

Water level extremes at ungauged locations along the St. Lawrence fluvial estuary

ECCC problem

ARPI - 20 May 2024

Water-level extremes along the St. Lawrence River

Interaction of

- River discharge
- ◊ Tides
- Ocean variability
- Storm surges and winds
- Seasonal processes

* Summarize the characteristics of the extreme events * e.g., for descriptive and model verification purposes

Water-level extremes along the St. Lawrence River

Interaction of

- River discharge
- ◊ Tides
- ◊ Ocean variability
- Storm surges and winds
- Seasonal processes

 \star Summarize the characteristics of the extreme events \star e.g., for descriptive and model verification purposes

Problem solving: workflow

Obj. Define a set of measures that summarize the (dominant) event characteristics and can be compared between the simulated and observed series

Feature Engineering: define new water levels statistics

Water level variability (signal amplitude) combined with flow direction:

- Number of hours before/after consecutive events
- O Number of stations in the event
- **§** Event direction: upstream \rightarrow downstream, or vice-versa
- Standardized peakness in 27-hr window around the peak:
 - Relative peak in time interval
 - Peak intensity relative to events at station

Feature Engineering: define new water levels statistics

Water level variability (signal amplitude) combined with flow direction:

- Number of hours before/after consecutive events
- 2 Number of stations in the event
- **③ Event direction**: upstream \rightarrow downstream, or vice-versa
- Standardized peakness in 27-hr window around the peak:
 - Relative peak in time interval
 - Peak intensity relative to events at station

Similar statistics were computed for 5 covariates representing downstream and upstream signals influencing water levels.

Feature Engineering: simplified dynamic model coefficients

Coefficients of a discrete model based on differential equations using one upstream and downstream station (Sorel and Sept-Iles).

 $WL(t) = \alpha + \beta WL_D(t - \tau_D) + \gamma WL_U(t - \tau_U)$

Feature Engineering: from local to regional extreme events

- The frequency of long-lasting events increases over the period
- The complexity is correlated with the event amplitude.

Clustering of events

- We evaluated a variety of clustering methods, e.g. hierarchical Clustering, K-means, Gaussian mixture models (GMM), and vine copula mixture models
 - GMM is best in terms of explainability while providing very sharp cluster assignments
- We find 3 mixture components with very good separation in feature space and are reasonably interpretable.

Separation of Components

Relative Event Probabilities by Location

ARPI 2024

Model assessment

Obj. We want to select and rank statistical/hydrodynamic models based on their ability to reproduce extremes.

• We compare series with observations and look at their differences.

Observations versus model output

There are features (systematic bias, phase shift, etc.) inherent to some models. These can be characterized using suitable summary statistics.

Errors above are due to phase-shift of the series (horizontal translation) and asymmetry of the original signal.

ECCC

Water level extremes in the St. Lawrence

ARPI 2024

Measurements

We define various metrics based solely on summary statistics of series and simulations.

- $\bullet\,$ location and scale transformation minimizing the L_1 distance
- measure of phase-shift between series
- heteroscedasticity (variance increasing with measurements)
- asymmetry of variance for positive/negative values

Clear spatial gradient (upstream ightarrow downstream) for the metric values.

Model assessment using covariates

- **1** 55 features were obtained for each extreme local event.
- 2 We use principal component analysis for dimension reduction
 - ▶ 5 first principal components explain more than 70% of the variability.
 - Apply the same linear combinations to features of simulated extremes.
- We compute the difference between each of the first 5 principal component (Δ PC) for simulated versus observed.
- We then compute the L_2 distance between the 5 vectors of Δ PC.

- $\Delta PC_1 = 0.08$
- Δ PC₂ = -0.67
- $\Delta PC_3 = -1.60$
- $\Delta PC_4 = -0.35$
- $\Delta PC_5 = 2.00$
- *L*₂ distance = 2.67

ARPI 202

Dashboard

Presents a quick view of the extreme event characteristics.

- Python: dash, pandas, plotly
- Callback functions to animate and update datasets used in the app
- Parallelizable with Python library dask
- Compatible for customization with Markdown and CSS files

Check it out: https://ipsw24-py-67a531435269.herokuapp.com/

Dashboard

Presents a quick view of the extreme event characteristics.

- Python: dash, pandas, plotly
- Callback functions to animate and update datasets used in the app
- Parallelizable with Python library dask
- Compatible for customization with Markdown and CSS files

Check it out: https://ipsw24-py-67a531435269.herokuapp.com/

Merci pour cette opportunité