Belavin-Drinfeld Quantum Groups

Tim Hodges Milen Yakimov

University of Cincinnati Northeastern University

August, 2023

Tim Hodges Milen Yakimov Belavin-Drinfeld Quantum Groups

▶ ★ 문 ▶ ★ 문 ▶

Overview

elavin-Drinfeld bialgebras

3 Construction of $\mathcal{O}_{\pi,q}(G)$

• Construction and description of $U_{\pi,q}(\mathfrak{g})$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● のへの

Notation: G is a semi-simple complex algebraic group, g its Lie algebra; $q \in \mathbb{C}$, generally not a root of unity.

Goal

Extend our understanding of the quantum groups $\mathcal{O}_q(G)$ and $U_q(\mathfrak{g})$ to the more general Belavin-Drinfeld quantum groups $\mathcal{O}_{\pi,q}(G)$ and $U_{\pi,q}(\mathfrak{g})$.

- Classify the primitive ideals of O_{π,q}(G) and compare this with the description of symplectic leaves in the corresponding Poisson group.
- Construct and describe $U_{\pi,q}(\mathfrak{g})$.
 - Finite dimensional representations
 - Category O for $U_{\pi,q}(\mathfrak{g})$
 - Primitive ideals are annihilators of Verma modules?

伺 とう マラ とう とう

Notation: G is a semi-simple complex algebraic group, g its Lie algebra; $q \in \mathbb{C}$, generally not a root of unity.

Goal

Extend our understanding of the quantum groups $\mathcal{O}_q(G)$ and $U_q(\mathfrak{g})$ to the more general Belavin-Drinfeld quantum groups $\mathcal{O}_{\pi,q}(G)$ and $U_{\pi,q}(\mathfrak{g})$.

• Classify the primitive ideals of $\mathcal{O}_{\pi,q}(G)$ and compare this with the description of symplectic leaves in the corresponding Poisson group.

• Construct and describe $U_{\pi,q}(\mathfrak{g})$.

- Finite dimensional representations
- Category O for $U_{\pi,q}(\mathfrak{g})$
- Primitive ideals are annihilators of Verma modules?

(日本) (日本) (日本) 日

Notation: G is a semi-simple complex algebraic group, g its Lie algebra; $q \in \mathbb{C}$, generally not a root of unity.

Goal

Extend our understanding of the quantum groups $\mathcal{O}_q(G)$ and $U_q(\mathfrak{g})$ to the more general Belavin-Drinfeld quantum groups $\mathcal{O}_{\pi,q}(G)$ and $U_{\pi,q}(\mathfrak{g})$.

- Classify the primitive ideals of $\mathcal{O}_{\pi,q}(G)$ and compare this with the description of symplectic leaves in the corresponding Poisson group.
- Construct and describe $U_{\pi,q}(\mathfrak{g})$.
 - Finite dimensional representations
 - Category O for $U_{\pi,q}(\mathfrak{g})$
 - Primitive ideals are annihilators of Verma modules?

同 ト イヨ ト イヨ ト 二 ヨ

	Quantum Group	Poisson Group	Lie Bialgebra
Standard	$\mathcal{O}_q(G)$ Joseph 1994	(G,r) H-Levasseur 1993	(g, r)
Multi-parameter	$\mathcal{O}_{ ho}(G)$ H-L-Toro 1995	(<i>G</i> ,(<i>r</i> , <i>u</i>)) H-L-Toro 1995	$(\mathfrak{g},(r,u))$
Belavin-Drinfeld	<i>O</i> _{π,q} (<i>G</i>) (E-S-S 2000)	(<i>G</i> , (π, <i>u</i>)) Yakimov 2002	(g, (π, u)) (Bel-Drin 1984)

▶ ★ 문 ▶ ★ 문 ▶

The standard case. (H is a maximal torus, W is the Weyl group)

Theorem (H-Levasseur)

1) Symp $G = \bigsqcup_{w \in W \times W}$ Symp_wG. 2) For each $w \in W \times W$, Symp_wG is a nonempty H-orbit. If $A_{\dot{w}}$ is a fixed symplectic leaf of type w, then $H/Stab _{H}A_{\dot{w}}$ is a torus of rank rk G - s(w). 3) The dimension of a leaf of type w is l(w) + s(w).

