Higher Rank KR-modules, Monoidal Categorification and Imaginary Modules

Vyjayanthi Chari

University of California, Riverside

August 24, 2023

Overview

In this talk I want to discuss the connection between the representation theory of the quantum affine algebra associated to A_{n}, the representation theory of $G L_{n}(F)$ where F is a local non-Archimedean field and cluster algebras.

Overview

In this talk I want to discuss the connection between the representation theory of the quantum affine algebra associated to A_{n}, the representation theory of $G L_{n}(F)$ where F is a local non-Archimedean field and cluster algebras.

The connection with p-adic groups has been known for a long time and it goes through an affine Schur-Weyl duality result [C-Pressley, 96, Ginzburg-Kapranov-Vasserot 97] between representations of quantum affine A_{n} and the affine Hecke algebras. But the subjects until fairly recently developed independently of each other, but often in identical ways.

Overview

In this talk I want to discuss the connection between the representation theory of the quantum affine algebra associated to A_{n}, the representation theory of $G L_{n}(F)$ where F is a local non-Archimedean field and cluster algebras.

The connection with p-adic groups has been known for a long time and it goes through an affine Schur-Weyl duality result [C-Pressley, 96, Ginzburg-Kapranov-Vasserot 97] between representations of quantum affine A_{n} and the affine Hecke algebras. But the subjects until fairly recently developed independently of each other, but often in identical ways.

A further link between these subjects is through the notion of monodial categorification introduced by Hernandez and Leclerc.

A parametrization of irreducible representations

All we really need to know about quantum affine algebras for this talk is that they are Hopf algebras.

A parametrization of irreducible representations

All we really need to know about quantum affine algebras for this talk is that they are Hopf algebras.

We are going to be interested in their finite-dimensional representations. The Hopf structure guarantees that the corresponding category \mathcal{F} is a rigid tensor category and so we have the corresponding Grothendieck ring, $\mathcal{K}_{o}(\mathcal{F})$.

A parametrization of irreducible representations

All we really need to know about quantum affine algebras for this talk is that they are Hopf algebras.

We are going to be interested in their finite-dimensional representations. The Hopf structure guarantees that the corresponding category \mathcal{F} is a rigid tensor category and so we have the corresponding Grothendieck ring, $\mathcal{K}_{o}(\mathcal{F})$.

This ring has a basis given by the isomorphism classes of irreducible modules. An old result with Pressley says that the index set for the isomorphism classes are given by Drinfeld polynomials. Equivalently, one thinks of this set as monoid on generators $\boldsymbol{\omega}_{i, a}$ where $i \in[1, n]$ and $a \in \mathbb{C}^{*}$.

A parametrization of irreducible representations

In the case of $G L_{n}(F)$ the parametrization of irreducible smooth representations (with certain nice properties) is given by the Zelevinsky multi-segments. This is just a collection of intervals $\left[i_{1}, j_{1}\right], \cdots\left[i_{r}, j_{r}\right]$ with $i_{s}, j_{s} \in \mathbb{Z}$ for all $s \in[1, r]$.

A parametrization of irreducible representations

In the case of $G L_{n}(F)$ the parametrization of irreducible smooth representations (with certain nice properties) is given by the Zelevinsky multi-segments. This is just a collection of intervals $\left[i_{1}, j_{1}\right], \cdots\left[i_{r}, j_{r}\right]$ with $i_{s}, j_{s} \in \mathbb{Z}$ for all $s \in[1, r]$.

Each of these intervals determines the character $\operatorname{det}^{(j+i) / 2}$ of $G L_{j-i+1}(F)$. The irreducible module determined by the multisegment is the socle of the module for $G L_{n}, n=\sum_{s=1}^{r} j_{s}-i_{s}$ induced from the parabolic subgroup, $G L_{j_{1}-i_{1}+1} \times \cdots \times G L_{j_{r}-i_{r}+1}$.

A parametrization of irreducible representations

In the case of $G L_{n}(F)$ the parametrization of irreducible smooth representations (with certain nice properties) is given by the Zelevinsky multi-segments. This is just a collection of intervals $\left[i_{1}, j_{1}\right], \cdots\left[i_{r}, j_{r}\right]$ with $i_{s}, j_{s} \in \mathbb{Z}$ for all $s \in[1, r]$.

