Belavin-Drinfeld Quantum Groups

Tim Hodges Milen Yakimov
University of Cincinnati Northeastern University

August, 2023

Outline

(1) Overview
(2) Belavin-Drinfeld bialgebras
(0) Construction of $\mathcal{O}_{\pi, q}(G)$
(1) Construction and description of $U_{\pi, q}(\mathfrak{g})$

Part 1: Overview

Notation: G is a semi-simple complex algebraic group, \mathfrak{g} its Lie algebra; $q \in \mathbb{C}$, generally not a root of unity.

Goal

Extend our understanding of the quantum groups $\mathcal{O}_{q}(G)$ and $U_{q}(\mathfrak{g})$ to the more general Belavin-Drinfeld quantum groups $\mathcal{O}_{\pi, q}(G)$ and $U_{\pi, q}(\mathfrak{g})$.

Part 1: Overview

Notation: G is a semi-simple complex algebraic group, \mathfrak{g} its Lie algebra; $q \in \mathbb{C}$, generally not a root of unity.

Goal

Extend our understanding of the quantum groups $\mathcal{O}_{q}(G)$ and $U_{q}(\mathfrak{g})$ to the more general Belavin-Drinfeld quantum groups $\mathcal{O}_{\pi, q}(G)$ and $U_{\pi, q}(\mathfrak{g})$.

- Classify the primitive ideals of $\mathcal{O}_{\pi, q}(G)$ and compare this with the description of symplectic leaves in the corresponding Poisson group.

Part 1: Overview

Notation: G is a semi-simple complex algebraic group, \mathfrak{g} its Lie algebra; $q \in \mathbb{C}$, generally not a root of unity.

Goal

Extend our understanding of the quantum groups $\mathcal{O}_{q}(G)$ and $U_{q}(\mathfrak{g})$ to the more general Belavin-Drinfeld quantum groups $\mathcal{O}_{\pi, q}(G)$ and $U_{\pi, q}(\mathfrak{g})$.

- Classify the primitive ideals of $\mathcal{O}_{\pi, q}(G)$ and compare this with the description of symplectic leaves in the corresponding Poisson group.
- Construct and describe $U_{\pi, q}(\mathfrak{g})$.
- Finite dimensional representations
- Category O for $U_{\pi, q}(\mathfrak{g})$
- Primitive ideals are annihilators of Verma modules?

Symplectic leaves and Primitive Spectrum - History

	Quantum Group	Poisson Group	Lie Bialgebra
Standard	$\mathcal{O}_{q}(G)$ Joseph 1994	(G, r) H-Levasseur 1993	(\mathfrak{g}, r)
Multi-parameter	$\mathcal{O}_{p}(G)$ H-L-Toro 1995	$(G,(r, u))$ H-L-Toro 1995	$(\mathfrak{g},(r, u))$
Belavin-Drinfeld	$\mathcal{O}_{\pi, q}(G)$ $(E-S-S ~ 2000)$	$(G,(\pi, u))$ Yakimov 2002	$(\mathfrak{g},(\pi, u))$ $($ Bel-Drin 1984)

Description of Symplectic leaves and Primitive Spectrum

The standard case. (H is a maximal torus, W is the Weyl group)

Theorem (H-Levasseur)

1) $\operatorname{Symp} G=\bigsqcup_{w \in W \times W} \operatorname{Symp}_{w} G$.
2) For each $w \in W \times W, \operatorname{Symp}_{w} G$ is a nonempty H-orbit. If $\mathcal{A}_{\dot{w}}$ is a fixed symplectic leaf of type w, then $H / S_{t a b}{ }_{H} \mathcal{A}_{\dot{w}}$ is a torus of rank rk $G-s(w)$.
3) The dimension of a leaf of type w is $I(w)+s(w)$.

Theorem (Joseph)

1) $\operatorname{Prim} \mathcal{O}_{q}(G)=\bigsqcup_{w \in W \times W} \operatorname{Prim}_{w} \mathcal{O}_{q}(G)$.
2) For each $w \in W \times W, \operatorname{Prim}_{w} \mathcal{O}_{q}(G)$ is a nonempty H-orbit. If $P_{\dot{w}}$ is a fixed primitive ideal of type w, then $\mathrm{H} /$ Stab $_{H} P_{\dot{w}}$ is a torus of rank $r k G-s(w)$.

