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Overview

In this talk I want to discuss the connection between the
representation theory of the quantum affine algebra associated to An,
the representation theory of GLn(F ) where F is a local
non–Archimedean field and cluster algebras.

The connection with p–adic groups has been known for a long time
and it goes through an affine Schur–Weyl duality result [C-Pressley,
96, Ginzburg-Kapranov-Vasserot 97] between representations of
quantum affine An and the affine Hecke algebras. But the subjects
until fairly recently developed independently of each other, but often
in identical ways.

A further link between these subjects is through the notion of
monodial categorification introduced by Hernandez and Leclerc.
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A parametrization of irreducible representations

All we really need to know about quantum affine algebras for this
talk is that they are Hopf algebras.

We are going to be interested in their finite–dimensional
representations. The Hopf structure guarantees that the
corresponding category F is a rigid tensor category and so we have
the corresponding Grothendieck ring, Ko(F).

This ring has a basis given by the isomorphism classes of irreducible
modules. An old result with Pressley says that the index set for the
isomorphism classes are given by Drinfeld polynomials. Equivalently,
one thinks of this set as monoid on generators ωi,a where i ∈ [1, n]
and a ∈ C∗.
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A parametrization of irreducible representations

In the case of GLn(F ) the parametrization of irreducible smooth
representations (with certain nice properties) is given by the
Zelevinsky multi–segments. This is just a collection of intervals
[i1, j1], · · · [ir, jr] with is, js ∈ Z for all s ∈ [1, r].

Each of these intervals determines the character det(j+i)/2 of
GLj−i+1(F ). The irreducible module determined by the
multisegment is the socle of the module for GLn, n =

∑r
s=1 js − is

induced from the parabolic subgroup, GLj1−i1+1 × · · · ×GLjr−ir+1.
In the literature they work with the monoid given by the segments.
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A translation

It turns out that the two monoids are the same if we impose an
integrality condition. Namely we let P+ be the monoid generated by
elements ωi,a with i ∈ [1, n], a ∈ Z and a− i ∈ 2Z.

Then one has a morphism of monoids,

ωi,a → 1

2
[a− i− 1, a+ i+ 1].

It turns out now, that it is really more convenient to work with the
multi-segment language even for quantum affine algebras.
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An example

The representation of the quantum affine algebra associated to ωi,a

is called fundamental.

If we take the tensor product V (ωi,a)⊗ V (ωj,b) one wants to know
necessary and sufficient conditions for it to be reducible.

In the language of Drinfeld polynomials the condition is that

b− a = i+ j − 2p, 0 ≤ p < min{i, j}.

If we translate to the language of intervals lets say they are [i1, j1]
and [i2, j2] then this condition just becomes that the intervals
overlap, i1 < i2 ≤ j1 < j2 or i2 < i1 ≤ j1 <2 which is much more
pleasant to work with!
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An example

Continuing the example, it is known that if V (ωi,a)⊗ V (ωj,b) is
reducible then it has length two.

In the language of intervals it is very easy to describe the
components; one of them is the irreducible module associated to the
product V (ωi1,j1ωi2,j2) and the other is V (ωi1,j2)⊗ V (ωi2,j1).

So from now on I am going to use the parametrization of irreducibles
in terms of intervals and the elements ωi,j .
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Standard modules

Given ωi1,j1 · · ·ωir,jr in both theories one has the notion of a
standard module or Weyl module. These are universal modules and
have the irreducible as a simple quotient.

In the case of quantum affine algebras the standard module is given
by generators and relations and can be shown [C,
Varagnolo-Vasserot, Akasaka-Kashiwara] to be a tensor product of
the fundamental modules taken in a specific order.

In the case of p–adic groups these are the modules obtained by
parabolic induction.

All these results were being proved around 2000 completely
independently.
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Kirillov–Reshetikhin and Speh modules

Among the best studied modules in the theory of quantum affine
algebras are the Kirillov–Reshetikhin modules introduced in 1987.
They arose in the context of their work on integrable systems and
are associated with the following elements of P+

ωi,jωi+1,j+1 · · ·ωi+r,j+r, r ≥ 0.

