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@ Overview
@ Belavin-Drinfeld bialgebras
@ Construction of O, 4(G)

@ Construction and description of U 4(g)
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Part 1: Overview

Notation: G is a semi-simple complex algebraic group, g its Lie algebra;
g € C, generally not a root of unity.

Goal

Extend our understanding of the quantum groups O4(G) and U,(g) to
the more general Belavin-Drinfeld quantum groups O ¢(G) and U 4(g).

Tim Hodges  Milen Yakimov Belavin-Drinfeld Quantum Groups



Part 1: Overview
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Goal

Extend our understanding of the quantum groups O4(G) and U,(g) to
the more general Belavin-Drinfeld quantum groups O ¢(G) and U 4(g).

o Classify the primitive ideals of O, 4(G) and compare this with the
description of symplectic leaves in the corresponding Poisson group.
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Part 1: Overview

Notation: G is a semi-simple complex algebraic group, g its Lie algebra;
g € C, generally not a root of unity.

Goal

Extend our understanding of the quantum groups O4(G) and U,(g) to
the more general Belavin-Drinfeld quantum groups O ¢(G) and U 4(g).

o Classify the primitive ideals of O, 4(G) and compare this with the
description of symplectic leaves in the corresponding Poisson group.
e Construct and describe U, 4(g).

o Finite dimensional representations
o Category O for Ux 4(g)
o Primitive ideals are annihilators of Verma modules?
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Symplectic leaves and Primitive Spectrum - History

Quantum Group Poisson Group Lie Bialgebra

Standard 04(G) (G,r) (g,r)
Joseph 1994 H-Levasseur 1993

Multi-parameter 0,(G) (G,(r,u)) (g,(r,u))
H-L-Toro 1995 H-L-Toro 1995

Or.q(G) (G, (m,u)) (g, (m, u))
Belavin-Drinfeld | (E-S-S 2000) | Yakimov 2002 | (Bel-Drin 1984)
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Description of Symplectic leaves and Primitive Spectrum

The standard case. (H is a maximal torus, W is the Weyl group)

Theorem (H-Levasseur)

1) Symp G = ||, cwxw Symp,G.

2) For each w € W x W, Symp,, G is a nonempty H-orbit. If Ay, is a
fixed symplectic leaf of type w, then H/Stab Ay, is a torus of rank
rk G — s(w).

3) The dimension of a leaf of type w is I(w) + s(w).

Theorem (Joseph)
1) Prim O4(G) = | ewxw PrimuOq(G).
2) For each w € W x W, Prim,,Oq(G) is a nonempty H-orbit. If Py is a

fixed primitive ideal of type w, then H/Stab yP,, is a torus of rank
rk G — s(w).
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Part 2: Belavin-Drinfeld Lie bialgebra structures

We begin with a brief discussion of the Lie bialgebra structures classified
by Belavin and Drinfeld.

Quantum Group | Poisson Group | Lie Bialgebra
Standard 0q(G) (G,r) (g,r)
Multi-parameter 0,(G) (G, (r,u)) (g, (r,u))
Belavin-Drinfeld O0x.4(G) (G, (m,u)) (g, (m, u))
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Factorizable Coboundary Lie Bialgebras

Forreg®g, and X € g, define §, : g — g ® g by 6,(X) = X.r.

Let g be a Lie algebra and r € g® g. Then 6, is a cocommutator for g if
and only if

Q@ r+nm € (g®g)9
@ CYB(r) = [n2, n3] + [r2, 3] + [n3, 23] € (9 ® g ® g)°.

Thus if g is a Lie algebra, then (g, d,) defines a Lie bialgebra if and only
if the two conditions above are satisfies.

A quasi-triangular Lie bialgebra is a coboundary Lie algebra (g, r) where
CYB(r) = 0. A quasi-triangular Lie bialgebra is factorizable if r + r» is
non-degenerate.

Tim Hodges  Milen Yakimov Belavin-Drinfeld Quantum Groups



BD Classification of factorizable Lie bialgebra structures

Belavin and Drinfeld classified the Lie bialgebra structures on g that are
given by factorizable solutions of the CYBE.These Lie bialgebra
structures on g are given by pairs (7,s) where 7 is a BD triple and

s € A%h is “compatible” with 7.