Part 2: Belavin-Drinfeld Lie bialgebra structures

We begin with a brief discussion of the Lie bialgebra structures classified by Belavin and Drinfeld.

	Quantum Group	Poisson Group	Lie Bialgebra
Standard	$\mathcal{O}_{q}(G)$	(G, r)	(\mathfrak{g}, r)
Multi-parameter	$\mathcal{O}_{p}(G)$	$(G,(r, u))$	$(\mathfrak{g},(r, u))$
Belavin-Drinfeld	$\mathcal{O}_{\pi, q}(G)$	$(G,(\pi, u))$	$(\mathfrak{g},(\pi, u))$

Factorizable Coboundary Lie Bialgebras

For $r \in \mathfrak{g} \otimes \mathfrak{g}$, and $X \in \mathfrak{g}$, define $\delta_{r}: \mathfrak{g} \rightarrow \mathfrak{g} \otimes \mathfrak{g}$ by $\delta_{r}(X)=$ X.r.

Theorem

Let \mathfrak{g} be a Lie algebra and $r \in \mathfrak{g} \otimes \mathfrak{g}$. Then δ_{r} is a cocommutator for \mathfrak{g} if and only if
(1) $r+r_{21} \in(\mathfrak{g} \otimes \mathfrak{g})^{\mathfrak{g}}$.
(2) CYB $(r)=\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right] \in(\mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g})^{\mathfrak{g}}$.

Thus if \mathfrak{g} is a Lie algebra, then $\left(\mathfrak{g}, \delta_{r}\right)$ defines a Lie bialgebra if and only if the two conditions above are satisfies.

Definition

A quasi-triangular Lie bialgebra is a coboundary Lie algebra (\mathfrak{g}, r) where $\mathrm{CYB}(r)=0$. A quasi-triangular Lie bialgebra is factorizable if $r+r_{21}$ is non-degenerate.

BD Classification of factorizable Lie bialgebra structures

Belavin and Drinfeld classified the Lie bialgebra structures on \mathfrak{g} that are given by factorizable solutions of the CYBE. These Lie bialgebra structures on \mathfrak{g} are given by pairs (τ, s) where τ is a BD triple and $s \in \wedge^{2} \mathfrak{h}$ is "compatible" with τ.

Definition

A Belavin-Drinfeld triple for \mathfrak{g} is a triple $\left(\Gamma_{1}, \Gamma_{2}, \tau\right)$ where $\Gamma_{i} \subset \Gamma$ and $\tau: \Gamma_{1} \rightarrow \Gamma_{2}$ satisfies
(1) $(\tau \alpha, \tau \beta)=(\alpha, \beta)$ for all $\alpha, \beta \in \Gamma_{1}$ (i.e., τ is a graph isomorphism)
(2) for all $\alpha \in \Gamma_{1}$, there exists a k such that $\tau^{k} \alpha \notin \Gamma_{1}$

Examples of Belavin-Drinfeld Triples

The standard classical r-matrix for \mathfrak{g}

$$
r:=\frac{1}{2} \Omega_{0}+\sum_{\alpha \in \Delta^{+}} e_{\alpha} \otimes f_{\alpha} .
$$

where $\Omega_{0} \in S^{2} \mathfrak{h}$ is the Cartan component of the quadratic Casimir of \mathfrak{g}

Theorem (Belavin-Drinfeld, 1984)

The orbits of the adjoint group of \mathfrak{g} on the set of factorizable classical r-matrices for \mathfrak{g} have a unique representative of the form

$$
r_{\tau, s}=r-s+\sum_{\alpha \in \Delta^{+}} \sum_{k=1}^{n} \tau^{k}\left(e_{\alpha}\right) \wedge f_{\alpha}
$$

for a Belavin-Drinfeld triple ($\left.\Gamma_{1}, \Gamma_{2}, \tau\right)$ of order n and an element
$s \in \wedge^{2} \mathfrak{h} \quad$ such that $\quad 2\left(\left(\alpha_{i}-\alpha_{\tau(i)}\right) \otimes 1\right) s=\left(\left(\alpha_{i}+\alpha_{\tau(i)}\right) \otimes 1\right) \Omega_{0}, \forall i \in \Gamma_{1}$.