The associated modules for GlN were studied by Speh in 1981 in the
context of discrete series representations and are now known in the
p–adic world as Speh modules.

Both families of modules have played a very important role in the
independent development of their respective subjects.
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Snakes and Ladders

Around 2010, Mukhin–Young defined a family of modules that they
called snake modules.

In 2014 Lapid and Minguez studied ladder reppresentations of GlN .

In both case these are modules associated with an ordered
multisegment

[i1, j1], · · · , [ir, jr],

with i1 < · · · < ir and j1 < · · · < jr.

Some of the results they established, by obviously very different
methods are identical and one can be deduced from the other by
affine Schur Weyl duality.

Vyjayanthi Chari



Snakes and Ladders

Around 2010, Mukhin–Young defined a family of modules that they
called snake modules.

In 2014 Lapid and Minguez studied ladder reppresentations of GlN .

In both case these are modules associated with an ordered
multisegment

[i1, j1], · · · , [ir, jr],

with i1 < · · · < ir and j1 < · · · < jr.

Some of the results they established, by obviously very different
methods are identical and one can be deduced from the other by
affine Schur Weyl duality.

Vyjayanthi Chari



Snakes and Ladders

Around 2010, Mukhin–Young defined a family of modules that they
called snake modules.

In 2014 Lapid and Minguez studied ladder reppresentations of GlN .

In both case these are modules associated with an ordered
multisegment

[i1, j1], · · · , [ir, jr],

with i1 < · · · < ir and j1 < · · · < jr.

Some of the results they established, by obviously very different
methods are identical and one can be deduced from the other by
affine Schur Weyl duality.

Vyjayanthi Chari



Snakes and Ladders

Around 2010, Mukhin–Young defined a family of modules that they
called snake modules.

In 2014 Lapid and Minguez studied ladder reppresentations of GlN .

In both case these are modules associated with an ordered
multisegment

[i1, j1], · · · , [ir, jr],

with i1 < · · · < ir and j1 < · · · < jr.

Some of the results they established, by obviously very different
methods are identical and one can be deduced from the other by
affine Schur Weyl duality.

Vyjayanthi Chari



A new bridge

This came through cluster algebras and the work of Hernandez and
Leclerc on monoidal categorification. Consider the following quiver

ω−1,1

tt **
ω−1,0

**

ω−2,1

tt
ω−1,1ω−2,−0

OO

tt **
ω−1,0ω−2,−1

OO

**

ω−2,1ω3−,0

OO

tt
ω−1,1ω−2,0ω−1,−3

OO

))uu
ω1,−1ω1,−3ω1,−5

OO

... ω3,−1ω3,−3ω3,−5

OO

...
...
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Monoidal Categorification

Hernandez and Leclerc started with this quiver, the initial seed are
the KR–modules, lets call this A(Q,x)

They proved that as you mutated this quiver you got all the
Kirillov–Reshetikhin modules. It was shown by [Duan et.al] that the
snake modules also appear as cluster variables.

More precisely they showed that there is a subcategory of K0(F) and
and injective map A(Q,x) → K0(F).

But the image of a cluster variable or a cluster monomial are not
known in general.

More precisely suppose we take a module in F with the correct
restrictions. Is it the image of a cluster variable?

Do cluster monomials map to irreducible representations?

Vyjayanthi Chari



Monoidal Categorification

Hernandez and Leclerc started with this quiver, the initial seed are
the KR–modules, lets call this A(Q,x)

They proved that as you mutated this quiver you got all the
Kirillov–Reshetikhin modules. It was shown by [Duan et.al] that the
snake modules also appear as cluster variables.

More precisely they showed that there is a subcategory of K0(F) and
and injective map A(Q,x) → K0(F).

But the image of a cluster variable or a cluster monomial are not
known in general.