Each of these intervals determines the character $\operatorname{det}^{(j+i) / 2}$ of $G L_{j-i+1}(F)$. The irreducible module determined by the multisegment is the socle of the module for $G L_{n}, n=\sum_{s=1}^{r} j_{s}-i_{s}$ induced from the parabolic subgroup, $G L_{j_{1}-i_{1}+1} \times \cdots \times G L_{j_{r}-i_{r}+1}$. In the literature they work with the monoid given by the segments.

A translation

It turns out that the two monoids are the same if we impose an integrality condition. Namely we let \mathcal{P}^{+}be the monoid generated by elements $\boldsymbol{\omega}_{i, a}$ with $i \in[1, n], a \in \mathbb{Z}$ and $a-i \in 2 \mathbb{Z}$.

A translation

It turns out that the two monoids are the same if we impose an integrality condition. Namely we let \mathcal{P}^{+}be the monoid generated by elements $\boldsymbol{\omega}_{i, a}$ with $i \in[1, n], a \in \mathbb{Z}$ and $a-i \in 2 \mathbb{Z}$.

Then one has a morphism of monoids,

$$
\boldsymbol{\omega}_{i, a} \rightarrow \frac{1}{2}[a-i-1, a+i+1] .
$$

A translation

It turns out that the two monoids are the same if we impose an integrality condition. Namely we let \mathcal{P}^{+}be the monoid generated by elements $\boldsymbol{\omega}_{i, a}$ with $i \in[1, n], a \in \mathbb{Z}$ and $a-i \in 2 \mathbb{Z}$.

Then one has a morphism of monoids,

$$
\boldsymbol{\omega}_{i, a} \rightarrow \frac{1}{2}[a-i-1, a+i+1] .
$$

It turns out now, that it is really more convenient to work with the multi-segment language even for quantum affine algebras.

An example

The representation of the quantum affine algebra associated to $\boldsymbol{\omega}_{i, a}$ is called fundamental.

An example

The representation of the quantum affine algebra associated to $\boldsymbol{\omega}_{i, a}$ is called fundamental.

If we take the tensor product $V\left(\boldsymbol{\omega}_{i, a}\right) \otimes V\left(\boldsymbol{\omega}_{j, b}\right)$ one wants to know necessary and sufficient conditions for it to be reducible.

An example

The representation of the quantum affine algebra associated to $\boldsymbol{\omega}_{i, a}$ is called fundamental.

If we take the tensor product $V\left(\boldsymbol{\omega}_{i, a}\right) \otimes V\left(\boldsymbol{\omega}_{j, b}\right)$ one wants to know necessary and sufficient conditions for it to be reducible.

In the language of Drinfeld polynomials the condition is that

$$
b-a=i+j-2 p, \quad 0 \leq p<\min \{i, j\} .
$$

An example

The representation of the quantum affine algebra associated to $\boldsymbol{\omega}_{i, a}$ is called fundamental.

If we take the tensor product $V\left(\boldsymbol{\omega}_{i, a}\right) \otimes V\left(\boldsymbol{\omega}_{j, b}\right)$ one wants to know necessary and sufficient conditions for it to be reducible.

In the language of Drinfeld polynomials the condition is that

$$
b-a=i+j-2 p, \quad 0 \leq p<\min \{i, j\} .
$$

If we translate to the language of intervals lets say they are $\left[i_{1}, j_{1}\right]$ and $\left[i_{2}, j_{2}\right]$ then this condition just becomes that the intervals overlap, $i_{1}<i_{2} \leq j_{1}<j_{2}$ or $i_{2}<i_{1} \leq j_{1}<2$ which is much more pleasant to work with!

An example

Continuing the example, it is known that if $V\left(\boldsymbol{\omega}_{i, a}\right) \otimes V\left(\boldsymbol{\omega}_{j, b}\right)$ is reducible then it has length two.

An example

Continuing the example, it is known that if $V\left(\boldsymbol{\omega}_{i, a}\right) \otimes V\left(\boldsymbol{\omega}_{j, b}\right)$ is reducible then it has length two.

In the language of intervals it is very easy to describe the components; one of them is the irreducible module associated to the product $V\left(\boldsymbol{\omega}_{i_{1}, j_{1}} \boldsymbol{\omega}_{i_{2}, j_{2}}\right)$ and the other is $V\left(\boldsymbol{\omega}_{i_{1}, j_{2}}\right) \otimes V\left(\boldsymbol{\omega}_{i_{2}, j_{1}}\right)$.