Definition
A Belavin—Drinfeld triple for g is a triple (I'1, 2, 7) where I'; C T and
7: 1 — I, satisfies
Q (ra,78) = («, B) for all a, B €Ty (i.e., T is a graph isomorphism)
@ for all o € 1, there exists a k such that 7¥a & '
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Examples of Belavin-Drinfeld Triples
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The standard classical r-matrix for g

1
r= 590—&— Z €y R fy.
aEAT

where Qg € S2h is the Cartan component of the quadratic Casimir of g

Theorem (Belavin—Drinfeld, 1984)

The orbits of the adjoint group of g on the set of factorizable classical
r-matrices for g have a unique representative of the form

n
rrs=r—s+ Z Zrk(ea)/\fa
aceAt k=1

for a Belavin-Drinfeld triple (T'1, T2, 7) of order n and an element

s € A’h such that 2((a; — a,;)) ®1)s = (o + () ® 1), Vi € Ty,
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The Dual of Factorizable Quasi-triangular Lie Bialgebra

Let (g, r) be a factorizable quasi-triangular Lie bialgebra. Let
r=>r®r. Define ¢ : g* — g by

6+(8) =Y &), o-(&)=-D &)
These are Lie bialgebra maps,
¢+ (g7)° = g.

Let pr =Im¢y and let [=p Np_. All three of p,, p_ and [ are Lie
subbialgebras of g. Let € = ker ¢, + ker¢p_.
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The Dual of Factorizable Quasi-triangular Lie Bialgebra

Let (g, r) be a factorizable quasi-triangular Lie bialgebra. Let
r=>r®r. Define ¢ : g* — g by

6+(8) =Y &), o-(&)=-D &)
These are Lie bialgebra maps,
¢+ (g7)° = g.

Let pr =Im¢y and let [=p Np_. All three of p,, p_ and [ are Lie
subbialgebras of g. Let € = ker ¢, + ker¢p_.

Theorem (H)

The Lie bialgebra g* /¢ = [* s factorizable.

In the standard case pjE =bt, (= b, and g* /¢ = b* is abelian.

Tim Hodges  Milen Yakimov Belavin-Drinfeld Quantum Groups



Reduced Triples

Given any triple (1,2, 7) we have a reduced triple (1, 5, 7) given by
restricting 7 to ;. That is,

|:: M, |:1 :7'_1(|—1ﬁ|_2)7 r2:r10r2,

The Cremmer-Gervais triple on As and its derived triple on Ay:
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We can now precisely describe the structure of in terms of that of (g, f).

Theorem (H)

Let (1,s) be a Belavin-Drinfeld pair and let (g, r) be the associated
factorizable Lie bialgebra. Then § = g*/t = [§ is a reductive Lie algebra
of type ['1. The Lie bialgebra structure on § is given by the reduced triple
(Fl, Fg, 7) and a naturally induced § € A2h.
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We can now precisely describe the structure of in terms of that of (g, f).

Theorem (H)

Let (1,s) be a Belavin-Drinfeld pair and let (g, r) be the associated
factorizable Lie bialgebra. Then § = g*/t = [§ is a reductive Lie algebra
of type ['1. The Lie bialgebra structure on § is given by the reduced triple
(Fl, Fg, 7) and a naturally induced § € A2h.

Example

The ‘Cremmer-Gervais' bialgebra structure on sl(n+ 1). Set
g=sl(n+1), T ={as,...,an}, 1 ={a1,...,an_1},T2 ={an,...,a,}
and 7(a;) = ajy1. Then g*/€ = gl(n), and the associated triple is the
map 7 : {ag,...,an_2} = {az,...,a,_1} given above.
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Part 3: Construction of O, 4(G)

We construct O 4(G) from O4(G) using a 2-cocycle twist.

A 2-cocycle on a Hopf algebra A is an invertible pairing 0 : AQ A — k
such that 0(1,1) =1 and for all x, y and z in A,

Z a(xqy, Ya))o(xeYe), 2) = Z a(¥1), 21))o (%, Y2)Z2))
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Part 3: Construction of O, 4(G)

We construct O 4(G) from O4(G) using a 2-cocycle twist.