The Dual of Factorizable Quasi-triangular Lie Bialgebra

Let (\mathfrak{g}, r) be a factorizable quasi-triangular Lie bialgebra. Let $r=\sum r_{i} \otimes r_{i}^{\prime}$. Define $\phi_{ \pm}: \mathfrak{g}^{*} \rightarrow \mathfrak{g}$ by

$$
\phi_{+}(\xi)=\sum \xi\left(r_{i}\right) r_{i}^{\prime}, \quad \phi_{-}(\xi)=-\sum \xi\left(r_{i}^{\prime}\right) r_{i}
$$

These are Lie bialgebra maps,

$$
\phi_{ \pm}:\left(\mathfrak{g}^{*}\right)^{\mathrm{cop}} \rightarrow \mathfrak{g} .
$$

Let $\mathfrak{p}_{ \pm}=\operatorname{lm} \phi_{ \pm}$and let $\mathfrak{l}=\mathfrak{p}_{+} \cap \mathfrak{p}_{-}$. All three of $\mathfrak{p}_{+}, \mathfrak{p}_{-}$and \mathfrak{l} are Lie subbialgebras of \mathfrak{g}. Let $\mathfrak{k}=\operatorname{ker} \phi_{+}+\operatorname{ker} \phi_{-}$.

The Dual of Factorizable Quasi-triangular Lie Bialgebra

Let (\mathfrak{g}, r) be a factorizable quasi-triangular Lie bialgebra. Let $r=\sum r_{i} \otimes r_{i}^{\prime}$. Define $\phi_{ \pm}: \mathfrak{g}^{*} \rightarrow \mathfrak{g}$ by

$$
\phi_{+}(\xi)=\sum \xi\left(r_{i}\right) r_{i}^{\prime}, \quad \phi_{-}(\xi)=-\sum \xi\left(r_{i}^{\prime}\right) r_{i}
$$

These are Lie bialgebra maps,

$$
\phi_{ \pm}:\left(\mathfrak{g}^{*}\right)^{\mathrm{cop}} \rightarrow \mathfrak{g} .
$$

Let $\mathfrak{p}_{ \pm}=\operatorname{lm} \phi_{ \pm}$and let $\mathfrak{l}=\mathfrak{p}_{+} \cap \mathfrak{p}_{-}$. All three of $\mathfrak{p}_{+}, \mathfrak{p}_{-}$and \mathfrak{l} are Lie subbialgebras of \mathfrak{g}. Let $\mathfrak{k}=\operatorname{ker} \phi_{+}+\operatorname{ker} \phi_{-}$.

Theorem (H)

The Lie bialgebra $\mathfrak{g}^{*} / \mathfrak{k} \cong \mathfrak{l}^{*}$ is factorizable.

The Dual of Factorizable Quasi-triangular Lie Bialgebra

Let (\mathfrak{g}, r) be a factorizable quasi-triangular Lie bialgebra. Let $r=\sum r_{i} \otimes r_{i}^{\prime}$. Define $\phi_{ \pm}: \mathfrak{g}^{*} \rightarrow \mathfrak{g}$ by

$$
\phi_{+}(\xi)=\sum \xi\left(r_{i}\right) r_{i}^{\prime}, \quad \phi_{-}(\xi)=-\sum \xi\left(r_{i}^{\prime}\right) r_{i}
$$

These are Lie bialgebra maps,

$$
\phi_{ \pm}:\left(\mathfrak{g}^{*}\right)^{\mathrm{cop}} \rightarrow \mathfrak{g} .
$$

Let $\mathfrak{p}_{ \pm}=\operatorname{lm} \phi_{ \pm}$and let $\mathfrak{l}=\mathfrak{p}_{+} \cap \mathfrak{p}_{-}$. All three of $\mathfrak{p}_{+}, \mathfrak{p}_{-}$and \mathfrak{l} are Lie subbialgebras of \mathfrak{g}. Let $\mathfrak{k}=\operatorname{ker} \phi_{+}+\operatorname{ker} \phi_{-}$.