An example

Continuing the example, it is known that if $V\left(\boldsymbol{\omega}_{i, a}\right) \otimes V\left(\boldsymbol{\omega}_{j, b}\right)$ is reducible then it has length two.

In the language of intervals it is very easy to describe the components; one of them is the irreducible module associated to the product $V\left(\boldsymbol{\omega}_{i_{1}, j_{1}} \boldsymbol{\omega}_{i_{2}, j_{2}}\right)$ and the other is $V\left(\boldsymbol{\omega}_{i_{1}, j_{2}}\right) \otimes V\left(\boldsymbol{\omega}_{i_{2}, j_{1}}\right)$.

So from now on I am going to use the parametrization of irreducibles in terms of intervals and the elements $\boldsymbol{\omega}_{i, j}$.

Standard modules

Given $\boldsymbol{\omega}_{i_{1}, j_{1}} \cdots \boldsymbol{\omega}_{i_{r}, j_{r}}$ in both theories one has the notion of a standard module or Weyl module. These are universal modules and have the irreducible as a simple quotient.

Standard modules

Given $\boldsymbol{\omega}_{i_{1}, j_{1}} \cdots \boldsymbol{\omega}_{i_{r}, j_{r}}$ in both theories one has the notion of a standard module or Weyl module. These are universal modules and have the irreducible as a simple quotient.

In the case of quantum affine algebras the standard module is given by generators and relations and can be shown [C, Varagnolo-Vasserot, Akasaka-Kashiwara] to be a tensor product of the fundamental modules taken in a specific order.

Standard modules

Given $\boldsymbol{\omega}_{i_{1}, j_{1}} \cdots \boldsymbol{\omega}_{i_{r}, j_{r}}$ in both theories one has the notion of a standard module or Weyl module. These are universal modules and have the irreducible as a simple quotient.

In the case of quantum affine algebras the standard module is given by generators and relations and can be shown [C,
Varagnolo-Vasserot, Akasaka-Kashiwara] to be a tensor product of the fundamental modules taken in a specific order.

In the case of p-adic groups these are the modules obtained by parabolic induction.

Standard modules

Given $\boldsymbol{\omega}_{i_{1}, j_{1}} \cdots \boldsymbol{\omega}_{i_{r}, j_{r}}$ in both theories one has the notion of a standard module or Weyl module. These are universal modules and have the irreducible as a simple quotient.

In the case of quantum affine algebras the standard module is given by generators and relations and can be shown [C,
Varagnolo-Vasserot, Akasaka-Kashiwara] to be a tensor product of the fundamental modules taken in a specific order.

In the case of p-adic groups these are the modules obtained by parabolic induction.

All these results were being proved around 2000 completely independently.

Kirillov-Reshetikhin and Speh modules

Among the best studied modules in the theory of quantum affine algebras are the Kirillov-Reshetikhin modules introduced in 1987. They arose in the context of their work on integrable systems and are associated with the following elements of \mathcal{P}^{+}

$$
\boldsymbol{\omega}_{i, j} \boldsymbol{\omega}_{i+1, j+1} \cdots \boldsymbol{\omega}_{i+r, j+r}, \quad r \geq 0
$$

Kirillov-Reshetikhin and Speh modules

Among the best studied modules in the theory of quantum affine algebras are the Kirillov-Reshetikhin modules introduced in 1987. They arose in the context of their work on integrable systems and are associated with the following elements of \mathcal{P}^{+}

$$
\boldsymbol{\omega}_{i, j} \boldsymbol{\omega}_{i+1, j+1} \cdots \boldsymbol{\omega}_{i+r, j+r}, \quad r \geq 0
$$

The associated modules for $G l_{N}$ were studied by Speh in 1981 in the context of discrete series representations and are now known in the p-adic world as Speh modules.

Kirillov-Reshetikhin and Speh modules

Among the best studied modules in the theory of quantum affine algebras are the Kirillov-Reshetikhin modules introduced in 1987. They arose in the context of their work on integrable systems and are associated with the following elements of \mathcal{P}^{+}

$$
\boldsymbol{\omega}_{i, j} \boldsymbol{\omega}_{i+1, j+1} \cdots \boldsymbol{\omega}_{i+r, j+r}, \quad r \geq 0
$$

The associated modules for $G l_{N}$ were studied by Speh in 1981 in the context of discrete series representations and are now known in the p-adic world as Speh modules.

