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Part 1: Overview

Notation: G is a semi-simple complex algebraic group, g its Lie algebra;
q ∈ C, generally not a root of unity.

Goal

Extend our understanding of the quantum groups Oq(G ) and Uq(g) to
the more general Belavin-Drinfeld quantum groups Oπ,q(G ) and Uπ,q(g).

Classify the primitive ideals of Oπ,q(G ) and compare this with the
description of symplectic leaves in the corresponding Poisson group.

Construct and describe Uπ,q(g).

Finite dimensional representations
Category O for Uπ,q(g)
Primitive ideals are annihilators of Verma modules?
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Symplectic leaves and Primitive Spectrum - History

Quantum Group Poisson Group Lie Bialgebra

Standard Oq(G ) (G , r) (g, r)

Joseph 1994 H-Levasseur 1993

Multi-parameter Op(G ) (G , (r , u)) (g, (r , u))

H-L-Toro 1995 H-L-Toro 1995

Oπ,q(G ) (G , (π, u)) (g, (π, u))

Belavin-Drinfeld (E-S-S 2000) Yakimov 2002 (Bel-Drin 1984)
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Description of Symplectic leaves and Primitive Spectrum

The standard case. (H is a maximal torus, W is the Weyl group)

Theorem (H-Levasseur)

1) Symp G =
⊔

w∈W×W SympwG .
2) For each w ∈ W ×W , SympwG is a nonempty H-orbit. If Aẇ is a
fixed symplectic leaf of type w , then H/Stab HAẇ is a torus of rank
rk G − s(w).
3) The dimension of a leaf of type w is l(w) + s(w).

Theorem (Joseph)

1) Prim Oq(G ) =
⊔

w∈W×W PrimwOq(G ).
2) For each w ∈ W ×W , PrimwOq(G ) is a nonempty H-orbit. If Pẇ is a
fixed primitive ideal of type w , then H/Stab HPẇ is a torus of rank
rk G − s(w).
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Part 2: Belavin-Drinfeld Lie bialgebra structures

We begin with a brief discussion of the Lie bialgebra structures classified
by Belavin and Drinfeld.

Quantum Group Poisson Group Lie Bialgebra

Standard Oq(G ) (G , r) (g, r)

Multi-parameter Op(G ) (G , (r , u)) (g, (r , u))

Belavin-Drinfeld Oπ,q(G ) (G , (π, u)) (g, (π, u))
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Factorizable Coboundary Lie Bialgebras

For r ∈ g⊗ g, and X ∈ g, define δr : g → g⊗ g by δr (X ) = X .r .

Theorem

Let g be a Lie algebra and r ∈ g⊗ g. Then δr is a cocommutator for g if
and only if

1 r + r21 ∈ (g⊗ g)g.

2 CYB(r) = [r12, r13] + [r12, r23] + [r13, r23] ∈ (g⊗ g⊗ g)g.

Thus if g is a Lie algebra, then (g, δr ) defines a Lie bialgebra if and only
if the two conditions above are satisfies.

Definition

A quasi-triangular Lie bialgebra is a coboundary Lie algebra (g, r) where
CYB(r) = 0. A quasi-triangular Lie bialgebra is factorizable if r + r21 is
non-degenerate.
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BD Classification of factorizable Lie bialgebra structures

Belavin and Drinfeld classified the Lie bialgebra structures on g that are
given by factorizable solutions of the CYBE.These Lie bialgebra
structures on g are given by pairs (τ, s) where τ is a BD triple and
s ∈ ∧2h is “compatible” with τ .