A 2-cocycle on a Hopf algebra A is an invertible pairing 0 : AQ A — k
such that 0(1,1) =1 and for all x, y and z in A,

> olxa) ya)o(xeye). 2) = Y oy, 20)o (% Y2 22)

A braiding (or dual quasi-triangular structure) on a Hopf algebra A is a
bilinear pairing 3( , ) such that for all a, b, and c in A

Q > 8(aw), bay)beyae) = X- B(a), be))aw)ba)
Q@ 5(,)is |nvert|b|e in (A® A)*;

o /8(37 bC) = Z 6(‘9(1)a b)ﬁ(a(Z)v C)'

o ﬂ(ab7 C) = ZIB(b7 C(l))ﬂ(aa C(2))
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Twisting Braided Hopf Algebras

Theorem

Let A be a braided Hopf algebra with braiding 8. Let o be a 2-cocycle on
A. One can twist the multiplication on A to get a new Hopf algebra A, .
The new multiplication is given by

x-y =Y o(x X2)Y2)0 H(x@), Y(3))-
Moreover 3, = a1 % 3 % a1 (convolution product) is a braiding on A,.

The categories of comodules over A and A, are equivalent as rigid
braided monoidal categories.
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Standard Quantum Groups

@ Direct construction of Uq(g) using generators and relations using
data from g.

o Classification of finite dimensional representations of Uq(g)

@ Construction of O4(G) as restricted dual

ForveV, e V¥,

cev(x) = E(xv),x € Ug(g), C(V)={cey &V veV)cU(g)

0q4(G):= P C(v)

Vsimple
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The standard quantum R-matrix and the J operators

For v € QF, set m(v) := dim Ug(n"), = dim Ug(n~)_,. Let {x,,J}J'.":(lV)

and {x,,,,j}j-":(f) be two dual bases of Uy(n*), and Uy(n~)_, with
respect to the Rosso—Tanisaki form. Define the quasi R-matrix

m(v)
0= Z Z X j @ X_yj € Ug(n™)@ Uy(n™)

ve@t j=1
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The standard quantum R-matrix and the J operators

For v € QF, set m(v) := dim Ug(n"), = dim Ug(n~)_,. Let {x,,J}m(V)

and {x_,j}; ™) be two dual bases of Uy(n*), and Uy(n~)_, with
respect to the Rosso—Tanisaki form. Define the quasi R-matrix

0= Z Z X j @ X_yj € Ug(n™)@ Uy(n™)

ve@t j=1
For Vi, Vo € C and k € [1, n], the operator (7X ® 1)(©) acts on Vi ® V4,
because all but finitely many terms in the summation (17) act by 0 on
Vi @ V,. Define Jv, v, € Ende(Vi ® Va) by
Tviv, =700 (1 ©1)0) ... ¢" ¥V ((7" © 1)0)
x g~ (T"ONR— - —(r®1)R o=, 1 /2
Theorem (Etingof-Schedler-Schiffman)
For all Vi, V5, Vi3 € C, the J-operators satisfy the 2-cocycle condition

jV1®V2,V3*7V1,V2 = le,V2®V3‘-7V2,V3'
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Theorem
The map 6 : Og(G) x Og(G) — C defined by

97\'(C§1,X1’ C§2,X2) = <£1 ® &2, le’Vz(Vl ® V2)>
is a Hopf algebra 2-cocycle on Oq(G).

Denote the twisted Hopf algebra

Oxr,q(G) := Og(G)o, .

.