Theorem (H)

The Lie bialgebra $\mathfrak{g}^{*} / \mathfrak{k} \cong \mathfrak{1}^{*}$ is factorizable.

Example

In the standard case $\mathfrak{p}^{ \pm}=\mathfrak{b}^{ \pm}, \mathfrak{l}=\mathfrak{h}$, and $\mathfrak{g}^{*} / \mathfrak{k} \cong \mathfrak{h}^{*}$ is abelian.

Reduced Triples

Given any triple $\left(\Gamma_{1}, \Gamma_{2}, \tau\right)$ we have a reduced triple $\left(\tilde{\Gamma}_{1}, \tilde{\Gamma}_{2}, \tilde{\tau}\right)$ given by restricting τ to Γ_{1}. That is,

$$
\tilde{\Gamma}=\Gamma_{1}, \quad \tilde{\Gamma}_{1}=\tau^{-1}\left(\Gamma_{1} \cap \Gamma_{2}\right), \quad \tilde{\Gamma}_{2}=\Gamma_{1} \cap \Gamma_{2},
$$

Example

The Cremmer-Gervais triple on A_{5} and its derived triple on A_{4} :

We can now precisely describe the structure of in terms of that of (\mathfrak{g}, f).

Theorem (H)

Let (τ, s) be a Belavin-Drinfeld pair and let (\mathfrak{g}, r) be the associated factorizable Lie bialgebra. Then $\tilde{\mathfrak{g}}=\mathfrak{g}^{*} / \mathfrak{k} \cong \mathfrak{l}_{0}^{*}$ is a reductive Lie algebra of type Γ_{1}. The Lie bialgebra structure on $\tilde{\mathfrak{g}}$ is given by the reduced triple $\left(\tilde{\Gamma}_{1}, \tilde{\Gamma}_{2}, \tilde{\tau}\right)$ and a naturally induced $\tilde{s} \in \wedge^{2} \tilde{h}$.

We can now precisely describe the structure of in terms of that of (\mathfrak{g}, f).

Theorem (H)

Let (τ, s) be a Belavin-Drinfeld pair and let (\mathfrak{g}, r) be the associated factorizable Lie bialgebra. Then $\tilde{\mathfrak{g}}=\mathfrak{g}^{*} / \mathfrak{k} \cong \mathfrak{l}_{0}^{*}$ is a reductive Lie algebra of type Γ_{1}. The Lie bialgebra structure on $\tilde{\mathfrak{g}}$ is given by the reduced triple $\left(\tilde{\Gamma}_{1}, \tilde{\Gamma}_{2}, \tilde{\tau}\right)$ and a naturally induced $\tilde{s} \in \wedge^{2} \tilde{h}$.

Example

The 'Cremmer-Gervais' bialgebra structure on $\mathfrak{s l}(n+1)$. Set $\mathfrak{g}=\mathfrak{s l}(n+1), \Gamma=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}, \Gamma_{1}=\left\{\alpha_{1}, \ldots, \alpha_{n-1}\right\}, \Gamma_{2}=\left\{\alpha_{2}, \ldots, \alpha_{n}\right\}$ and $\tau\left(\alpha_{i}\right)=\alpha_{i+1}$. Then $\mathfrak{g}^{*} / \mathfrak{k} \cong \mathfrak{g l}(n)$, and the associated triple is the $\operatorname{map} \tilde{\tau}:\left\{\alpha_{1}, \ldots, \alpha_{n-2}\right\} \rightarrow\left\{\alpha_{2}, \ldots, \alpha_{n-1}\right\}$ given above.