Definition

A Belavin–Drinfeld triple for g is a triple (Γ1, Γ2, τ) where Γi ⊂ Γ and
τ : Γ1 → Γ2 satisfies

1 (τα, τβ) = (α, β) for all α, β ∈ Γ1 (i.e., τ is a graph isomorphism)

2 for all α ∈ Γ1, there exists a k such that τ kα ̸∈ Γ1
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Examples of Belavin-Drinfeld Triples
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The standard classical r -matrix for g

r :=
1

2
Ω0 +

∑
α∈∆+

eα ⊗ fα.

where Ω0 ∈ S2h is the Cartan component of the quadratic Casimir of g

Theorem (Belavin–Drinfeld, 1984)

The orbits of the adjoint group of g on the set of factorizable classical
r -matrices for g have a unique representative of the form

rτ,s = r − s +
∑
α∈∆+

n∑
k=1

τ k(eα) ∧ fα

for a Belavin-Drinfeld triple (Γ1, Γ2, τ) of order n and an element

s ∈ ∧2h such that 2((αi −ατ(i))⊗ 1)s = ((αi +ατ(i))⊗ 1)Ω0,∀i ∈ Γ1.
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The Dual of Factorizable Quasi-triangular Lie Bialgebra

Let (g, r) be a factorizable quasi-triangular Lie bialgebra. Let
r =

∑
ri ⊗ r ′i . Define ϕ± : g∗ → g by

ϕ+(ξ) =
∑

ξ(ri )r
′
i , ϕ−(ξ) = −

∑
ξ(r ′i )ri

These are Lie bialgebra maps,

ϕ± : (g∗)cop → g.

Let p± = Imϕ± and let l = p+ ∩ p−. All three of p+, p− and l are Lie
subbialgebras of g. Let k = ker ϕ+ + ker ϕ−.

Theorem (H)

The Lie bialgebra g∗/k ∼= l∗ is factorizable.

Example

In the standard case p± = b±, l = h, and g∗/k ∼= h∗ is abelian.
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Reduced Triples

Given any triple (Γ1, Γ2, τ) we have a reduced triple (Γ̃1, Γ̃2, τ̃) given by
restricting τ to Γ1. That is,

Γ̃ = Γ1, Γ̃1 = τ−1(Γ1 ∩ Γ2), Γ̃2 = Γ1 ∩ Γ2,

Example

The Cremmer-Gervais triple on A5 and its derived triple on A4:
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We can now precisely describe the structure of in terms of that of (g, f ).

Theorem (H)

Let (τ, s) be a Belavin-Drinfeld pair and let (g, r) be the associated
factorizable Lie bialgebra. Then g̃ = g∗/k ∼= l∗0 is a reductive Lie algebra
of type Γ1. The Lie bialgebra structure on g̃ is given by the reduced triple
(Γ̃1, Γ̃2, τ̃) and a naturally induced s̃ ∈ ∧2h̃.

Example

The ‘Cremmer-Gervais’ bialgebra structure on sl(n + 1). Set
g = sl(n+1), Γ = {α1, . . . , αn}, Γ1 = {α1, . . . , αn−1}, Γ2 = {α2, . . . , αn}
and τ(αi ) = αi+1. Then g∗/k ∼= gl(n), and the associated triple is the
map τ̃ : {α1, . . . , αn−2} → {α2, . . . , αn−1} given above.
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Part 3: Construction of Oπ,q(G )

We construct Oπ,q(G ) from Oq(G ) using a 2-cocycle twist.

A 2-cocycle on a Hopf algebra A is an invertible pairing σ : A⊗ A → k
such that σ(1, 1) = 1 and for all x , y and z in A,∑

σ(x(1), y(1))σ(x(2)y(2), z) =
∑

σ(y(1), z(1))σ(x , y(2)z(2))

A braiding (or dual quasi-triangular structure) on a Hopf algebra A is a
bilinear pairing β( , ) such that for all a, b, and c in A

1
∑

β(a(1), b(1))b(2)a(2) =
∑

β(a(2), b(2))a(1)b(1)
2 β( , ) is invertible in (A⊗ A)∗;

3 β(a, bc) =
∑

β(a(1), b)β(a(2), c).

4 β(ab, c) =
∑

β(b, c(1))β(a, c(2))
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Twisting Braided Hopf Algebras

Theorem

Let A be a braided Hopf algebra with braiding β. Let σ be a 2-cocycle on
A. One can twist the multiplication on A to get a new Hopf algebra Aσ.
The new multiplication is given by

x · y =
∑

σ(x(1), y(1))x(2)y(2)σ
−1(x(3), y(3)).