Both families of modules have played a very important role in the independent development of their respective subjects.

Snakes and Ladders

Around 2010, Mukhin-Young defined a family of modules that they called snake modules.

Snakes and Ladders

Around 2010, Mukhin-Young defined a family of modules that they called snake modules.

In 2014 Lapid and Minguez studied ladder reppresentations of $G l_{N}$.

Snakes and Ladders

Around 2010, Mukhin-Young defined a family of modules that they called snake modules.

In 2014 Lapid and Minguez studied ladder reppresentations of $G l_{N}$.
In both case these are modules associated with an ordered multisegment

$$
\left[i_{1}, j_{1}\right], \cdots,\left[i_{r}, j_{r}\right]
$$

with $i_{1}<\cdots<i_{r}$ and $j_{1}<\cdots<j_{r}$.

Snakes and Ladders

Around 2010, Mukhin-Young defined a family of modules that they called snake modules.

In 2014 Lapid and Minguez studied ladder reppresentations of $G l_{N}$.
In both case these are modules associated with an ordered multisegment

$$
\left[i_{1}, j_{1}\right], \cdots,\left[i_{r}, j_{r}\right]
$$

with $i_{1}<\cdots<i_{r}$ and $j_{1}<\cdots<j_{r}$.
Some of the results they established, by obviously very different methods are identical and one can be deduced from the other by affine Schur Weyl duality.

A new bridge

This came through cluster algebras and the work of Hernandez and Leclerc on monoidal categorification. Consider the following quiver

Vyjayanthi Chari

Monoidal Categorification

Hernandez and Leclerc started with this quiver, the initial seed are the KR-modules, lets call this $\mathcal{A}(Q, \mathbf{x})$

Monoidal Categorification

Hernandez and Leclerc started with this quiver, the initial seed are the KR-modules, lets call this $\mathcal{A}(Q, \mathbf{x})$

They proved that as you mutated this quiver you got all the Kirillov-Reshetikhin modules. It was shown by [Duan et.al] that the snake modules also appear as cluster variables.

Monoidal Categorification

Hernandez and Leclerc started with this quiver, the initial seed are the KR-modules, lets call this $\mathcal{A}(Q, \mathbf{x})$

They proved that as you mutated this quiver you got all the Kirillov-Reshetikhin modules. It was shown by [Duan et.al] that the snake modules also appear as cluster variables.

More precisely they showed that there is a subcategory of $\mathcal{K}_{0}(\mathcal{F})$ and and injective map $\mathcal{A}(Q, \mathbf{x}) \rightarrow \mathcal{K}_{0}(\mathcal{F})$.

Monoidal Categorification

Hernandez and Leclerc started with this quiver, the initial seed are the KR-modules, lets call this $\mathcal{A}(Q, \mathbf{x})$

They proved that as you mutated this quiver you got all the Kirillov-Reshetikhin modules. It was shown by [Duan et.al] that the snake modules also appear as cluster variables.

More precisely they showed that there is a subcategory of $\mathcal{K}_{0}(\mathcal{F})$ and and injective map $\mathcal{A}(Q, \mathbf{x}) \rightarrow \mathcal{K}_{0}(\mathcal{F})$.

But the image of a cluster variable or a cluster monomial are not known in general.

Monoidal Categorification

Hernandez and Leclerc started with this quiver, the initial seed are the KR-modules, lets call this $\mathcal{A}(Q, \mathbf{x})$

They proved that as you mutated this quiver you got all the Kirillov-Reshetikhin modules. It was shown by [Duan et.al] that the snake modules also appear as cluster variables.

More precisely they showed that there is a subcategory of $\mathcal{K}_{0}(\mathcal{F})$ and and injective map $\mathcal{A}(Q, \mathbf{x}) \rightarrow \mathcal{K}_{0}(\mathcal{F})$.

But the image of a cluster variable or a cluster monomial are not known in general.

More precisely suppose we take a module in \mathcal{F} with the correct restrictions. Is it the image of a cluster variable?

Monoidal Categorification

Hernandez and Leclerc started with this quiver, the initial seed are the KR-modules, lets call this $\mathcal{A}(Q, \mathbf{x})$

They proved that as you mutated this quiver you got all the Kirillov-Reshetikhin modules. It was shown by [Duan et.al] that the snake modules also appear as cluster variables.

