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Water-level extremes along the St. Lawrence River

Complex
spatio-temporal

structure

Interaction of

⋄ River discharge

⋄ Tides

⋄ Ocean variability

⋄ Storm surges
and winds

⋄ Seasonal
processes

[Plain d’action St. Laurent]

⋆ Summarize the characteristics of the extreme events ⋆
e.g., for descriptive and model verification purposes
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Problem solving: workflow

Obj. Define a set of measures that summarize the (dominant) event
characteristics and can be compared between the simulated and observed series
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Feature Engineering: define new water levels statistics
Water level variability (signal amplitude) combined with flow direction:

1 Number of hours before/after consecutive events

2 Number of stations in the event

3 Event direction: upstream → downstream, or vice-versa

4 Standardized peakness in 27-hr window around the peak:
⋄ Relative peak in time interval
⋄ Peak intensity relative to events at station

Similar statistics were computed for 5 covariates representing downstream
and upstream signals influencing water levels.
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Feature Engineering: simplified dynamic model coefficients
Coefficients of a discrete model based on differential equations using one
upstream and downstream station (Sorel and Sept-Iles).

WL(t) = α+ β WLD(t − τD) + γ WLU(t − τU)
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Feature Engineering: from local to regional extreme events

Geometrical characterization of flow direction and intensity
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The frequency of long-lasting events increases over the period

The complexity is correlated with the event amplitude.
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Clustering of events

1 We evaluated a variety of clustering methods, e.g. hierarchical
Clustering, K -means, Gaussian mixture models (GMM), and vine
copula mixture models

▶ GMM is best in terms of explainability while providing very sharp
cluster assignments

2 We find 3 mixture components with very good separation in feature
space and are reasonably interpretable.
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Relative Event Probabilities by Location
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Model assessment
Obj. We want to select and rank statistical/hydrodynamic models based
on their ability to reproduce extremes.

We compare series with observations and look at their differences.
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Observations versus model output
There are features (systematic bias, phase shift, etc.) inherent to some
models. These can be characterized using suitable summary statistics.

Homogenized time series
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Errors above are due to phase-shift of the series (horizontal translation) and
asymmetry of the original signal.
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Measurements
We define various metrics based solely on summary statistics of series and
simulations.

location and scale transformation minimizing the L1 distance
measure of phase-shift between series
heteroscedasticity (variance increasing with measurements)
asymmetry of variance for positive/negative values

Clear spatial gradient (upstream → downstream) for the metric values.
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Model assessment using covariates

1 55 features were obtained for each extreme local event.
2 We use principal component analysis for dimension reduction

▶ 5 first principal components explain more than 70% of the variability.
▶ Apply the same linear combinations to features of simulated extremes.

3 We compute the difference between each of the first 5 principal
component (∆ PC) for simulated versus observed.

4 We then compute the L2 distance between the 5 vectors of ∆ PC.

• ∆ PC1 = 0.08

• ∆ PC2 = -0.67

• ∆ PC3 = −1.60

• ∆ PC4 = −0.35

• ∆ PC5 = 2.00

• L2 distance = 2.67
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Dashboard
Presents a quick view of the extreme event characteristics.

Python: dash, pandas, plotly
Callback functions to animate and update datasets used in the app
Parallelizable with Python library dask
Compatible for customization with Markdown and CSS files

Check it out:
https://ipsw24-py-67a531435269.herokuapp.com/

Merci pour cette opportunité
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