of G. Allaire [1] (p. 168, in French).

6.2.3.1 Full Lattices

First of all, we consider a scaled cell consisting of a single lattice element with
coordinates y ∈ Y = [0, 1]3. In this way the cell does not have a particular
physical unit. We assume that we know the mechanical proprieties A(y) of
the cell. Let x be the coordinates of the macroscopic domain Ω. Let y = x/ε
(assumed to be ε-periodic), and A = A(x/ε). We assume that this tensor is
coercive and bounded. We recall that ε is a magnification parameter tending
to zero at the limit.

Let us consider a diffusion problem on a full lattice.

http://pasini.ca
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(6.1)
{
−div

(
A(x/ε)∇uε(x)

)
= f(x) in Ω,

uε = 0 on ∂Ω

We assume f(x) to be macroscopic only (i.e., independent of the microscopic
coordinates y). It is well known that this equation has a unique solution
uε ∈ H1

0 (Ω) if f ∈ L2(Ω). Our goal is to find a constant tensor A∗ that,
when used in (6.1) instead of A(y), yields a solution to the equation that
is a “good” approximation of the real solution uε. This procedure is called
homogenization. To proceed, we decompose the solution uε as follows:

uε =
∞∑
k=0

εkuk.

The term u0 is the homogenized term of uε and will represent a smooth
solution. We apply the two-scale asymptotic expansion by setting each term
uk on Ω × Y :

uk(x,y).

The x term is macroscopic (slow) and the y term is microscopic (fast). The
function uk(x,y) is ε-periodic in y. We have y = x

ε and thus

uε =
∞∑
k=0

εkuk

(
x,
x

ε

)
.

We can then introduce uε in the equation (6.1). Only the terms in ε−2,
ε−1, and ε0 are kept. We obtain the following equation.

f(x) = − 1
ε2

(
divy(A∇yu0)

)∣∣
(x,x/ε)

− 1
ε

(
divy

(
A(∇xu0 +∇yu1)

)
+ divx(A∇yu0)

)∣∣
(x,x/ε)

−
(

divx

(
A(∇xu0 +∇yu1)

)
+ divy

(
A(∇xu1 +∇yu2)

))∣∣∣
(x,x/ε)

+O(ε)

(6.2)

The first equation (in ε−2) yields

divy

(
A(y)∇yu0(x,y)

)
= 0.

We can conclude directly that there is a function u(x) (depending only on x)
for which

u0(x,y) = u(x)

holds. Thus u0 does not change on the microscopic scale. With this considera-
tion, the second equation (in ε−1) yields
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divy

(
A(∇xu+∇yu1)bilg) = 0.

We use the lemma in [1, Lemma 7.4] and obtain a unique solution for u1 (up
to an additive constant), in terms of u.

u1(x,y) =
3∑
i=1

∂u(x)
∂xi

wi(y)

Let {ei} be the canonical base of R3. We define wi to be the solution of

(6.3)
{

divy

(
A(y)

(
ei +∇ywi(y)

))
= 0 in Y ,

wi(y) periodic on ∂Y .

We will only need ∇yu1, so the lack of uniqueness of u1 is not a problem.
Finally the third line in (6.2) yields

−divy(A∇yu2) = divy(A∇xu1) + divx

(
A(∇xu+∇yu1)

)
+ f.

Again, with the help of Lemma 7.4, we have a unique solution (up to a
constant) for u2 in terms of u if the following compatibility condition is
satisfied.∫

Y

[
divy(A(y)∇xu1) + divx

(
A(y)(∇xu+∇yu1)

)
+ f(x)

]
dy = 0

The first term is zero and we obtain

(6.4) −divx

∫
Y

[A(y)(∇xu+∇yu1)] dy = f(x) in Ω.

Recall that Y = [0, 1]3. Let us define the homogenized tensor A∗ as follows.

A∗ij :=
∫
Y

A(y)(ej +∇ywj) · ei dy

A symmetric formula also exists. We then have the following product.

A∗∇xu =
3∑
j=1

∂u

∂xj

∫
Y

A(y)(ej +∇ywj) dy

We obtain, using (6.4), the new PDE

(6.5)
{
−divx(A∗∇xu) = f(x) in Ω,
u = 0 on ∂Ω.
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We have transformed our original equation (6.1) into this new one. A standard
FEM can now be used to solve this PDE with homogeneous parameters over
Ω.

For a convergence theorem, we refer to the book by Allaire [1].