More precisely they showed that there is a subcategory of $\mathcal{K}_{0}(\mathcal{F})$ and and injective map $\mathcal{A}(Q, \mathbf{x}) \rightarrow \mathcal{K}_{0}(\mathcal{F})$.

But the image of a cluster variable or a cluster monomial are not known in general.

More precisely suppose we take a module in \mathcal{F} with the correct restrictions. Is it the image of a cluster variable?

Do cluster monomials map to irreducible representations?

Another translation

To answer these questions one first has to understand what properties it is reasonable to expect a module to have to be the image of a cluster variable.

Another translation

To answer these questions one first has to understand what properties it is reasonable to expect a module to have to be the image of a cluster variable.

Cluster variable are indivisble, this means that the module should have a similar property.

That property is called prime: namely the module cannot be written as a tensor product of two other modules in a non-trivial way.

Another translation

To answer these questions one first has to understand what properties it is reasonable to expect a module to have to be the image of a cluster variable.

Cluster variable are indivisble, this means that the module should have a similar property.

That property is called prime: namely the module cannot be written as a tensor product of two other modules in a non-trivial way.

One knows also that any power of a cluster variable is a cluster monomial. So then one also wants the module to be such that any tensor power is irreducible. Such modules are called real.

Prime and Real representations

These questions have been studied for quantum affine algebras and $G L_{N}(F)$. In the latter subject the representations are said to be square irreducible.

Prime and Real representations

These questions have been studied for quantum affine algebras and $G L_{N}(F)$. In the latter subject the representations are said to be square irreducible.

Essentially, it is this concept of real that made one recall the connections between the two theories.

Prime and Real representations

These questions have been studied for quantum affine algebras and $G L_{N}(F)$. In the latter subject the representations are said to be square irreducible.

Essentially, it is this concept of real that made one recall the connections between the two theories.

A module is called imaginary if its tensor square is reducible. This notion goes back to Leclerc and his counter example to a conjecture of Berenstein-Zelevinsky on dual canonical basis. Leclerc gave a single example in A_{5} of an imaginary modules which proved that such modules existed in $A_{n}, n \geq 5$.

Prime representations

Lots of examples of prime representations are known; for instance the Kirillov-Reshetikhin modules, snake modules of Mukhin-Young.

Prime representations

Lots of examples of prime representations are known; for instance the Kirillov-Reshetikhin modules, snake modules of Mukhin-Young.

In the case of quantum affine A_{1} a classification of prime modules was proved in [C-Pressley, 90], they are just the KR-modules.

Prime representations

Lots of examples of prime representations are known; for instance the Kirillov-Reshetikhin modules, snake modules of Mukhin-Young.

In the case of quantum affine A_{1} a classification of prime modules was proved in [C-Pressley, 90], they are just the KR-modules.

In all other cases, one just has a collection of examples but no conceptual understanding of what these examples have in common.

Prime representations

Lots of examples of prime representations are known; for instance the Kirillov-Reshetikhin modules, snake modules of Mukhin-Young.

In the case of quantum affine A_{1} a classification of prime modules was proved in [C-Pressley, 90], they are just the KR-modules.

In all other cases, one just has a collection of examples but no conceptual understanding of what these examples have in common.

These examples do share in common is that they are real. Leclerc's example shows that imaginary modules could be prime. S

Prime representations

Lots of examples of prime representations are known; for instance the Kirillov-Reshetikhin modules, snake modules of Mukhin-Young.

In the case of quantum affine A_{1} a classification of prime modules was proved in [C-Pressley, 90], they are just the KR-modules.

In all other cases, one just has a collection of examples but no conceptual understanding of what these examples have in common.

These examples do share in common is that they are real. Leclerc's example shows that imaginary modules could be prime. S

All finite dimensional modules of quantum affine A_{1} are real.

Real representations

Here in the case of $G L_{n}(F)$ Minguez and Lapid (in 2017-2018) gave a sufficient condition for a module to be real. Basically it is a combinatorial condition on the collection of multisegments.

Real representations

Here in the case of $G L_{n}(F)$ Minguez and Lapid (in 2017-2018) gave a sufficient condition for a module to be real. Basically it is a combinatorial condition on the collection of multisegments.

Using their conditions one could write down more examples of imaginary modules.

Real representations

Here in the case of $G L_{n}(F)$ Minguez and Lapid (in 2017-2018) gave a sufficient condition for a module to be real. Basically it is a combinatorial condition on the collection of multisegments.