Moreover βσ = σ21 ∗ β ∗ σ−1 (convolution product) is a braiding on Aσ.
The categories of comodules over A and Aσ are equivalent as rigid
braided monoidal categories.
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Standard Quantum Groups

Direct construction of Uq(g) using generators and relations using
data from g.

Classification of finite dimensional representations of Uq(g)

Construction of Oq(G ) as restricted dual

For v ∈ V , ξ ∈ V ∗,

cξ,v (x) = ξ(xv), x ∈ Uq(g), C (V ) = {cξ,v | ξ ∈ V ∗, v ∈ V } ⊂ U(g)o

Definition

Oq(G ) :=
⊕

V simple

C (V )
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The standard quantum R-matrix and the J operators

For ν ∈ Q+, set m(ν) := dimUq(n
+)ν = dimUq(n

−)−ν . Let {xν,j}m(ν)
j=1

and {x−ν,j}m(ν)
j=1 be two dual bases of Uq(n

+)ν and Uq(n
−)−ν with

respect to the Rosso–Tanisaki form. Define the quasi R-matrix

Θ =
∑
ν∈Q+

m(ν)∑
j=1

xν,j ⊗ x−ν,j ∈ Uq(n
+)⊗̂Uq(n

−)

For V1,V2 ∈ C and k ∈ [1, n], the operator (τ k ⊗ 1)(Θ) acts on V1 ⊗ V2

because all but finitely many terms in the summation (17) act by 0 on
V1 ⊗ V2. Define JV1,V2 ∈ EndC(V1 ⊗ V2) by

JV1,V2 :=q(τ⊗1)Ω0
(
(τ ⊗ 1)Θ

)
. . . q(τ

n⊗1)Ω0
(
(τn ⊗ 1)Θ

)
× q−(τn⊗1)Ω0−···−(τ⊗1)Ω0q−s0−Ω

z⊥/2.

Theorem (Etingof-Schedler-Schiffman)

For all V1,V2,V3 ∈ C, the J -operators satisfy the 2-cocycle condition

JV1⊗V2,V3JV1,V2 = JV1,V2⊗V3JV2,V3 .
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Theorem

The map θπ : Oq(G )×Oq(G ) → C defined by

θπ(cξ1,x1 , cξ2,x2) := ⟨ξ1 ⊗ ξ2,JV1,V2(v1 ⊗ v2)⟩

is a Hopf algebra 2-cocycle on Oq(G ).

Denote the twisted Hopf algebra

Oπ,q(G ) := Oq(G )θτ .

(cξ1,x1cξ2,x2)(x) = ⟨ξ1 ⊗ ξ2,J−1
V1,V2

∆(x)JV1,V2(v1 ⊗ v2)⟩

Example

The Cremmer-Gervais quantum groups OCG,q(SL(n)) (constructed
using an explicit R-matrix)

The double quantum groups Oq(D(G )) ∼= Oq(G ) ▷◁ Oq(G )
(constructed using the Drinfeld double construction)
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Part 4: The FRT dual Uπ,q(g)

For a braided Hopf algebra (A, β) we have Hopf algebra maps
l± : Aop → A◦ by

l+(a)(b) = β(a,S(b)) and l−(a)(b) = β(b,S(a))

Let U± = l±(A). The FRT dual of A is the Hopf subalgebra U(A)
generated by U+ and U−.

The braiding on A induces a Hopf pairing on U+ ⊗ (U−)op using which
one can construct the Drinfeld double U+ ⋊⋉ U−. The multiplication map
u ⊗ v 7→ uv is then a surjective Hopf algebra map

µ : U+ ⋊⋉ U− → U(A)

Definition

Define
Uπ,q(g) := U(Oπ,q(G ))
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The pairing between Oπ,q(G ) and Uπ,q(g)

Oπ,q(G ) has the same coalgebra structure as Oq(G ), but a twisted
algebra structure.