Part 3: Construction of $\mathcal{O}_{\pi, q}(G)$

We construct $\mathcal{O}_{\pi, q}(G)$ from $\mathcal{O}_{q}(G)$ using a 2-cocycle twist.
A 2-cocycle on a Hopf algebra A is an invertible pairing $\sigma: A \otimes A \rightarrow k$ such that $\sigma(1,1)=1$ and for all x, y and z in A,

$$
\sum \sigma\left(x_{(1)}, y_{(1)}\right) \sigma\left(x_{(2)} y_{(2)}, z\right)=\sum \sigma\left(y_{(1)}, z_{(1)}\right) \sigma\left(x, y_{(2)} z_{(2)}\right)
$$

Part 3: Construction of $\mathcal{O}_{\pi, q}(G)$

We construct $\mathcal{O}_{\pi, q}(G)$ from $\mathcal{O}_{q}(G)$ using a 2-cocycle twist.
A 2-cocycle on a Hopf algebra A is an invertible pairing $\sigma: A \otimes A \rightarrow k$ such that $\sigma(1,1)=1$ and for all x, y and z in A,

$$
\sum \sigma\left(x_{(1)}, y_{(1)}\right) \sigma\left(x_{(2)} y_{(2)}, z\right)=\sum \sigma\left(y_{(1)}, z_{(1)}\right) \sigma\left(x, y_{(2)} z_{(2)}\right)
$$

A braiding (or dual quasi-triangular structure) on a Hopf algebra A is a bilinear pairing $\beta($,$) such that for all a, b$, and c in A
(1) $\sum \beta\left(a_{(1)}, b_{(1)}\right) b_{(2)} a_{(2)}=\sum \beta\left(a_{(2)}, b_{(2)}\right) a_{(1)} b_{(1)}$
(2) $\beta($,$) is invertible in (A \otimes A)^{*}$;
(3) $\beta(a, b c)=\sum \beta\left(a_{(1)}, b\right) \beta\left(a_{(2)}, c\right)$.
(- $\beta(a b, c)=\sum \beta\left(b, c_{(1)}\right) \beta\left(a, c_{(2)}\right)$

Twisting Braided Hopf Algebras

Theorem

Let A be a braided Hopf algebra with braiding β. Let σ be a 2-cocycle on A. One can twist the multiplication on A to get a new Hopf algebra A_{σ}. The new multiplication is given by

$$
x \cdot y=\sum \sigma\left(x_{(1)}, y_{(1)}\right) x_{(2)} y_{(2)} \sigma^{-1}\left(x_{(3)}, y_{(3)}\right)
$$

Moreover $\beta_{\sigma}=\sigma_{21} * \beta * \sigma^{-1}$ (convolution product) is a braiding on A_{σ}. The categories of comodules over A and A_{σ} are equivalent as rigid braided monoidal categories.

Standard Quantum Groups

- Direct construction of $U_{q}(\mathfrak{g})$ using generators and relations using data from \mathfrak{g}.
- Classification of finite dimensional representations of $U_{q}(\mathfrak{g})$
- Construction of $\mathcal{O}_{q}(G)$ as restricted dual

For $v \in V, \xi \in V^{*}$,

$$
c_{\xi, v}(x)=\xi(x v), x \in U_{q}(\mathfrak{g}), \quad C(V)=\left\{c_{\xi, v} \mid \xi \in V^{*}, v \in V\right\} \subset U(\mathfrak{g})^{\circ}
$$

Definition

$$
\mathcal{O}_{q}(G):=\bigoplus_{V \text { simple }} C(V)
$$

The standard quantum R-matrix and the \mathcal{J} operators

For $\nu \in \mathcal{Q}^{+}$, set $m(\nu):=\operatorname{dim} U_{q}\left(\mathfrak{n}^{+}\right)_{\nu}=\operatorname{dim} U_{q}\left(\mathfrak{n}^{-}\right)_{-\nu}$. Let $\left\{x_{\nu, j}\right\}_{j=1}^{m(\nu)}$ and $\left\{x_{-\nu, j}\right\}_{j=1}^{m(\nu)}$ be two dual bases of $U_{q}\left(\mathfrak{n}^{+}\right)_{\nu}$ and $U_{q}\left(\mathfrak{n}^{-}\right)_{-\nu}$ with respect to the Rosso-Tanisaki form. Define the quasi R-matrix

$$
\Theta=\sum_{\nu \in \mathcal{Q}^{+}} \sum_{j=1}^{m(\nu)} x_{\nu, j} \otimes x_{-\nu, j} \in U_{q}\left(\mathfrak{n}^{+}\right) \widehat{\otimes} U_{q}\left(\mathfrak{n}^{-}\right)
$$