More precisely suppose we take a module in F with the correct
restrictions. Is it the image of a cluster variable?

Do cluster monomials map to irreducible representations?

Vyjayanthi Chari



Monoidal Categorification

Hernandez and Leclerc started with this quiver, the initial seed are
the KR–modules, lets call this A(Q,x)

They proved that as you mutated this quiver you got all the
Kirillov–Reshetikhin modules. It was shown by [Duan et.al] that the
snake modules also appear as cluster variables.

More precisely they showed that there is a subcategory of K0(F) and
and injective map A(Q,x) → K0(F).

But the image of a cluster variable or a cluster monomial are not
known in general.

More precisely suppose we take a module in F with the correct
restrictions. Is it the image of a cluster variable?

Do cluster monomials map to irreducible representations?

Vyjayanthi Chari



Monoidal Categorification

Hernandez and Leclerc started with this quiver, the initial seed are
the KR–modules, lets call this A(Q,x)

They proved that as you mutated this quiver you got all the
Kirillov–Reshetikhin modules. It was shown by [Duan et.al] that the
snake modules also appear as cluster variables.

More precisely they showed that there is a subcategory of K0(F) and
and injective map A(Q,x) → K0(F).

But the image of a cluster variable or a cluster monomial are not
known in general.

More precisely suppose we take a module in F with the correct
restrictions. Is it the image of a cluster variable?

Do cluster monomials map to irreducible representations?

Vyjayanthi Chari



Monoidal Categorification

Hernandez and Leclerc started with this quiver, the initial seed are
the KR–modules, lets call this A(Q,x)

They proved that as you mutated this quiver you got all the
Kirillov–Reshetikhin modules. It was shown by [Duan et.al] that the
snake modules also appear as cluster variables.

More precisely they showed that there is a subcategory of K0(F) and
and injective map A(Q,x) → K0(F).

But the image of a cluster variable or a cluster monomial are not
known in general.

More precisely suppose we take a module in F with the correct
restrictions. Is it the image of a cluster variable?

Do cluster monomials map to irreducible representations?

Vyjayanthi Chari



Monoidal Categorification

Hernandez and Leclerc started with this quiver, the initial seed are
the KR–modules, lets call this A(Q,x)

They proved that as you mutated this quiver you got all the
Kirillov–Reshetikhin modules. It was shown by [Duan et.al] that the
snake modules also appear as cluster variables.

More precisely they showed that there is a subcategory of K0(F) and
and injective map A(Q,x) → K0(F).

But the image of a cluster variable or a cluster monomial are not
known in general.

More precisely suppose we take a module in F with the correct
restrictions. Is it the image of a cluster variable?

Do cluster monomials map to irreducible representations?
Vyjayanthi Chari



Another translation

To answer these questions one first has to understand what
properties it is reasonable to expect a module to have to be the
image of a cluster variable.

Cluster variable are indivisble, this means that the module should
have a similar property.

That property is called prime: namely the module cannot be written
as a tensor product of two other modules in a non–trivial way.

One knows also that any power of a cluster variable is a cluster
monomial. So then one also wants the module to be such that any
tensor power is irreducible. Such modules are called real.
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Prime and Real representations

These questions have been studied for quantum affine algebras and
GLN (F ). In the latter subject the representations are said to be
square irreducible.

Essentially, it is this concept of real that made one recall the
connections between the two theories.

A module is called imaginary if its tensor square is reducible. This
notion goes back to Leclerc and his counter example to a conjecture
of Berenstein–Zelevinsky on dual canonical basis. Leclerc gave a
single example in A5of an imaginary modules which proved that such
modules existed in An, n ≥ 5.

Vyjayanthi Chari



Prime and Real representations

These questions have been studied for quantum affine algebras and
GLN (F ). In the latter subject the representations are said to be
square irreducible.

Essentially, it is this concept of real that made one recall the
connections between the two theories.

