

Water level extremes at ungauged locations along the St. Lawrence fluvial estuary

ECCC S. Innocenti, M. Fortier et al.

ARPI - 13 May 2024

Context

Review the standards for flood mapping and risk area definition

Update flood maps

Context

Water-level extremes along the St. Lawrence River

Need to reproduce the extreme dynamics at the climatological scale

Water-level extremes along the St. Lawrence River

Need to reproduce the extreme dynamics at the climatological scale

Characterize water-level extremes along the St. Lawrence under various climate scenarios

Characterize water-level extremes along the St. Lawrence

Characterize water-level extremes along the St. Lawrence Overall project methodology

- Select the relevant events to be simulated with the hydrodynamic model in the historical climate.
 - \Rightarrow Account for the wide range of extreme characteristics.

- Produce the 2D hydrodynamics simulations [events] and the statistical reconstructions [continuous series] of water levels.
 - \Rightarrow Reproduce all relevant features of the extremes.

- S Extend the hybrid simulation method to future periods.
 - \Rightarrow No observations.

Records at 19 stations

Select the relevant events to be simulated with the hydrodynamic model in the historical climate [appendix].

 \Rightarrow Account for the wide range of extreme characteristics.

Characterize water-level extremes along the St. Lawrence Estimate the events at unsampled locations

Select the relevant events to be simulated with the hydrodynamic model in the historical climate.

 \Rightarrow Account for the wide range of extreme characteristics.

2D water level maps Produce the 2D hydrodynamics simulations [events] and the statistical reconstructions [continuous series] of water levels.

 \Rightarrow Reproduce all relevant features of the extremes.

Statistical models:

- Non-stationary Harmonic Regression
- ◊ Geometrical Interpolator
- Recurrent NN (deep learning)

٥ ...

Characterize water-level extremes along the St. Lawrence Estimate the events at unsampled locations

- Select the relevant events to be simulated with the hydrodynamic model in the historical climate.
 - \Rightarrow Account for the wide range of extreme characteristics.

2D water level maps

- Produce the 2D hydrodynamics simulations [events] and the statistical reconstructions [continuous series] of water levels.
 - \Rightarrow Reproduce all relevant features of the extremes.

- Model evaluation
- Model selection

Statistical models:

- ◊ Non-stationary Harmonic Regression
- ◊ Geometrical Interpolator
- Recurrent NN (deep learning)
- ٥...

Model selection and evaluation

Example: hydrodynamic simulation of an extreme event

ECCC

Model selection and evaluation

Example: hydrodynamic simulation of an extreme event

ECCC

Characterize water-level extremes along the St. Lawrence Estimate the events at unsampled locations

 \Rightarrow Account for the wide range of extreme characteristics.

2D water level maps

- Produce the 2D hydrodynamics simulations [events] and the statistical reconstructions [continuous series] of water levels.
 - \Rightarrow Reproduce all relevant features of the extremes.

Second problem question

Provided data Can we define one/some event summary statistic(s) that can be used to evaluate the simulations [unsampled locations]?

3 simulations [events]: 2D water levels continuous reconstructions at 4 stations

Problem statement

O How could one summarize the various characteristics of local extreme events and assess the dominant event types and features at unsampled locations?

② Can we use the defined event summary statistic(s) to evaluate the simulations and reconstruction?

> ⇒ Define an algorithm or a set of measures to summarize the event features and evaluate the quality of the reconstructions.

Water level extremes in the St. Lawrence

Appendix

Detrended hourly water levels (20-yr moving average)

Detrended hourly water levels (20-yr moving average)

Threshold selection: ~ 1 extreme / yr and stability of GPD parameters

Water level extremes in the St. Lawrence

Detrended hourly water levels (20-yr moving average)

- Threshold selection: ~ 1 extreme / yr and stability of GPD parameters
- Relative drop: at least 2/3 of peak

Detrended hourly water levels (20-yr moving average)

- Threshold selection: ~ 1 extreme / yr and stability of GPD parameters
- Relative drop: at least 2/3 of peak
- Minimum inter-event time: 27h + ½ of left event duration