The standard quantum R-matrix and the \mathcal{J} operators

For $\nu \in \mathcal{Q}^{+}$, set $m(\nu):=\operatorname{dim} U_{q}\left(\mathfrak{n}^{+}\right)_{\nu}=\operatorname{dim} U_{q}\left(\mathfrak{n}^{-}\right)_{-\nu}$. Let $\left\{x_{\nu, j}\right\}_{j=1}^{m(\nu)}$ and $\left\{x_{-\nu, j}\right\}_{j=1}^{m(\nu)}$ be two dual bases of $U_{q}\left(\mathfrak{n}^{+}\right)_{\nu}$ and $U_{q}\left(\mathfrak{n}^{-}\right)_{-\nu}$ with respect to the Rosso-Tanisaki form. Define the quasi R-matrix

$$
\Theta=\sum_{\nu \in \mathcal{Q}^{+}} \sum_{j=1}^{m(\nu)} x_{\nu, j} \otimes x_{-\nu, j} \in U_{q}\left(\mathfrak{n}^{+}\right) \widehat{\otimes} U_{q}\left(\mathfrak{n}^{-}\right)
$$

For $V_{1}, V_{2} \in \mathcal{C}$ and $k \in[1, n]$, the operator $\left(\tau^{k} \otimes 1\right)(\Theta)$ acts on $V_{1} \otimes V_{2}$ because all but finitely many terms in the summation (17) act by 0 on $V_{1} \otimes V_{2}$. Define $\mathcal{J}_{V_{1}, V_{2}} \in \operatorname{End}_{\mathbb{C}}\left(V_{1} \otimes V_{2}\right)$ by

$$
\begin{aligned}
\mathcal{J} V_{1}, V_{2}:= & q^{(\tau \otimes 1) \Omega_{0}}((\tau \otimes 1) \Theta) \ldots q^{\left(\tau^{n} \otimes 1\right) \Omega_{0}}\left(\left(\tau^{n} \otimes 1\right) \Theta\right) \\
& \times q^{-\left(\tau^{n} \otimes 1\right) \Omega_{0}-\cdots-(\tau \otimes 1) \Omega_{0}} q^{-s_{0}-\Omega_{\mathfrak{z}} \perp / 2}
\end{aligned}
$$

Theorem (Etingof-Schedler-Schiffman)

For all $V_{1}, V_{2}, V_{3} \in \mathcal{C}$, the \mathcal{J}-operators satisfy the 2 -cocycle condition

$$
\mathcal{J}_{V_{1} \otimes V_{2}, V_{3}} \mathcal{J}_{V_{1}, V_{2}}=\mathcal{J}_{V_{1}, V_{2} \otimes V_{3}} \mathcal{J}_{V_{2}, V_{3}}
$$

Theorem

The map $\theta_{\pi}: \mathcal{O}_{q}(G) \times \mathcal{O}_{q}(G) \rightarrow \mathbb{C}$ defined by

$$
\theta_{\pi}\left(c_{\xi_{1}, x_{1}}, c_{\xi_{2}, x_{2}}\right):=\left\langle\xi_{1} \otimes \xi_{2}, \mathcal{J}_{v_{1}, v_{2}}\left(v_{1} \otimes v_{2}\right)\right\rangle
$$

is a Hopf algebra 2-cocycle on $\mathcal{O}_{q}(G)$.
Denote the twisted Hopf algebra

$$
\begin{gathered}
\mathcal{O}_{\pi, q}(G):=\mathcal{O}_{q}(G)_{\theta_{\tau}} . \\
\left(c_{\xi_{1}, x_{1}} c_{\xi_{2}, x_{2}}\right)(x)=\left\langle\xi_{1} \otimes \xi_{2}, \mathcal{J}_{V_{1}, V_{2}}^{-1} \Delta(x) \mathcal{J}_{v_{1}, V_{2}}\left(v_{1} \otimes v_{2}\right)\right\rangle
\end{gathered}
$$