Theorem (Joseph)

1) Prim $\mathcal{O}_q(G) = \bigsqcup_{w \in W \times W} Prim_w \mathcal{O}_q(G)$. 2) For each $w \in W \times W$, Prim_w $\mathcal{O}_q(G)$ is a nonempty H-orbit. If $P_{\dot{w}}$ is a fixed primitive ideal of type w, then H/Stab $_HP_{\dot{w}}$ is a torus of rank rk G - s(w).

(日本) (日本) (日本) 日

We begin with a brief discussion of the Lie bialgebra structures classified by Belavin and Drinfeld.

	Quantum Group	Poisson Group	Lie Bialgebra
Standard	$\mathcal{O}_q(G)$	(<i>G</i> , <i>r</i>)	(\mathfrak{g}, r)
Multi-parameter	$\mathcal{O}_{\rho}(G)$	(G, (r, u))	$(\mathfrak{g},(r,u))$
Belavin-Drinfeld	$\mathcal{O}_{\pi,q}(G)$	$(G,(\pi,u))$	$(\mathfrak{g},(\pi,u))$

A B M A B M

Factorizable Coboundary Lie Bialgebras

For $r \in \mathfrak{g} \otimes \mathfrak{g}$, and $X \in \mathfrak{g}$, define $\delta_r : \mathfrak{g} \to \mathfrak{g} \otimes \mathfrak{g}$ by $\delta_r(X) = X.r.$

Theorem

Let \mathfrak{g} be a Lie algebra and $r \in \mathfrak{g} \otimes \mathfrak{g}$. Then δ_r is a cocommutator for \mathfrak{g} if and only if

- **2** $CYB(r) = [r_{12}, r_{13}] + [r_{12}, r_{23}] + [r_{13}, r_{23}] \in (\mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g})^{\mathfrak{g}}.$

Thus if \mathfrak{g} is a Lie algebra, then (\mathfrak{g}, δ_r) defines a Lie bialgebra if and only if the two conditions above are satisfies.

Definition

A quasi-triangular Lie bialgebra is a coboundary Lie algebra (\mathfrak{g}, r) where CYB(r) = 0. A quasi-triangular Lie bialgebra is factorizable if $r + r_{21}$ is non-degenerate.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Belavin and Drinfeld classified the Lie bialgebra structures on \mathfrak{g} that are given by factorizable solutions of the CYBE. These Lie bialgebra structures on \mathfrak{g} are given by pairs (τ, s) where τ is a BD triple and $s \in \wedge^2 \mathfrak{h}$ is "compatible" with τ .

Definition

A Belavin–Drinfeld triple for \mathfrak{g} is a triple $(\Gamma_1, \Gamma_2, \tau)$ where $\Gamma_i \subset \Gamma$ and $\tau \colon \Gamma_1 \to \Gamma_2$ satisfies

- **(** $\tau \alpha, \tau \beta$ **)** = (α, β) for all $\alpha, \beta \in \Gamma_1$ (i.e., τ is a graph isomorphism)
- **2** for all $\alpha \in \Gamma_1$, there exists a k such that $\tau^k \alpha \notin \Gamma_1$

向下 イヨト イヨト ニヨ

Examples of Belavin-Drinfeld Triples

The standard classical r-matrix for \mathfrak{g}

$$r := rac{1}{2}\Omega_0 + \sum_{lpha \in \Delta^+} e_lpha \otimes f_lpha.$$

where $\Omega_0 \in S^2\mathfrak{h}$ is the Cartan component of the quadratic Casimir of \mathfrak{g}

Theorem (Belavin-Drinfeld, 1984)

The orbits of the adjoint group of \mathfrak{g} on the set of factorizable classical *r*-matrices for \mathfrak{g} have a unique representative of the form

$$r_{ au,s} = r-s + \sum_{lpha \in \Delta^+} \sum_{k=1}^n au^k(e_lpha) \wedge f_lpha$$

for a Belavin-Drinfeld triple $(\Gamma_1, \Gamma_2, \tau)$ of order n and an element

 $s \in \wedge^2 \mathfrak{h}$ such that $2((\alpha_i - \alpha_{\tau(i)}) \otimes 1)s = ((\alpha_i + \alpha_{\tau(i)}) \otimes 1)\Omega_0, \forall i \in \Gamma_1.$