A module is called imaginary if its tensor square is reducible. This
notion goes back to Leclerc and his counter example to a conjecture
of Berenstein–Zelevinsky on dual canonical basis. Leclerc gave a
single example in A5of an imaginary modules which proved that such
modules existed in An, n ≥ 5.

Vyjayanthi Chari



Prime and Real representations

These questions have been studied for quantum affine algebras and
GLN (F ). In the latter subject the representations are said to be
square irreducible.

Essentially, it is this concept of real that made one recall the
connections between the two theories.

A module is called imaginary if its tensor square is reducible. This
notion goes back to Leclerc and his counter example to a conjecture
of Berenstein–Zelevinsky on dual canonical basis. Leclerc gave a
single example in A5of an imaginary modules which proved that such
modules existed in An, n ≥ 5.

Vyjayanthi Chari



Prime representations

Lots of examples of prime representations are known; for instance
the Kirillov–Reshetikhin modules, snake modules of Mukhin–Young.

In the case of quantum affine A1 a classification of prime modules
was proved in [C-Pressley, 90], they are just the KR–modules.

In all other cases, one just has a collection of examples but no
conceptual understanding of what these examples have in common.

These examples do share in common is that they are real. Leclerc’s
example shows that imaginary modules could be prime. S

All finite dimensional modules of quantum affine A1 are real.

Vyjayanthi Chari



Prime representations

Lots of examples of prime representations are known; for instance
the Kirillov–Reshetikhin modules, snake modules of Mukhin–Young.

In the case of quantum affine A1 a classification of prime modules
was proved in [C-Pressley, 90], they are just the KR–modules.

In all other cases, one just has a collection of examples but no
conceptual understanding of what these examples have in common.

These examples do share in common is that they are real. Leclerc’s
example shows that imaginary modules could be prime. S

All finite dimensional modules of quantum affine A1 are real.

Vyjayanthi Chari



Prime representations

Lots of examples of prime representations are known; for instance
the Kirillov–Reshetikhin modules, snake modules of Mukhin–Young.

In the case of quantum affine A1 a classification of prime modules
was proved in [C-Pressley, 90], they are just the KR–modules.

In all other cases, one just has a collection of examples but no
conceptual understanding of what these examples have in common.

These examples do share in common is that they are real. Leclerc’s
example shows that imaginary modules could be prime. S

All finite dimensional modules of quantum affine A1 are real.

Vyjayanthi Chari



Prime representations

Lots of examples of prime representations are known; for instance
the Kirillov–Reshetikhin modules, snake modules of Mukhin–Young.

In the case of quantum affine A1 a classification of prime modules
was proved in [C-Pressley, 90], they are just the KR–modules.

In all other cases, one just has a collection of examples but no
conceptual understanding of what these examples have in common.

These examples do share in common is that they are real. Leclerc’s
example shows that imaginary modules could be prime. S

All finite dimensional modules of quantum affine A1 are real.

Vyjayanthi Chari



Prime representations

Lots of examples of prime representations are known; for instance
the Kirillov–Reshetikhin modules, snake modules of Mukhin–Young.

In the case of quantum affine A1 a classification of prime modules
was proved in [C-Pressley, 90], they are just the KR–modules.

In all other cases, one just has a collection of examples but no
conceptual understanding of what these examples have in common.

These examples do share in common is that they are real. Leclerc’s
example shows that imaginary modules could be prime. S

All finite dimensional modules of quantum affine A1 are real.

Vyjayanthi Chari



Real representations

Here in the case of GLn(F ) Minguez and Lapid (in 2017-2018) gave
a sufficient condition for a module to be real. Basically it is a
combinatorial condition on the collection of multisegments.

Using their conditions one could write down more examples of
imaginary modules.

But it is far from being all and since the rank bumps up when using
Schur Weyl duality, it left open the question whether imaginary
modules existed in A2 or A3! It is not easy to generate examples
from their restrictions, checking the combinatorial conditions hold is
not trivial.
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Imaginary modules through KR–modules

I now want to talk about some recent joint work with Brito.