6.2.3.2 Plate Lattices

We may now consider the case of a plate: an infinite series of copies of the
unit lattice in the x and y directions, and K copies of the unit lattice in the
z direction. In this case, we cannot consider only one cell because ε would be
too large. To keep ε small, we consider all K layers of the domain in the z
direction and only one layer of cells in the x and y directions. This domain
is our super-cell domain (Y = [0, 1]2 × [0,K]), in which we will compute the
homogenized tensor.

For this case we will assume that we have natural boundary conditions on
each side of the plate ΓP in the z direction.

(6.6)


−div

(
A

(
x

ε

)
∇uε(x)

)
= f(x) in Ω,

A

(
x

ε

)
∇uε(x) ·~n = 0 on ΓP ,

uε = 0 on ∂Ω \ ΓP

Let x = (x, y). The general case for the boundary conditions is more compli-
cated and requires further consideration (beyond the present study).

We believe that the case of a homogeneous lattice in z can be solved by a
simple separation-of-variables method in (x, y) and z. In this case the tensor
A can be decomposed as follows.

A(y) =

a11(y) a12(y)
a21(y) a22(y)

a33(y)


Then we can assume that uε(x) = vε(x, y)t(z) holds. After the decomposition,
we must solve a 2D lattice problem for vε. We may use the same methods as
in the previous section to solve this problem. In the z direction, the model is
a standard EDO equation. Further study is required to check the validity of
the procedure we have just outlined.

In the other case (the general 3D plate lattice), we take the same route as
for the full lattice problem. The difference is that we require that uε(x) be
constant in the macroscopic scale for z. To proced, we decompose the solution
uε as follows.

uε =
∞∑
k=0

εkuk
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The term u0 is the homogenized term of uε and will represent a smooth
solution. We apply the two-scale asymptotic expansion by setting each term
uk on Ω × Y

uk(x,y)

The x term is macroscopic (slow) and the y term is microscopic (fast). We
may say that uε is so thin that it does not change in the macroscopic scale in
z. The function uk(x,y) is ε-periodic in y. Also we assume that the uk(x,y)
have free natural boundary conditions over ΓP ∩ Y . We have y = x/ε and
thus

uε =
∞∑
k=0

εkuk

(
x,

x

ε

)
.

We may then introduce uε in the equation (6.6). Only the terms in ε−2,
ε−1 and ε0 are kept. We obtain,

f(x) =− 1
ε2

(
divy(A∇yu0)

)∣∣
(x,x/ε)

− 1
ε

(
divy

(
A(∇xu0 +∇yu1)

)
+ divx(A∇yu0)

)∣∣
(x,x/ε)

−
(

divx

(
A(∇xu0 +∇yu1)

)
+ divy

(
A(∇xu1 +∇yu2)

))∣∣∣
(x,x/ε)

+O(ε).

(6.7)

We note that the derivative of all uk with respect to z is 0.
The first equation (in ε−2) yields

divy

(
A(y)∇yu0(x,y)

)
= 0.

We can directly conclude that there is a function u(x) (depending only on x)
for which

u0(x,y) = u(x).

Hence u0 does not change on the microscopic scale. Given these considerations,
the second equation (in ε−1) yields

divy

(
A(∇xu+∇yu1)

)
= 0.

We use Lemma 7.4 in [1, Lemma 7.4] and obtain a unique solution for u1 (up
to a constant) in terms of u.

u1(x,y) =
2∑
i=1

∂u(x)
∂xi

wi(y).

Let us define e1 = (1, 0, 0)t and e2 = (0, 1, 0)t. Then wi is the solution of
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(6.8)


divy

(
A(y)(ei +∇ywi(y))

)
= 0 in Y ,

A(y)∇ywi ·~n = 0 on Y ∩ ΓP ,
wi(y) periodic on ∂Y \ΓP .

We will only need ∇yu1, so the lack of uniqueness of u1 is not a problem.
Finally the third line in (6.7) yields

−divy(A∇yu2) = divy(A∇xu1) + divx

(
A(∇xu+∇yu1)

)
+ f.

Again, with the help of Lemma 7.4, we have a unique solution (up to a
constant) for u2 in terms of u if the following compatibility condition is
satisfied.∫

Y

[
divy(A(y)∇xu1) + divx

(
A(y)(∇xu+∇yu1)

)
+ f(x)

]
dy = 0

The first term equals zero and we obtain

(6.9) −divx

∫
Y

[A(y)(∇xu+∇yu1)] dy = Kf(x) in Ω∗.

Recall that Y = [0, 1]2×[0,K]. Also Ω∗ is the (x, y) part of Ω. Let us construct
the homogenized tensor A∗ as follows.