向下 イヨト イヨト ニヨ

The Dual of Factorizable Quasi-triangular Lie Bialgebra

Let (\mathfrak{g}, r) be a factorizable quasi-triangular Lie bialgebra. Let $r = \sum r_i \otimes r'_i$. Define $\phi_{\pm} : \mathfrak{g}^* \to \mathfrak{g}$ by

$$\phi_+(\xi) = \sum \xi(r_i)r'_i, \quad \phi_-(\xi) = -\sum \xi(r'_i)r_i$$

These are Lie bialgebra maps,

$$\phi_{\pm}: (\mathfrak{g}^*)^{\operatorname{cop}} \to \mathfrak{g}.$$

Let $\mathfrak{p}_{\pm} = \operatorname{Im} \phi_{\pm}$ and let $\mathfrak{l} = \mathfrak{p}_{+} \cap \mathfrak{p}_{-}$. All three of \mathfrak{p}_{+} , \mathfrak{p}_{-} and \mathfrak{l} are Lie subbialgebras of \mathfrak{g} . Let $\mathfrak{k} = \ker \phi_{+} + \ker \phi_{-}$.

Theorem (H)

The Lie bialgebra $\mathfrak{g}^*/\mathfrak{k} \cong \mathfrak{l}^*$ is factorizable.

Example

In the standard case $\mathfrak{p}^{\pm} = \mathfrak{b}^{\pm}$, $\mathfrak{l} = \mathfrak{h}$, and $\mathfrak{g}^*/\mathfrak{k} \cong \mathfrak{h}^*$ is abelian.

通 と く ヨ と く ヨ と

The Dual of Factorizable Quasi-triangular Lie Bialgebra

Let (\mathfrak{g}, r) be a factorizable quasi-triangular Lie bialgebra. Let $r = \sum r_i \otimes r'_i$. Define $\phi_{\pm} : \mathfrak{g}^* \to \mathfrak{g}$ by

$$\phi_+(\xi) = \sum \xi(r_i)r'_i, \quad \phi_-(\xi) = -\sum \xi(r'_i)r_i$$

These are Lie bialgebra maps,

$$\phi_{\pm}: (\mathfrak{g}^*)^{\operatorname{cop}} \to \mathfrak{g}.$$

Let $\mathfrak{p}_{\pm} = \operatorname{Im} \phi_{\pm}$ and let $\mathfrak{l} = \mathfrak{p}_{+} \cap \mathfrak{p}_{-}$. All three of \mathfrak{p}_{+} , \mathfrak{p}_{-} and \mathfrak{l} are Lie subbialgebras of \mathfrak{g} . Let $\mathfrak{k} = \ker \phi_{+} + \ker \phi_{-}$.

Theorem (H)

The Lie bialgebra $\mathfrak{g}^*/\mathfrak{k} \cong \mathfrak{l}^*$ is factorizable.

Example

In the standard case $\mathfrak{p}^{\pm} = \mathfrak{b}^{\pm}$, $\mathfrak{l} = \mathfrak{h}$, and $\mathfrak{g}^*/\mathfrak{k} \cong \mathfrak{h}^*$ is abelian.

通 と く ヨ と く ヨ と

The Dual of Factorizable Quasi-triangular Lie Bialgebra

Let (\mathfrak{g}, r) be a factorizable quasi-triangular Lie bialgebra. Let $r = \sum r_i \otimes r'_i$. Define $\phi_{\pm} : \mathfrak{g}^* \to \mathfrak{g}$ by

$$\phi_+(\xi) = \sum \xi(r_i)r'_i, \quad \phi_-(\xi) = -\sum \xi(r'_i)r_i$$

These are Lie bialgebra maps,

$$\phi_{\pm}: (\mathfrak{g}^*)^{\operatorname{cop}} \to \mathfrak{g}.$$

Let $\mathfrak{p}_{\pm} = \operatorname{Im} \phi_{\pm}$ and let $\mathfrak{l} = \mathfrak{p}_{+} \cap \mathfrak{p}_{-}$. All three of \mathfrak{p}_{+} , \mathfrak{p}_{-} and \mathfrak{l} are Lie subbialgebras of \mathfrak{g} . Let $\mathfrak{k} = \ker \phi_{+} + \ker \phi_{-}$.

Theorem (H)

The Lie bialgebra $\mathfrak{g}^*/\mathfrak{k} \cong \mathfrak{l}^*$ is factorizable.

Example

In the standard case $\mathfrak{p}^{\pm} = \mathfrak{b}^{\pm}$, $\mathfrak{l} = \mathfrak{h}$, and $\mathfrak{g}^*/\mathfrak{k} \cong \mathfrak{h}^*$ is abelian.