We were interested in working towards a classification of prime
representations and producing new families of prime representations.

And in trying to give families of examples of imaginary modules, i.e.,
give explicit formulae for their Drinfeld polynomials.

And both of these came from generalizing the definition of
KR–modules.
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Generalized KR–modules

Recall that the KR–modules are indexed by elements of the following
kind:

ωi,jωi+1,j+1 · · ·ωi+r,j+r.

We started by asking what would happen if we allowed different
kinds of increments in this,

ωi,jωi+2,j+2,ωi+6,j+6..

These are more general ladder representations. However if one is not
careful with the choice of increments then the module will not be
prime.
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Higher rank KR–modules

A higher rank KR–module is given by aan element of the form

ωi+r1,j+r1ωi+r2,j+r2 · · ·ωi+rℓ,j+rℓ

where

i+ rp < i+ rp+1 ≤ j + rp < j + rp+1, p ∈ [1, ℓ− 1].

In other words the tensor product of every consecutive pair of
fundamental representations is reducible.

The work of Mukhin–Young gives us that these modules are prime,
but in this case it is not hard to give a direct proof.
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A classification result and a tensor product decomposition

Theorem[Brito-C]
Suppose that we are given an element

ωℓ1,m1 · · ·ωℓr,mr ∈ P+

with ℓ1 −m1 = · · · = ℓr −mr. Then the corresponding module can
be written uniquely as a tensor product of generalized KR–modules.

This theorem is an exact analog of my old result with Pressley for A1

which was proved in 1990. It is really the first classification result
since then and requires a lot of machinery that had been developed
in between; for instance the work of [Frenkel-Reshetikhin],
[Mukhin-Young].

The generalized KR–modules are known by the work of [Duan et. al]
to be the images of cluster variables in the H-L picture.
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Imaginary modules

Next we tried to understand the tensor product of generalized
KR–modules, questions of reducibility, Jordan–Holder series and so
on.

Some of this is not known even for KR–modules and this is where we
had a nice surprise and recovered Leclerc’s example of an imaginary
module in a completely different way.

Vyjayanthi Chari



Imaginary modules

Next we tried to understand the tensor product of generalized
KR–modules, questions of reducibility, Jordan–Holder series and so
on.

Some of this is not known even for KR–modules and this is where we
had a nice surprise and recovered Leclerc’s example of an imaginary
module in a completely different way.

Vyjayanthi Chari



Leclerc’s example

Let us consider the following tensor product of KR–modules for A4.

V := V (ω1,3ω0,2)⊗ V (ω−1,1ω−2,0).

Then it is well–known that the trivial module sits inside V ; by a
result of Kashiwara et al. the trivial is in fact the socle of V . Since
we are in small rank it it is not hard to see that there is one more
JH–component namely M := V (ω1,3ω1,2ω−1,2ω−2,0).

And this was precisely the module that Leclerc had shown was
imaginary.

But one can now give a very different proof of this. Namely there is
a canonical map

∗V ⊗ V → V → V (ω1,3ω0,2ω−1,1ω−2,0) → 0

and the image of M ⊗M is non–zero.
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Imaginary modules

Once we understood the example and its proof, the result we wanted
was clear, the proof was another matter.

Theorem [Brito-C]
The tensor product of a generalized KR–module with its dual
contains an imaginary module whose Drinfeld polynomial can be
written explicitly.

These examples in general do not fit into the framework of
Lapid–Minguez.
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A final translation

So I want to interpret the result on imaginary modules in the
language of clsuter algebras.

It is well–known that cluster monomials do not span the cluster
algebra.

In our construction, the genralized KR–module and its dual are both
cluster variables and the tensor product correspond to the product of
the cluster variables.

Since the imaginary module appears in the JH–series, it cannot
correspond to any linear combination of cluster monomials.

In other words, this gives an example of a pair of cluster variable
whose product is not in the linear span of cluster monomials.
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