A∗ij :=
∫
Y

A(y)(ej +∇ywj) · ei dy

The dimension of this tensor is only 2× 2. A symmetric formula also exists.
We then have the product

A∗∇xu =
2∑
j=1

∂u

∂xj

∫
Y

A(y)(ej +∇ywj) dy.

Using (6.9), we obtain the new PDE

(6.10)
{
−divx(A∗∇xu) = Kf(x) in Ω∗,
u = 0 on ∂Ω∗.

We have thus transformed our original equation (6.6) into this new equation,
which can be solved over Ω∗ by using a standard FEM.



6 Finite Element Analysis of Ultralight Metallic Lattices 91

References

[1] G. Allaire. Conception optimale de structure. Mathématiques et Applica-
tions, volume 58. Berlin: Springer, 2007.

[2] S. Arabnejad and D. Pasini. “Mechanical properties of planar lattice
materials via asymptotic homogenization and comparison with alternative
homogenization methods”. International Journal of Mechanical Sciences
77 (2013), 249–262.

[3] B. Hassani and E. Hinton. “A review of homogenization and topology
optimisation. Homogenization theory for media with periodic structure”.
I. Computer and Structures 69:6 (1997), 707–717.

[4] A. Lebée and K. Sab. “Homogenization of a space frame as a thick plate:
Application of the Bending-Gradient theory to a beam lattice”. Computer
and Structures 127 (2013), 88–101.

[5] G.I. Pshenichnov. A Theory of Latticed Plates and Shells. Series on
Advances in Mathematics for Applied Sciences, volume 5. River Edge,
NJ: World Scientific, 1993.

[6] H. Tollenaere and D. Caillerie. “Continuous modeling of lattice structures
by homogenization”. Advances in Engineering Software 29:7-9 (1998),
699–705.

[7] A. Vigliotti, V.S. Deshpande, and D. Pasini. “Non linear constitutive
models for lattice materials”. Journal of the Mechanics and Physics of
Solids 64 (2014), 44–60.

[8] A. Vigliotti and D. Pasini. “Linear multiscale analysis and finite ele-
ment validation of stretching and bending dominated lattice materials”.
Mechanics of Materials 46 (2012), 57–68.

[9] A. Vigliotti and D. Pasini. “Stiffness and strength of tridimensional peri-
odic lattices”. Computer Methods in Applied Mechanics and Engineering
229–232 (2012), 27–43.


	Planning of the Maintenance Outages for a Set of Hydroelectric Units
	Introduction and Context
	High-Level Problem Formulation
	Current Situation
	Problem Structure

	Two Approaches to the Scheduling and Production Problem
	Direct Approach 
	The Decomposition Approach

	Discussion
	References

	Modelling and Specifying Dispersive Laser Cavities
	Background
	Tuneable Lasers
	Wave Breaking

	Problem Statement
	Modelling Efforts
	Hybrid Model
	Non-Dimensionalization
	Problem Restatement
	Stationary Phase

	Results
	Simple Iteration Using an FFT
	Stationary Phase Approximation

	Summary
	Conclusions
	Further Questions

	References

	Optimal Partitioning of Multi-Block Structured Grids
	Background Information
	Defining Objectives and Subproblems of the Project
	Graph Design
	Optimization Algorithms for Cluster Formation
	Multi-Block Reformation
	A Difficulty: The Volume Defined by a Set of Small Blocks Cannot Be Assumed to be a 3D-Polyhedron
	Reduction to the Case Where the Union of Blocks Can Be Considered as a 3D-Polyhedron
	A Simple Greedy Heuristic
	Computational Results

	References
	Appendix

	Visualizing Huge Plots on the Web
	Introduction
	Progressive Loading of 2D Scatter Plots
	Displaying 2D Line Plots
	References

	Lifetime Value in the Bank Industry
	Introduction
	Context
	Problem
	Objectives

	Description of the Data
	Commercial Data Set
	Retail Data Set

	Literature Review
	Methods Considered
	Self-Organizing Maps (SOMs)
	Stepwise Regression
	Principal Component Analysis (PCA)
	Dependent Transition Probabilities through a Logistic Regression
	Product Profile Matching

	References

	Finite Element Analysis of Ultralight Metallic Lattices
	The Problem
	Context
	Project Goal and Research Avenues

	The Team's Results
	Pratt & Whitney Specific Needs
	The Literature
	Examples of Computations for the Full Lattice and the Plate Lattice

	References