▲□ → ▲ □ → ▲ □ → □

э

Reduced Triples

Given any triple $(\Gamma_1, \Gamma_2, \tau)$ we have a reduced triple $(\tilde{\Gamma}_1, \tilde{\Gamma}_2, \tilde{\tau})$ given by restricting τ to Γ_1 . That is,

$$\tilde{\Gamma} = \Gamma_1, \quad \tilde{\Gamma}_1 = \tau^{-1}(\Gamma_1 \cap \Gamma_2), \quad \tilde{\Gamma}_2 = \Gamma_1 \cap \Gamma_2,$$

Example

The Cremmer-Gervais triple on A_5 and its derived triple on A_4 :

We can now precisely describe the structure of in terms of that of (\mathfrak{g}, f) .

Theorem (H)

Let (τ, s) be a Belavin-Drinfeld pair and let (\mathfrak{g}, r) be the associated factorizable Lie bialgebra. Then $\tilde{\mathfrak{g}} = \mathfrak{g}^*/\mathfrak{k} \cong \mathfrak{l}_0^*$ is a reductive Lie algebra of type Γ_1 . The Lie bialgebra structure on $\tilde{\mathfrak{g}}$ is given by the reduced triple $(\tilde{\Gamma}_1, \tilde{\Gamma}_2, \tilde{\tau})$ and a naturally induced $\tilde{s} \in \wedge^2 \tilde{h}$.

Example

The 'Cremmer-Gervais' bialgebra structure on $\mathfrak{sl}(n+1)$. Set $\mathfrak{g} = \mathfrak{sl}(n+1)$, $\Gamma = \{\alpha_1, \ldots, \alpha_n\}$, $\Gamma_1 = \{\alpha_1, \ldots, \alpha_{n-1}\}$, $\Gamma_2 = \{\alpha_2, \ldots, \alpha_n\}$ and $\tau(\alpha_i) = \alpha_{i+1}$. Then $\mathfrak{g}^*/\mathfrak{k} \cong \mathfrak{gl}(n)$, and the associated triple is the map $\tilde{\tau} : \{\alpha_1, \ldots, \alpha_{n-2}\} \rightarrow \{\alpha_2, \ldots, \alpha_{n-1}\}$ given above.

くぼう くほう くほう しほ

We can now precisely describe the structure of in terms of that of (\mathfrak{g}, f) .

Theorem (H)

Let (τ, s) be a Belavin-Drinfeld pair and let (\mathfrak{g}, r) be the associated factorizable Lie bialgebra. Then $\tilde{\mathfrak{g}} = \mathfrak{g}^*/\mathfrak{k} \cong \mathfrak{l}_0^*$ is a reductive Lie algebra of type Γ_1 . The Lie bialgebra structure on $\tilde{\mathfrak{g}}$ is given by the reduced triple $(\tilde{\Gamma}_1, \tilde{\Gamma}_2, \tilde{\tau})$ and a naturally induced $\tilde{s} \in \wedge^2 \tilde{h}$.

Example

The 'Cremmer-Gervais' bialgebra structure on $\mathfrak{sl}(n+1)$. Set $\mathfrak{g} = \mathfrak{sl}(n+1)$, $\Gamma = \{\alpha_1, \ldots, \alpha_n\}$, $\Gamma_1 = \{\alpha_1, \ldots, \alpha_{n-1}\}$, $\Gamma_2 = \{\alpha_2, \ldots, \alpha_n\}$ and $\tau(\alpha_i) = \alpha_{i+1}$. Then $\mathfrak{g}^*/\mathfrak{k} \cong \mathfrak{gl}(n)$, and the associated triple is the map $\tilde{\tau} : \{\alpha_1, \ldots, \alpha_{n-2}\} \rightarrow \{\alpha_2, \ldots, \alpha_{n-1}\}$ given above.

伺い イヨン イヨン ニヨ

Part 3: Construction of $\mathcal{O}_{\pi,q}(G)$

We construct $\mathcal{O}_{\pi,q}(G)$ from $\mathcal{O}_q(G)$ using a 2-cocycle twist.