Example

- The Cremmer-Gervais quantum groups $\mathcal{O}_{\mathrm{CG}, q}(S L(n))$ (constructed using an explicit R-matrix)
- The double quantum groups $\mathcal{O}_{q}(D(G)) \cong \mathcal{O}_{q}(G) \bowtie \mathcal{O}_{q}(G)$ (constructed using the Drinfeld double construction)

Part 4: The FRT dual $U_{\pi, q}(\mathfrak{g})$

For a braided Hopf algebra (A, β) we have Hopf algebra maps $I^{ \pm}: A^{o p} \rightarrow A^{\circ}$ by

$$
I^{+}(a)(b)=\beta(a, S(b)) \quad \text { and } \quad I^{-}(a)(b)=\beta(b, S(a))
$$

Let $U^{ \pm}=\mathfrak{l}^{ \pm}(A)$. The $F R T$ dual of A is the Hopf subalgebra $U(A)$ generated by U^{+}and U^{-}.

Part 4: The FRT dual $U_{\pi, q}(\mathfrak{g})$

For a braided Hopf algebra (A, β) we have Hopf algebra maps $I^{ \pm}: A^{o p} \rightarrow A^{\circ}$ by

$$
I^{+}(a)(b)=\beta(a, S(b)) \quad \text { and } \quad I^{-}(a)(b)=\beta(b, S(a))
$$

Let $U^{ \pm}=\mathfrak{l}^{ \pm}(A)$. The $F R T$ dual of A is the Hopf subalgebra $U(A)$ generated by U^{+}and U^{-}.

The braiding on A induces a Hopf pairing on $U^{+} \otimes\left(U^{-}\right)^{o p}$ using which one can construct the Drinfeld double $U^{+} \bowtie U^{-}$. The multiplication map $u \otimes v \mapsto u v$ is then a surjective Hopf algebra map

$$
\mu: U^{+} \bowtie U^{-} \rightarrow U(A)
$$

Definition

Define

$$
U_{\pi, q}(\mathfrak{g}):=U\left(\mathcal{O}_{\pi, q}(G)\right)
$$

The pairing between $\mathcal{O}_{\pi, q}(G)$ and $U_{\pi, q}(\mathfrak{g})$

$\mathcal{O}_{\pi, q}(G)$ has the same coalgebra structure as $\mathcal{O}_{q}(G)$, but a twisted algebra structure.

NOT TRUE that $U_{\pi, q}(\mathfrak{g})$ has the same algebra structure as $U_{q}(\mathfrak{g})$, but a twisted coalgebra structure.

Heuristically,

$$
U_{\pi, q}(\mathfrak{g}) \cong \mathcal{O}_{q}\left(G_{r}\right)
$$

a quantization of the algebra of functions on G_{r} is the dual Poisson group
\square
\square
\qquad
\qquad

The pairing between $\mathcal{O}_{\pi, q}(G)$ and $U_{\pi, q}(\mathfrak{g})$

$\mathcal{O}_{\pi, q}(G)$ has the same coalgebra structure as $\mathcal{O}_{q}(G)$, but a twisted algebra structure.

NOT TRUE that $U_{\pi, q}(\mathfrak{g})$ has the same algebra structure as $U_{q}(\mathfrak{g})$, but a twisted coalgebra structure.

Heuristically,

$$
U_{\pi, q}(\mathfrak{g}) \cong \mathcal{O}_{q}\left(G_{r}\right)
$$

a quantization of the algebra of functions on G_{r} is the dual Poisson group

Theorem (H-Yakimov)

The pairing between $\mathcal{O}_{\pi, q}(G)$ and $U_{\pi, q}(\mathfrak{g})$ is non-degenerate.