(Cer Cerne) (%) = (61 ® &2, Ty, AX) Tvi v, (V1 © 2))

Example

@ The Cremmer-Gervais quantum groups Ocg q(SL(n)) (constructed
using an explicit R-matrix)

@ The double quantum groups Og(D(G)) = Og(G) 1 Ogy(G)
(constructed using the Drinfeld double construction)
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Part 4: The FRT dual U, 4(g)

For a braided Hopf algebra (A, 3) we have Hopf algebra maps
I%: A% — A° by

I"(a)(b) = B(a, (b)) and I~ (a)(b) = B(b,S(a))

Let U* = IT(A). The FRT dual of A is the Hopf subalgebra U(A)
generated by U" and U~
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Part 4: The FRT dual U, 4(g)

For a braided Hopf algebra (A, 3) we have Hopf algebra maps
I%: A% — A° by

I"(a)(b) = B(a,S(b)) and I~ (a)(b) = B(b, S(a))
Let U* = IT(A). The FRT dual of A is the Hopf subalgebra U(A)
generated by U" and U~

The braiding on A induces a Hopf pairing on Ut ® (U™) using which
one can construct the Drinfeld double UT » U™. The multiplication map
u® v — uv is then a surjective Hopf algebra map

p: U x U™ — U(A)

Definition
Define
Ur,q(9) := U(Ox,4(G))
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The pairing between O, ,(G) and U, 4(g)

Or.q(G) has the same coalgebra structure as Oq(G), but a twisted
algebra structure.

NOT TRUE that Uy 4(g) has the same algebra structure as Ugy(g), but a
twisted coalgebra structure.

Heuristically,
Ur,q(9) = Oy(G;)

a quantization of the algebra of functions on G, is the dual Poisson group
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The pairing between O, ,(G) and U, 4(g)

Or.q(G) has the same coalgebra structure as Oq(G), but a twisted
algebra structure.

NOT TRUE that Uy 4(g) has the same algebra structure as Ugy(g), but a
twisted coalgebra structure.

Heuristically,
Ur,q(9) = Oy(G;)

a quantization of the algebra of functions on G, is the dual Poisson group

Theorem (H-Yakimov)

The pairing between O 4(G) and Uy 4(g) is non-degenerate.

Corollary

Ur.q(g) has a category of finite dimensional modules equivalent to the
category of finite dimensional weight modules over Ug(g). Or q(G) is the
restricted dual of Uy 4(g) with respect to this category.
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The braiding on Uy = UT N U~

Set
U=U"NnU"

The pairing between U™ and U~ induces a braiding on U

Thus the FRT dual U(A) of a braided Hopf algebra A contains a
canonical braided Hopf subalgebra Up(A).

Describe Uy for the Belavin-Drinfeld quantum group O 4(G).

Example

For the trivial triple we have Up(O,(G)) = C[KX!] =2 O(T), for T a
maximal torus inside G, equipped with the braiding given by the Rosso
form.
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ot o P pr
g*¢/v g\*/f%f; prnpT =g \9
\p_ \p_/
G,/ \ G P+mP—:é/ \’G
\P/ \P/

Tim Hodges  Milen Yakimov

Belavin-Drinfeld Quantum Groups



/\
\/

o(PT)
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\
Ur.q(8) = Ox.q(Gr) Uo = Oxr q(
\ /

= Onq(P7)
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Heuristic Il
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Let
CF = (Ug(p™))t = {c € Org(G) | (c, Ug(p™)) = 0},
and define
Orq(P*) = 0x4(G)/C*

Theorem (H-Y)
We have ker I£ = CE so

Ut = 0, 4(PY)
Moreover the map
(L* @L7)A: O1,4(6) = O14(PT) ® O1 (P7).

is an embedding.
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Conjecture

There exists a reductive Lie group G with associated Lie algebra § for
which (1,2, 7) is a triple for § and such that

Uo(ow,q(G)) = Oﬁ,q(é)

for i = (7, i) suitable choice of continuous parameter .

Example

@ For the trivial triple we have Up(Oq(G)) = O(K), for K a maximal
torus inside G

@ For the Cremmer-Gervais quantum group, it was shown that

Uo(Ocg q(SL(n))) = Ocg q.u(GL(n — 1))
@ For the double quantum groups, we have

Uo(Oq(D(G)) = O4(G) ® O(K)
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Conjecture
Dual to the embedding

Oﬁ,q(é) — Unq(9)

is a surjective map
Or,q(G) = Uz 4(8)

Problem

Describe the primitive spectrum of O 4(G)

Any such classification would have to include the classification of
primitive ideals in O4(G) and Uy(g)!
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