A 2-cocycle on a Hopf algebra A is an invertible pairing $\sigma : A \otimes A \rightarrow k$ such that $\sigma(1,1) = 1$ and for all x, y and z in A,

$$\sum \sigma(x_{(1)}, y_{(1)}) \sigma(x_{(2)}y_{(2)}, z) = \sum \sigma(y_{(1)}, z_{(1)}) \sigma(x, y_{(2)}z_{(2)})$$

A *braiding* (or dual quasi-triangular structure) on a Hopf algebra A is a bilinear pairing $\beta(,)$ such that for all a, b, and c in A

$$\sum \beta(a_{(1)}, b_{(1)})b_{(2)}a_{(2)} = \sum \beta(a_{(2)}, b_{(2)})a_{(1)}b_{(1)}$$

 $(\beta (,))$ is invertible in $(A \otimes A)^*$;

$$\exists \ \beta(a,bc) = \sum \beta(a_{(1)},b)\beta(a_{(2)},c).$$

• $\beta(ab,c) = \sum \beta(b,c_{(1)})\beta(a,c_{(2)})$

Part 3: Construction of $\mathcal{O}_{\pi,q}(G)$

We construct $\mathcal{O}_{\pi,q}(G)$ from $\mathcal{O}_q(G)$ using a 2-cocycle twist.

A 2-cocycle on a Hopf algebra A is an invertible pairing $\sigma : A \otimes A \rightarrow k$ such that $\sigma(1,1) = 1$ and for all x, y and z in A,

$$\sum \sigma(x_{(1)}, y_{(1)}) \sigma(x_{(2)}y_{(2)}, z) = \sum \sigma(y_{(1)}, z_{(1)}) \sigma(x, y_{(2)}z_{(2)})$$

A *braiding* (or dual quasi-triangular structure) on a Hopf algebra A is a bilinear pairing $\beta(,)$ such that for all a, b, and c in A

•
$$\sum \beta(a_{(1)}, b_{(1)})b_{(2)}a_{(2)} = \sum \beta(a_{(2)}, b_{(2)})a_{(1)}b_{(1)}$$

• $\beta(,)$ is invertible in $(A \otimes A)^*$;
• $\beta(a, bc) = \sum \beta(a_{(1)}, b)\beta(a_{(2)}, c)$.
• $\beta(ab, c) = \sum \beta(b, c_{(1)})\beta(a, c_{(2)})$

マット きょう きょうしょう

Theorem

Let A be a braided Hopf algebra with braiding β . Let σ be a 2-cocycle on A. One can twist the multiplication on A to get a new Hopf algebra A_{σ} . The new multiplication is given by

$$x \cdot y = \sum \sigma(x_{(1)}, y_{(1)}) x_{(2)} y_{(2)} \sigma^{-1}(x_{(3)}, y_{(3)}).$$

Moreover $\beta_{\sigma} = \sigma_{21} * \beta * \sigma^{-1}$ (convolution product) is a braiding on A_{σ} . The categories of comodules over A and A_{σ} are equivalent as rigid braided monoidal categories.

通 ト イ ヨ ト イ ヨ ト ー

Standard Quantum Groups

- Direct construction of $U_q(\mathfrak{g})$ using generators and relations using data from \mathfrak{g} .
- Classification of finite dimensional representations of $U_q(\mathfrak{g})$
- Construction of $\mathcal{O}_q(G)$ as restricted dual

For $v \in V$, $\xi \in V^*$, $c_{\xi,v}(x) = \xi(xv), x \in U_q(\mathfrak{g}), \quad C(V) = \{c_{\xi,v} \mid \xi \in V^*, v \in V\} \subset U(\mathfrak{g})^o$

Definition

$$\mathcal{O}_q(G) := \bigoplus_{V \text{simple}} C(V)$$

The standard quantum R-matrix and the $\mathcal J$ operators

For $\nu \in \mathcal{Q}^+$, set $m(\nu) := \dim U_q(\mathfrak{n}^+)_{\nu} = \dim U_q(\mathfrak{n}^-)_{-\nu}$. Let $\{x_{\nu,j}\}_{j=1}^{m(\nu)}$ and $\{x_{-\nu,j}\}_{j=1}^{m(\nu)}$ be two dual bases of $U_q(\mathfrak{n}^+)_{\nu}$ and $U_q(\mathfrak{n}^-)_{-\nu}$ with respect to the Rosso–Tanisaki form. Define the quasi *R*-matrix

$$\Theta = \sum_{\nu \in \mathcal{Q}^+} \sum_{j=1}^{m(\nu)} x_{\nu,j} \otimes x_{-\nu,j} \in U_q(\mathfrak{n}^+) \widehat{\otimes} U_q(\mathfrak{n}^-)$$