Using their conditions one could write down more examples of imaginary modules.

But it is far from being all and since the rank bumps up when using Schur Weyl duality, it left open the question whether imaginary modules existed in A_{2} or A_{3} ! It is not easy to generate examples from their restrictions, checking the combinatorial conditions hold is not trivial.

Imaginary modules through KR-modules

I now want to talk about some recent joint work with Brito.

Imaginary modules through KR-modules

I now want to talk about some recent joint work with Brito.
We were interested in working towards a classification of prime representations and producing new families of prime representations.

Imaginary modules through KR-modules

I now want to talk about some recent joint work with Brito.
We were interested in working towards a classification of prime representations and producing new families of prime representations.

And in trying to give families of examples of imaginary modules, i.e., give explicit formulae for their Drinfeld polynomials.

Imaginary modules through KR-modules

I now want to talk about some recent joint work with Brito.
We were interested in working towards a classification of prime representations and producing new families of prime representations.

And in trying to give families of examples of imaginary modules, i.e., give explicit formulae for their Drinfeld polynomials.

And both of these came from generalizing the definition of KR-modules.

Generalized KR-modules

Recall that the KR-modules are indexed by elements of the following kind:

$$
\boldsymbol{\omega}_{i, j} \boldsymbol{\omega}_{i+1, j+1} \cdots \boldsymbol{\omega}_{i+r, j+r}
$$

We started by asking what would happen if we allowed different kinds of increments in this,

$$
\boldsymbol{\omega}_{i, j} \boldsymbol{\omega}_{i+2, j+2}, \boldsymbol{\omega}_{i+6, j+6} \cdot
$$

These are more general ladder representations. However if one is not careful with the choice of increments then the module will not be prime.

Higher rank KR-modules

A higher rank KR-module is given by aan element of the form

$$
\boldsymbol{\omega}_{i+r_{1}, j+r_{1}} \boldsymbol{\omega}_{i+r_{2}, j+r_{2}} \cdots \boldsymbol{\omega}_{i+r_{\ell}, j+r_{\ell}}
$$

where

$$
i+r_{p}<i+r_{p+1} \leq j+r_{p}<j+r_{p+1}, \quad p \in[1, \ell-1] .
$$

In other words the tensor product of every consecutive pair of fundamental representations is reducible.

The work of Mukhin-Young gives us that these modules are prime, but in this case it is not hard to give a direct proof.

A classification result and a tensor product decomposition

Theorem[Brito-C]

Suppose that we are given an element

$$
\boldsymbol{\omega}_{\ell_{1}, m_{1}} \cdots \boldsymbol{\omega}_{\ell_{r}, m_{r}} \in \mathcal{P}^{+}
$$

with $\ell_{1}-m_{1}=\cdots=\ell_{r}-m_{r}$. Then the corresponding module can be written uniquely as a tensor product of generalized KR-modules.

This theorem is an exact analog of my old result with Pressley for A_{1} which was proved in 1990. It is really the first classification result since then and requires a lot of machinery that had been developed in between; for instance the work of [Frenkel-Reshetikhin], [Mukhin-Young].

A classification result and a tensor product decomposition

Theorem[Brito-C]

Suppose that we are given an element

$$
\boldsymbol{\omega}_{\ell_{1}, m_{1}} \cdots \boldsymbol{\omega}_{\ell_{r}, m_{r}} \in \mathcal{P}^{+}
$$

with $\ell_{1}-m_{1}=\cdots=\ell_{r}-m_{r}$. Then the corresponding module can be written uniquely as a tensor product of generalized KR-modules.

This theorem is an exact analog of my old result with Pressley for A_{1} which was proved in 1990. It is really the first classification result since then and requires a lot of machinery that had been developed in between; for instance the work of [Frenkel-Reshetikhin], [Mukhin-Young].

The generalized KR-modules are known by the work of [Duan et. al] to be the images of cluster variables in the H-L picture.

Imaginary modules

Next we tried to understand the tensor product of generalized KR-modules, questions of reducibility, Jordan-Holder series and so on.

Imaginary modules

Next we tried to understand the tensor product of generalized KR-modules, questions of reducibility, Jordan-Holder series and so on.

Some of this is not known even for KR-modules and this is where we had a nice surprise and recovered Leclerc's example of an imaginary module in a completely different way.