NOT TRUE that Uπ,q(g) has the same algebra structure as Uq(g), but a
twisted coalgebra structure.

Heuristically,
Uπ,q(g) ∼= Oq(Gr )

a quantization of the algebra of functions on Gr is the dual Poisson group

Theorem (H-Yakimov)

The pairing between Oπ,q(G ) and Uπ,q(g) is non-degenerate.

Corollary

Uπ,q(g) has a category of finite dimensional modules equivalent to the
category of finite dimensional weight modules over Uq(g). Oπ,q(G ) is the
restricted dual of Uπ,q(g) with respect to this category.
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The braiding on U0 = U+ ∩ U−

Set
U0 = U+ ∩ U−

The pairing between U+ and U− induces a braiding on U0

Thus the FRT dual U(A) of a braided Hopf algebra A contains a
canonical braided Hopf subalgebra U0(A).

Problem

Describe U0 for the Belavin-Drinfeld quantum group Oπ,q(G ).

Example

For the trivial triple we have U0(Oq(G )) = C[K±1
i ] ∼= O(T ), for T a

maximal torus inside G , equipped with the braiding given by the Rosso
form.
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p+

g∗ g∗/k = g̃

p−

ϕ−

ϕ+ p+

p+ ∩ p− = g̃∗ g

p−

P+

Gr G̃

P−

P+

P+ ∩ P− = G̃r G

P−
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Heuristics I

P+

Gr G̃

P−

U+ = Oπ,q(P
+)

Uπ,q(g) = Oπ,q(Gr ) U0 = Oπ,q(G̃ )

U− = Oπ,q(P
−)
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Heuristic II

P+

P+ ∩ P− = G̃r G

P−

Oπ,q(P
+)

Oπ,q(G̃r ) = Uπ,q(g̃) Oπ,q(G )

Oπ,q(P
−)

ℓ−

ℓ+
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Uq(b
+) ∼= Oq(B

+)

Uq(g) = Oq(Gr ) U0 = C[K±
i ]

Uq(b
−) ∼= Oq(B

−)

Oq(B
+)

O(T ) Oq(G )

Oq(B
−)
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U+ ∼= Oπ,q(P
+)

Uπ,q(g) = Oπ,q(Gr ) U0 = Oπ,q(G̃ )

U− ∼= Oπ,q(P
−)

Oπ,q(P
+)

Oπ,q(G̃r ) = Uπ,q(g̃) Oπ,q(G )

Oπ,q(P
−)
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Let
C± = (Uq(p

+))⊥ = {c ∈ Oπ,q(G ) | ⟨c ,Uq(p
±)⟩ = 0},

and define
Oπ,q(P

±) = Oπ,q(G )/C±

Theorem (H-Y)

We have ker l± = C± so

U± ∼= Oπ,q(P
±)

Moreover the map

(ℓ+ ⊗ ℓ−)∆: OT ,q(G ) → OT ,q(P
+)⊗OT ,q(P

−).

is an embedding.
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Conjecture

There exists a reductive Lie group G̃ with associated Lie algebra g̃ for
which (Γ̃1, Γ̃2, τ̃) is a triple for g̃ and such that

U0(Oπ,q(G )) ∼= Oπ̃,q(G̃ )

for π̃ = (τ̃ , ũ) suitable choice of continuous parameter ũ.

Example

For the trivial triple we have U0(Oq(G )) ∼= O(K ), for K a maximal
torus inside G

For the Cremmer-Gervais quantum group, it was shown that

U0(OCG ,q(SL(n))) ∼= OCG ,q,u(GL(n − 1)))

For the double quantum groups, we have

U0(Oq(D(G )) ∼= Oq(G )⊗O(K )
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Conjecture

Dual to the embedding

Oπ̃,q(G̃ ) ↪−→ Uπ,q(g)

is a surjective map
Oπ,q(G ) ↠ Uπ̃,q(g̃)

Problem

Describe the primitive spectrum of Oπ,q(G )

Any such classification would have to include the classification of
primitive ideals in Oq(G ) and Uq(g)!
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