For $V_1, V_2 \in C$ and $k \in [1, n]$, the operator $(\tau^k \otimes 1)(\Theta)$ acts on $V_1 \otimes V_2$ because all but finitely many terms in the summation (17) act by 0 on $V_1 \otimes V_2$. Define $\mathcal{J}_{V_1, V_2} \in \operatorname{End}_{\mathbb{C}}(V_1 \otimes V_2)$ by

$$\mathcal{J}_{V_1,V_2} := q^{(\tau \otimes 1)\Omega_0} ((\tau \otimes 1)\Theta) \dots q^{(\tau^n \otimes 1)\Omega_0} ((\tau^n \otimes 1)\Theta) \\ \times q^{-(\tau^n \otimes 1)\Omega_0 - \dots - (\tau \otimes 1)\Omega_0} q^{-s_0 - \Omega_{\mathfrak{z}^\perp}/2}.$$

Theorem (Etingof-Schedler-Schiffman)

For all $V_1, V_2, V_3 \in C$, the \mathcal{J} -operators satisfy the 2-cocycle condition

$$\mathcal{J}_{V_1\otimes V_2,V_3}\mathcal{J}_{V_1,V_2}=\mathcal{J}_{V_1,V_2\otimes V_3}\mathcal{J}_{V_2,V_3}.$$

The standard quantum R-matrix and the $\mathcal J$ operators

For $\nu \in \mathcal{Q}^+$, set $m(\nu) := \dim U_q(\mathfrak{n}^+)_{\nu} = \dim U_q(\mathfrak{n}^-)_{-\nu}$. Let $\{x_{\nu,j}\}_{j=1}^{m(\nu)}$ and $\{x_{-\nu,j}\}_{j=1}^{m(\nu)}$ be two dual bases of $U_q(\mathfrak{n}^+)_{\nu}$ and $U_q(\mathfrak{n}^-)_{-\nu}$ with respect to the Rosso–Tanisaki form. Define the quasi *R*-matrix

$$\Theta = \sum_{\nu \in \mathcal{Q}^+} \sum_{j=1}^{m(\nu)} x_{\nu,j} \otimes x_{-\nu,j} \in U_q(\mathfrak{n}^+) \widehat{\otimes} U_q(\mathfrak{n}^-)$$

For $V_1, V_2 \in C$ and $k \in [1, n]$, the operator $(\tau^k \otimes 1)(\Theta)$ acts on $V_1 \otimes V_2$ because all but finitely many terms in the summation (17) act by 0 on $V_1 \otimes V_2$. Define $\mathcal{J}_{V_1, V_2} \in \operatorname{End}_{\mathbb{C}}(V_1 \otimes V_2)$ by

$$\mathcal{J}_{V_1,V_2}:=\!q^{(au\otimes 1)\Omega_0}ig((au\otimes 1)\Thetaig)\dots q^{(au^n\otimes 1)\Omega_0}ig((au^n\otimes 1)\Thetaig) \ imes q^{-(au^n\otimes 1)\Omega_0-\dots-(au\otimes 1)\Omega_0}q^{-s_0-\Omega_{\mathfrak{z}^\perp}/2}.$$

Theorem (Etingof-Schedler-Schiffman)

For all $V_1, V_2, V_3 \in C$, the \mathcal{J} -operators satisfy the 2-cocycle condition

$$\mathcal{J}_{V_1\otimes V_2,V_3}\mathcal{J}_{V_1,V_2}=\mathcal{J}_{V_1,V_2\otimes V_3}\mathcal{J}_{V_2,V_3}.$$

Theorem

The map $\theta_{\pi} \colon \mathcal{O}_q(G) \times \mathcal{O}_q(G) \to \mathbb{C}$ defined by

$$heta_\pi(extsf{c}_{\xi_1, extsf{x}_1}, extsf{c}_{\xi_2, extsf{x}_2}) := \langle \xi_1 \otimes \xi_2, \mathcal{J}_{ extsf{V}_1, extsf{V}_2}(extsf{v}_1 \otimes extsf{v}_2)
angle$$

is a Hopf algebra 2-cocycle on $\mathcal{O}_q(G)$.

