Air Canada Cargo Contact Centre Staffing Forecasting

- Ali Barooni (Polytechnique Montreal)
- Pedram Peiro Asfia (HEC Montreal)
- Samah Abdalrhaman (UQAM)
- Samad Farih (Air Canada)
- Vivian Chan (Air Canada)
- Sebastian Cosgrove (Air Canada)
- Janosch Ortmann (UQAM)

Agenda:

- Problem Statement
- Data Description
- Methodology
- Results
- Conclusion

The Problem

Air Canada Cargo Customer Service creates a **one-year staffing schedule** based on historical data for **emails and calls**.

Currently, Air Canada Cargo Customer Service **uses an Excel spreadsheet** to calculate the required number of staff to achieve desired service levels in both **English and French**.

With new channels of communication, we need a solution to estimate the number of staff required to service our customers.

Problem Statement:

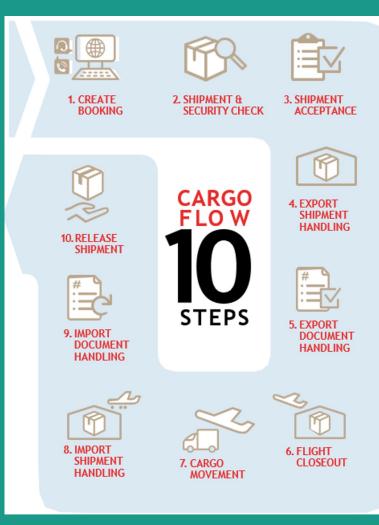
Goals

Create a model for **estimating required staffing** based on contact volumes, considering service level requirements, language needs, and current staffing levels.

Goals:

- Consider service level requirements
- Account for language requirements (English/French)
- Incorporate current staffing levels

Subproblems:

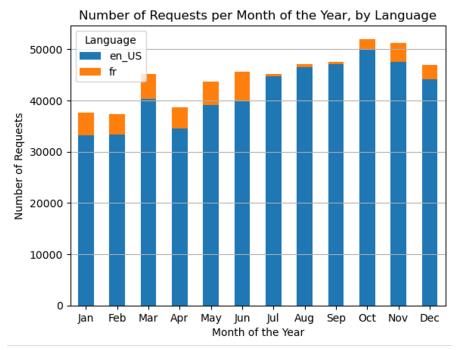

- Forecasting number of required staffing
- Optimisation of the schedule based on the Forecast

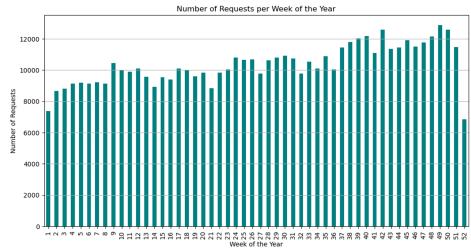
Datasets Description

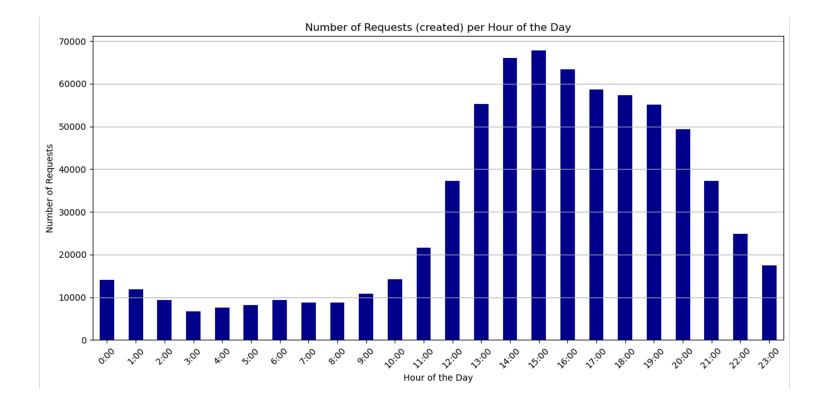
We have four main datasets:

- CASES / all cases : Voice calls + E-mails
- VoiceCallComplete : More detail about voice calls
- AWSConnectData : Performance of agents
- AWB : Airway bills

Data preprocessing steps taken (cleaning, merging datasets, etc.)