Leclerc's example

Let us consider the following tensor product of KR-modules for A_{4}.

$$
V:=V\left(\boldsymbol{\omega}_{1,3} \boldsymbol{\omega}_{0,2}\right) \otimes V\left(\boldsymbol{\omega}_{-1,1} \boldsymbol{\omega}_{-2,0}\right)
$$

Then it is well-known that the trivial module sits inside V; by a result of Kashiwara et al. the trivial is in fact the socle of V. Since we are in small rank it it is not hard to see that there is one more JH-component namely $M:=V\left(\boldsymbol{\omega}_{1,3} \boldsymbol{\omega}_{1,2} \boldsymbol{\omega}_{-1,2} \boldsymbol{\omega}_{-2,0}\right)$.

Leclerc's example

Let us consider the following tensor product of KR-modules for A_{4}.

$$
V:=V\left(\boldsymbol{\omega}_{1,3} \boldsymbol{\omega}_{0,2}\right) \otimes V\left(\boldsymbol{\omega}_{-1,1} \boldsymbol{\omega}_{-2,0}\right)
$$

Then it is well-known that the trivial module sits inside V; by a result of Kashiwara et al. the trivial is in fact the socle of V. Since we are in small rank it it is not hard to see that there is one more JH-component namely $M:=V\left(\boldsymbol{\omega}_{1,3} \boldsymbol{\omega}_{1,2} \boldsymbol{\omega}_{-1,2} \boldsymbol{\omega}_{-2,0}\right)$.

And this was precisely the module that Leclerc had shown was imaginary.

Leclerc's example

Let us consider the following tensor product of KR-modules for A_{4}.

$$
V:=V\left(\boldsymbol{\omega}_{1,3} \boldsymbol{\omega}_{0,2}\right) \otimes V\left(\boldsymbol{\omega}_{-1,1} \boldsymbol{\omega}_{-2,0}\right)
$$

Then it is well-known that the trivial module sits inside V; by a result of Kashiwara et al. the trivial is in fact the socle of V. Since we are in small rank it it is not hard to see that there is one more JH -component namely $M:=V\left(\boldsymbol{\omega}_{1,3} \boldsymbol{\omega}_{1,2} \boldsymbol{\omega}_{-1,2} \boldsymbol{\omega}_{-2,0}\right)$.

And this was precisely the module that Leclerc had shown was imaginary.

But one can now give a very different proof of this. Namely there is a canonical map

$$
{ }^{*} V \otimes V \rightarrow V \rightarrow V\left(\boldsymbol{\omega}_{1,3} \boldsymbol{\omega}_{0,2} \boldsymbol{\omega}_{-1,1} \boldsymbol{\omega}_{-2,0}\right) \rightarrow 0
$$

and the image of $M \otimes M$ is non-zero.

Imaginary modules

Once we understood the example and its proof, the result we wanted was clear, the proof was another matter.

Theorem [Brito-C]

The tensor product of a generalized KR-module with its dual contains an imaginary module whose Drinfeld polynomial can be written explicitly.

These examples in general do not fit into the framework of Lapid-Minguez.

A final translation

So I want to interpret the result on imaginary modules in the language of clsuter algebras.

A final translation

So I want to interpret the result on imaginary modules in the language of clsuter algebras.

It is well-known that cluster monomials do not span the cluster algebra.

A final translation

So I want to interpret the result on imaginary modules in the language of clsuter algebras.

It is well-known that cluster monomials do not span the cluster algebra.

In our construction, the genralized KR -module and its dual are both cluster variables and the tensor product correspond to the product of the cluster variables.

A final translation

So I want to interpret the result on imaginary modules in the language of clsuter algebras.

It is well-known that cluster monomials do not span the cluster algebra.

In our construction, the genralized KR -module and its dual are both cluster variables and the tensor product correspond to the product of the cluster variables.

Since the imaginary module appears in the JH-series, it cannot correspond to any linear combination of cluster monomials.

A final translation

So I want to interpret the result on imaginary modules in the language of clsuter algebras.

It is well-known that cluster monomials do not span the cluster algebra.

In our construction, the genralized KR -module and its dual are both cluster variables and the tensor product correspond to the product of the cluster variables.

Since the imaginary module appears in the JH-series, it cannot correspond to any linear combination of cluster monomials.

In other words, this gives an example of a pair of cluster variable whose product is not in the linear span of cluster monomials.