Denote the twisted Hopf algebra

$$\mathcal{O}_{\pi,q}(G) := \mathcal{O}_q(G)_{\theta_\tau}.$$

$$(c_{\xi_1,x_1}c_{\xi_2,x_2})(x) = \langle \xi_1 \otimes \xi_2, \mathcal{J}_{V_1,V_2}^{-1}\Delta(x)\mathcal{J}_{V_1,V_2}(v_1 \otimes v_2) \rangle$$

Example

- The Cremmer-Gervais quantum groups \$\mathcal{O}_{CG,q}(SL(n))\$ (constructed using an explicit \$R\$-matrix)
- The double quantum groups $\mathcal{O}_q(D(G)) \cong \mathcal{O}_q(G) \bowtie \mathcal{O}_q(G)$ (constructed using the Drinfeld double construction)

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Part 4: The FRT dual $U_{\pi,q}(\mathfrak{g})$

For a braided Hopf algebra (A,β) we have Hopf algebra maps $I^\pm:A^{op}\to A^\circ$ by

 $l^+(a)(b) = \beta(a, S(b))$ and $l^-(a)(b) = \beta(b, S(a))$

Let $U^{\pm} = \mathfrak{l}^{\pm}(A)$. The *FRT dual* of A is the Hopf subalgebra U(A) generated by U^+ and U^- .

The braiding on A induces a Hopf pairing on $U^+ \otimes (U^-)^{op}$ using which one can construct the Drinfeld double $U^+ \bowtie U^-$. The multiplication map $u \otimes v \mapsto uv$ is then a surjective Hopf algebra map

$$\mu: U^+ \bowtie U^- \to U(A)$$

Definition

Define

$$U_{\pi,q}(\mathfrak{g}):=U(\mathcal{O}_{\pi,q}(G))$$

向下 イヨト イヨト

э.

Part 4: The FRT dual $U_{\pi,q}(\mathfrak{g})$

For a braided Hopf algebra (A,β) we have Hopf algebra maps $I^\pm:A^{op}\to A^\circ$ by

 $l^+(a)(b) = \beta(a,S(b))$ and $l^-(a)(b) = \beta(b,S(a))$

Let $U^{\pm} = \mathfrak{l}^{\pm}(A)$. The *FRT dual* of A is the Hopf subalgebra U(A) generated by U^+ and U^- .

The braiding on A induces a Hopf pairing on $U^+ \otimes (U^-)^{op}$ using which one can construct the Drinfeld double $U^+ \bowtie U^-$. The multiplication map $u \otimes v \mapsto uv$ is then a surjective Hopf algebra map

$$\mu: U^+ \bowtie U^- \rightarrow U(A)$$

Definition

Define

$$U_{\pi,q}(\mathfrak{g}) := U(\mathcal{O}_{\pi,q}(G))$$

- 小田 ト イヨト 一日

The pairing between $\mathcal{O}_{\pi,q}(G)$ and $U_{\pi,q}(\mathfrak{g})$

 $\mathcal{O}_{\pi,q}(G)$ has the same coalgebra structure as $\mathcal{O}_q(G)$, but a twisted algebra structure.

NOT TRUE that $U_{\pi,q}(\mathfrak{g})$ has the same algebra structure as $U_q(\mathfrak{g})$, but a *twisted coalgebra structure*.

Heuristically,

$$U_{\pi,q}(\mathfrak{g})\cong \mathcal{O}_q(G_r)$$

a quantization of the algebra of functions on G_r is the dual Poisson group

Theorem (H-Yakimov)

The pairing between $\mathcal{O}_{\pi,q}(G)$ and $U_{\pi,q}(\mathfrak{g})$ is non-degenerate.

Corollary

 $U_{\pi,q}(\mathfrak{g})$ has a category of finite dimensional modules equivalent to the category of finite dimensional weight modules over $U_q(\mathfrak{g})$. $\mathcal{O}_{\pi,q}(G)$ is the restricted dual of $U_{\pi,q}(\mathfrak{g})$ with respect to this category.

(日) (四) (日) (日) (日) (日)

The pairing between $\mathcal{O}_{\pi,q}(G)$ and $U_{\pi,q}(\mathfrak{g})$

 $\mathcal{O}_{\pi,q}(G)$ has the same coalgebra structure as $\mathcal{O}_q(G)$, but a twisted algebra structure.

NOT TRUE that $U_{\pi,q}(\mathfrak{g})$ has the same algebra structure as $U_q(\mathfrak{g})$, but a *twisted coalgebra structure*.