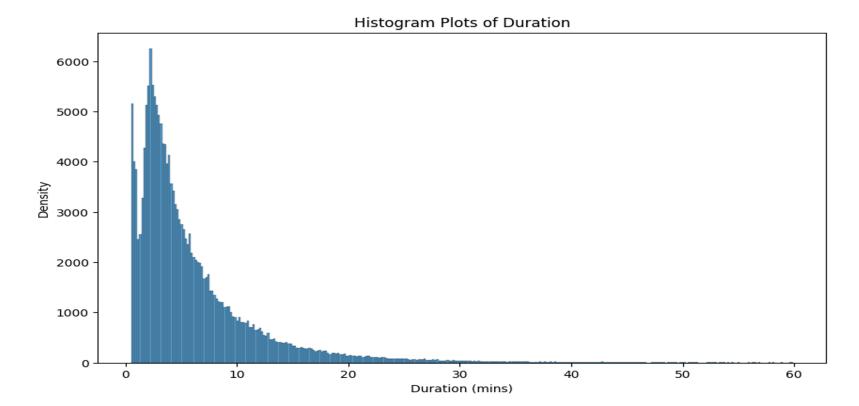

Methodology


- Descriptive Analysis
- Forecasting
- Optimisation


- 15 months of data: January 2023 April 2024
- Calls and emails
- Languages: English and French
- Also have number of **airway bills** (cargo contracts) per month

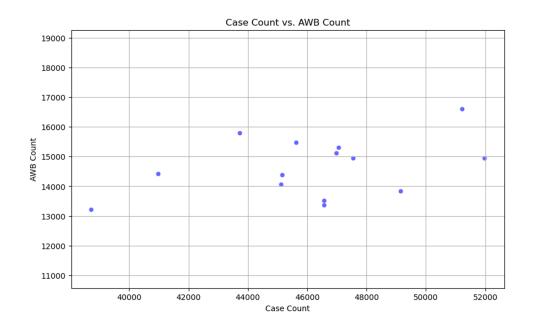
Requests by week and month

Requests across the day

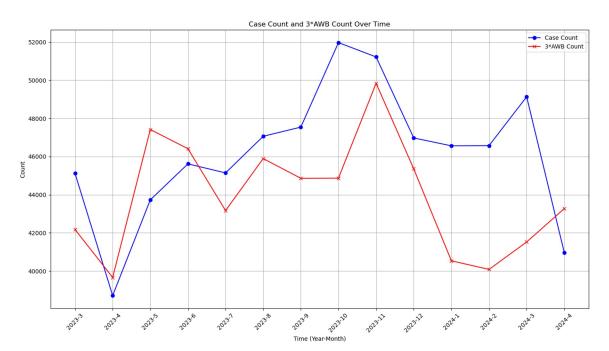


Requests across the week

4000 Number of Requests 3000 2000 1000 Mon Tue Wed Thu Fri Sat Sun Weekday

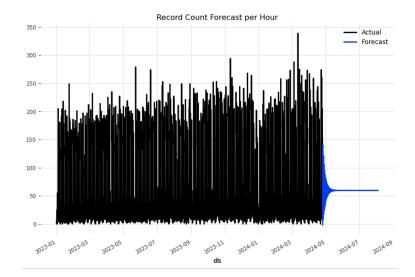

Distribution of Requests per Weekday Over Multiple Weeks

Work time required per request


Correlation requests / airway bills

There is a positive correlation (0.4) between airway bills and requests

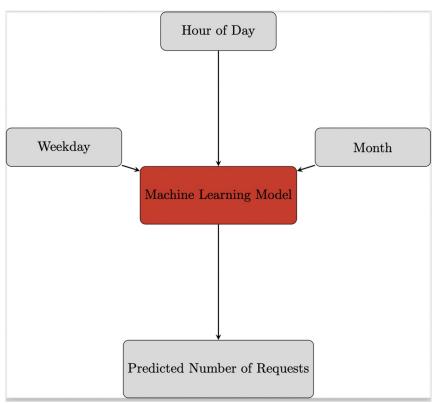
Correlation requests / airway bills


There is a positive correlation (0.4) between airway bills and requests

Forecasting Challenge

Shifts are only chosen once per year!

- We need to predict demand for the entire year ahead
- So we can't use autocorrelated / recurrent models (errors will accumulate!)


Forecasting Challenge

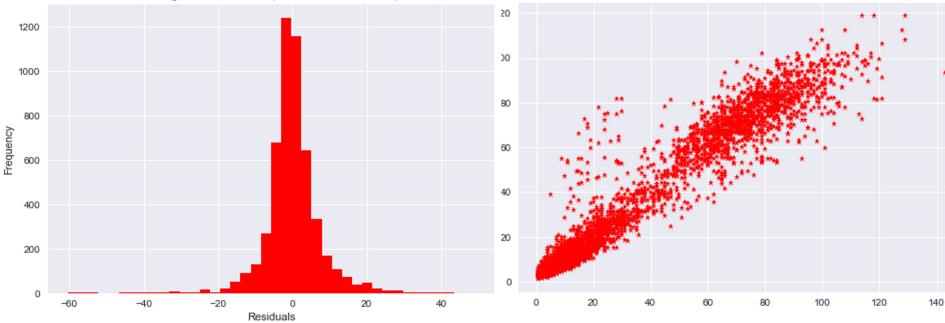
Shifts are only chosen once per year!