Corollary

$U_{\pi, q}(\mathfrak{g})$ has a category of finite dimensional modules equivalent to the category of finite dimensional weight modules over $U_{q}(\mathfrak{g}) . \mathcal{O}_{\pi, q}(G)$ is the restricted dual of $U_{\pi, q}(\mathfrak{g})$ with respect to this category.

The braiding on $U_{0}=U^{+} \cap U^{-}$

Set

$$
U_{0}=U^{+} \cap U^{-}
$$

The pairing between U^{+}and U^{-}induces a braiding on U_{0}
Thus the FRT dual $U(A)$ of a braided Hopf algebra A contains a canonical braided Hopf subalgebra $U_{0}(A)$.

Problem

Describe U_{0} for the Belavin-Drinfeld quantum group $\mathcal{O}_{\pi, q}(G)$.

Example

For the trivial triple we have $U_{0}\left(\mathcal{O}_{q}(G)\right)=\mathbb{C}\left[K_{i}^{ \pm 1}\right] \cong \mathcal{O}(T)$, for T a maximal torus inside G, equipped with the braiding given by the Rosso form.

Heuristics I

Heuristic II

Let

$$
C^{ \pm}=\left(U_{q}\left(\mathfrak{p}^{+}\right)\right)^{\perp}=\left\{c \in \mathcal{O}_{\pi, q}(G) \mid\left\langle c, U_{q}\left(\mathfrak{p}^{ \pm}\right)\right\rangle=0\right\}
$$

and define

$$
\mathcal{O}_{\pi, q}\left(P^{ \pm}\right)=\mathcal{O}_{\pi, q}(G) / C^{ \pm}
$$

Theorem ($\mathrm{H}-\mathrm{Y}$)

We have ker $I^{ \pm}=C^{ \pm}$so

$$
U^{ \pm} \cong \mathcal{O}_{\pi, q}\left(P^{ \pm}\right)
$$

Moreover the map

$$
\left(\ell^{+} \otimes \ell^{-}\right) \Delta: \mathcal{O}_{T, q}(G) \rightarrow \mathcal{O}_{T, q}\left(P^{+}\right) \otimes \mathcal{O}_{T, q}\left(P^{-}\right)
$$

is an embedding.

Conjecture

There exists a reductive Lie group \tilde{G} with associated Lie algebra $\tilde{\mathfrak{g}}$ for which $\left(\tilde{\Gamma}_{1}, \tilde{\Gamma}_{2}, \tilde{\tau}\right)$ is a triple for $\tilde{\mathfrak{g}}$ and such that

$$
U_{0}\left(\mathcal{O}_{\pi, q}(G)\right) \cong \mathcal{O}_{\tilde{\pi}, q}(\tilde{G})
$$

for $\tilde{\pi}=(\tilde{\tau}, \tilde{u})$ suitable choice of continuous parameter \tilde{u}.

Example

- For the trivial triple we have $U_{0}\left(\mathcal{O}_{q}(G)\right) \cong \mathcal{O}(K)$, for K a maximal torus inside G
- For the Cremmer-Gervais quantum group, it was shown that

$$
\left.U_{0}\left(\mathcal{O}_{C G, q}(S L(n))\right) \cong \mathcal{O}_{C G, q, u}(G L(n-1))\right)
$$

- For the double quantum groups, we have

$$
U_{0}\left(\mathcal{O}_{q}(D(G)) \cong \mathcal{O}_{q}(G) \otimes \mathcal{O}(K)\right.
$$

Conjecture

Dual to the embedding

$$
\mathcal{O}_{\tilde{\pi}, q}(\tilde{G}) \hookrightarrow U_{\pi, q}(\mathfrak{g})
$$

is a surjective map

$$
\mathcal{O}_{\pi, q}(G) \rightarrow U_{\tilde{\pi}, q}(\tilde{g})
$$

Problem

Describe the primitive spectrum of $\mathcal{O}_{\pi, q}(G)$

Any such classification would have to include the classification of primitive ideals in $\mathcal{O}_{q}(G)$ and $U_{q}(\mathfrak{g})$!