Heuristically,

$$U_{\pi,q}(\mathfrak{g})\cong \mathcal{O}_q(G_r)$$

a quantization of the algebra of functions on G_r is the dual Poisson group

Theorem (H-Yakimov)

The pairing between $\mathcal{O}_{\pi,q}(G)$ and $U_{\pi,q}(\mathfrak{g})$ is non-degenerate.

Corollary

 $U_{\pi,q}(\mathfrak{g})$ has a category of finite dimensional modules equivalent to the category of finite dimensional weight modules over $U_q(\mathfrak{g})$. $\mathcal{O}_{\pi,q}(G)$ is the restricted dual of $U_{\pi,q}(\mathfrak{g})$ with respect to this category.

白 医水疱 医水黄 医水黄 医二甲

Set

$$U_0 = U^+ \cap U^-$$

The pairing between U^+ and U^- induces a *braiding* on U_0

Thus the FRT dual U(A) of a braided Hopf algebra A contains a canonical braided Hopf subalgebra $U_0(A)$.

Problem

Describe U_0 for the Belavin-Drinfeld quantum group $\mathcal{O}_{\pi,q}(G)$.

Example

For the trivial triple we have $U_0(\mathcal{O}_q(G)) = \mathbb{C}[K_i^{\pm 1}] \cong \mathcal{O}(T)$, for T a maximal torus inside G, equipped with the braiding given by the Rosso form.

(日本) (日本) (日本) 日

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ うへぐ

Heuristics I

★ 문 ► ★ 문 ►

Heuristic II

▶ ★ 문 ▶ ★ 문 ▶

ъ.

★ ∃ ► < ∃ ►</p>

æ

E > < E >

Let

$$\mathcal{C}^{\pm} = (U_q(\mathfrak{p}^+))^{\perp} = \{ c \in \mathcal{O}_{\pi,q}(G) \mid \langle c, U_q(\mathfrak{p}^{\pm}) \rangle = 0 \},$$

and define

$$\mathcal{O}_{\pi,q}(\mathsf{P}^{\pm}) = \mathcal{O}_{\pi,q}(\mathsf{G})/\mathsf{C}^{\pm}$$

Theorem (H-Y)

We have ker $I^{\pm} = C^{\pm}$ so

$$U^{\pm} \cong \mathcal{O}_{\pi,q}(P^{\pm})$$

Moreover the map

$$(\ell^+ \otimes \ell^-) \Delta \colon \mathcal{O}_{T,q}(G) \to \mathcal{O}_{T,q}(P^+) \otimes \mathcal{O}_{T,q}(P^-).$$

is an embedding.

回 と く ヨ と く ヨ と …

Conjecture

There exists a reductive Lie group \tilde{G} with associated Lie algebra $\tilde{\mathfrak{g}}$ for which $(\tilde{\Gamma}_1, \tilde{\Gamma}_2, \tilde{\tau})$ is a triple for $\tilde{\mathfrak{g}}$ and such that

$$U_0(\mathcal{O}_{\pi,q}(G))\cong\mathcal{O}_{ ilde{\pi},q}(ilde{G})$$

for $\tilde{\pi} = (\tilde{\tau}, \tilde{u})$ suitable choice of continuous parameter \tilde{u} .

Example

- For the trivial triple we have U₀(O_q(G)) ≅ O(K), for K a maximal torus inside G
- For the Cremmer-Gervais quantum group, it was shown that

$$U_0(\mathcal{O}_{CG,q}(SL(n))) \cong \mathcal{O}_{CG,q,u}(GL(n-1)))$$

• For the double quantum groups, we have

 $U_0(\mathcal{O}_q(D(G))\cong \mathcal{O}_q(G)\otimes \mathcal{O}(K)$

通 と く ヨ と く ヨ と

Conjecture

Dual to the embedding

$$\mathcal{O}_{ ilde{\pi}, q}(ilde{G}) \hookrightarrow U_{\pi, q}(\mathfrak{g})$$

is a surjective map

$$\mathcal{O}_{\pi,q}(G) \twoheadrightarrow U_{\widetilde{\pi},q}(\widetilde{g})$$

Problem

Describe the primitive spectrum of $\mathcal{O}_{\pi,q}(G)$

Any such classification would have to include the classification of primitive ideals in $\mathcal{O}_q(G)$ and $U_q(\mathfrak{g})$!

向下 イヨト イヨト