- How to evaluate? We only have 15 months of data!
- Our solution: split into train/test set as follows:

1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

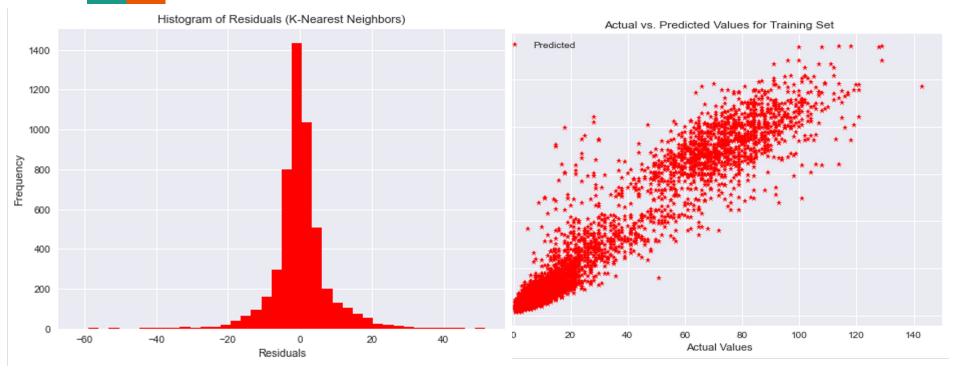
Forecasting

Forecasting models used:


- Linear regression model.
- Support Vector Machine model.
- Random Forest Model.
- K-Nearest Neighbors (K-NN) regression model

Where the average of the train set is 27.6

Model	MAE/train	MAE/test
LR	14.8	14.8
SVR	7.2	7.5
RF	4.9	6.4
KNN	5	7



Histogram of Residuals (Random Forest Model)

Random Forest Model

K-Nearest Neighbors (K-NN) regression

Labour Realized Demand

Monday -	3	2	2	3	4	7	15	23	25	26	24	22	22	20	17	13
Tuesday -	2	2	2	2	4	7	13	21	24	25	24	22	23	21	19	14
Wednesday -	2	2	2	2	4	7	13	20	23	24	22	22	22	22	19	14
Thursday -	2	2	2	2	4	7	13	20	23	24	22	22	22	20	19	14
Friday -	2	2	2	2	4	7	14	20	23	24	23	22	22	21	18	13
Saturday -	1	1	1	1	2	3	4	5	6	6	6	6	6	6	5	5
Sunday -	1	1	1	1	2	3	4	5	5	6	6	5	5	5	5	5
	- Ø	1	۰ ج	۰ ٥	\$	\$	\$	' -∻ ∺∙	~∽ our	\$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$	~ ~	\$	- 02	ŵ

Minimise the number of shifts required

Subject to covering all requests by language (EN/FR)

- Assume that every needs to be answered within 1 hour
- Assume that every needs take about <u>10 minutes</u> to be answered
- Assume that average need of the past year repeats itself
- Higher cost for bilingual staff and full time staff

Scheduling for Monday

Hour	Total Demand	Total in Office	English FT Start	English PT Start	Bilingual FT Start	Bilingual PT Start
6	3	3			3	
7	2	1				
8	2	1				
9	3	1				
10	4	8		1		4
11	7	8				
12	15	15			3	4
13	23	23		1	4	3
14	25	26			6	
15	26	26				
16	24	28				7
17	22	28				
18	22	24				
19	20	20				
20	17	17				
21	13	13				

Scheduling for Saturday

Hour	Total Demand	Total in Office	English FT Start	English PT Start	Bilingual FT Start	Bilingual PT Start
6	1	1			1	
7	1	1				
8	1	1				
9	1	1				
10	2	1				1
11	3	1				2
12	4	4				
13	5	5			1	
14	6	6			2	
15	6	6				
16	6	8				3
17	6	6				
18	6	6				
19	6	6				
20	5	6				
21	5	5				

- A relatively simple model can predict the **demand** quite well
- Many simplifying assumptions for the optimisation model
- Optimisation model should be viewed as "work in progress"

Next steps

- Integrate prediction and optimisation models
 - Requires stochastic/robust/chance constraint programming
- Train model on more data (2, 3, ... years)
- Remove simplifying assumptions
 - Consider a realistic ratio between Full-time & Part-time employee
 - Consider a realistic ratio between bilingual & monolingual employee
 - Fair allocation to each employee and having job rotation

Questions?