Categorical Connections

Emily Peters joint with David Penneys and Noah Snyder http://webpage.math.luc.edu/~epeters3

Centre de Recherches Mathématiques 26 August 2023

イロト イボト イヨト イヨト

A von Neumann algebra A is a factor if $A \cap A' = \mathbb{C} \cdot Id$. Suppose $A \subset B$ is a subfactor, ie a unital inclusion of type II_1 factors.

Definition

The index of $A \subset B$ is $[B : A] := \dim_A(B)$.

Example

If *R* is the hyperfinite II_1 factor, and *G* is a finite group which acts outerly on *R*, then $R \subset R \rtimes G$ is a subfactor of index |G|.

If $H \leq G$, then $R \rtimes H \subset R \rtimes G$ is a subfactor of index [G : H].

Theorem (Jones)

The possible indices for a subfactor are

$$\{4\cos\left(\frac{\pi}{n}\right)^2 | n \ge 3\} \cup [4,\infty].$$

Emily Peters Categorical Connections

Let $X =_A B_B$ and $\overline{X} =_B B_A$, and $\otimes = \otimes_A$ or \otimes_B as needed.

Definition

The <u>standard invariant</u> of $A \subset B$ is the (planar) algebra of bimodules generated by X, denoted Bim(A, B):

Definition

The <u>principal graph</u> of $A \subset B$ has vertices for (isomorphism classes of) irreducible A-A and A-B bimodules, and an edge from $_AY_A$ to $_AZ_B$ if $Z \subset Y \otimes X$ (iff $Y \subset Z \otimes \overline{X}$).

Ditto for the dual principal graph, with B-B and B-A bimodules.

Subfactors
OCOCOCOPlanar algebras
OCOCOCOPtensor categories
OCOCOCOFlatness
OCOCOCOAgain, let G be a finite group with subgroup H, and act outerly on R.
Consider $A = R \rtimes H \subset R \rtimes G = B$.
The irreducible B-B bimodules are of the form $R \otimes V$ where V is an
irreducible G representation. The irreducible B-A bimodules are of the
form $R \otimes W$ where W is an H irrep.
The dual principal graph of $A \subset B$ is the induction-restriction graph for

irreps of H and G.

(The principal graph is an induction-restriction graph too, for H and various subgroups of H.)

э

イロト イポト イヨト イヨト

Subfactors 000●00000	Planar algebras 0000000	Ptensor categories	Flatness 00000
Some other prin	ncipal graphs:		
Some Dyn	kin diagrams: A _n , D _{2n} ,	E ₆ , E ₈	

All extended Dynkin diagrams: $A_n^{(1)}$, $D_n^{(1)}$, $E_n^{(1)}$, A_{∞} , $A_{\infty}^{(1)}$, D_{∞} .

Definition

If the principal graphs of $A \subset B$ are finite, then we say $A \subset B$ is <u>finite</u> depth.

Emily Peters Categorical Connections

Question

How to construct examples (of subfactors, principal graphs, ...)?

- Some come from other algebraic objects
- We leverage the ones we know
- Planar algebra constructions
- Connections on potential principal graphs

Subfactors	Planar algebras	Ptensor categories	Flatness
000000000			

The combinatorial data of a subfactor is a <u>connection</u>: The principal graphs can be assembled into a 4-partite graph:

$$\begin{array}{c} A - A \xrightarrow{-\otimes X} A - B \\ \downarrow \bar{x}_{\otimes -} & \downarrow \bar{x}_{\otimes -} \\ B - A \xrightarrow{-\otimes X} B - B \end{array}$$

A connection assigns a number in $\mathbb C$ to any loop around this graph:

$$P \xrightarrow{e_1} Q$$

$$\begin{vmatrix} e_4 \\ S \xrightarrow{e_3} \end{matrix} = c(P, Q, R, S)$$

A connection assigns a number in $\mathbb C$ to any loop around the 4-partite principal graph:

$$P \xrightarrow{e_1} Q$$

$$\begin{vmatrix} e_4 \\ e_4 \\ S \xrightarrow{e_3} R \end{vmatrix}$$

This number is the coefficient of $(\overline{X} \otimes P) \otimes X \to S \otimes X \to R$ when $\overline{X} \otimes (P \otimes X) \to X \otimes Q \to R$ is written in the basis

$$(\bar{X} \otimes P) \otimes X \rightarrow ?? \otimes X \rightarrow R$$

So, $c(P, \cdot, R, \cdot)$ is a change-of-basis matrix for Hom $(\bar{X} \otimes P \otimes X, R)$.

Subfactors	Planar algebras	Ptensor categories	Flatness
0000000000			

The connection $c(\cdot, \cdot, \cdot, \cdot)$ satisfies

biunitarity:

$$c(P,\cdot,R,\cdot)\cdot\overline{c(P,\cdot,R,\cdot)}=Id$$

and

$$c(\cdot, Q, \cdot, S) \cdot \overline{c(\cdot, Q, \cdot, S)} = Id$$

renormalization:

$$c(P,Q,R,S) = \overline{c(Q,P,S,R)} \cdot \sqrt{\frac{d(Q)d(S)}{d(P)d(R)}}$$

flatness: ...

Emily Peters Categorical Connections

Subfactors	Planar algebras	Ptensor categories
000000000		

flatness: for all choices of P_i and Q_i ,

(Interpret this diagram as a sum over all possible edges and labels on the interior, and for each such labelling, take the product of the component unit squares.)

イロト イヨト イヨト イヨト

э

Theorem (Ocneanu)

A flat biunitary connection on a pair of finite graphs gives a subfactor of the hyperfinite II_1 factor with these principal graphs.

Flatness can also be stated planar algebraically or ptensor categorically.

Emily Peters Categorical Connections ・ロット 4 聞 > ・ 画 > ・ 画 > ・ の へ らく

Definition (Jones)

A planar diagram has

- a finite number of inner boundary circles
- an outer boundary circle
- non-intersecting strings
- a marked point * on each boundary circle

Emily Peters Categorical Connections

Subfactors	Planar algebras	Ptensor categories	Flatness
	0000000		

In normal algebra (the kind with sets and functions), we have one dimension of composition:

$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

In planar algebras, we have two dimensions of composition

Subfactors	Planar algebras	Ptensor categories	Flatness
000000000	00●00000	0000000	00000

In abstract algebra, sets are given additional structure by functions. For example, a group is a set G with a multiplication law

 $\circ: G \times G \rightarrow G.$

A planar algebra also has sets, and maps giving them structure; there are a lot more of them.

Definition

A planar algebra is

• a family of vector spaces V_k , $k = 0, 1, 2, \ldots$, and

an interpretation of any planar diagram as a multi-linear map among

$$V_i: \underbrace{}^{\star} \underbrace{}^{\star} \underbrace{}^{\star} V_2 \times V_5 \times V_4 \rightarrow V_7$$

Emily Peters

Categorical Connections

Definition

A planar algebra is

- a family of vector spaces V_k , $k = 0, 1, 2, \ldots$, and
- Planar diagrams giving multi-linear map among V_i,

such that composition of multilinear maps, and composition of diagrams, agree:

Categorical Connections

Planar algebras

Ptensor categories

Definition

A Temperley-Lieb diagram is a way of connecting up points on the boundary of a circle labelled $1, \ldots, 2n$, so that the connecting strings don't cross.

For example, when n = 3:

Example

The Temperley-Lieb planar algebra TL:

- The vector space *TL*_{2n} has a basis consisting of all Temperley-Lieb diagrams on 2*n* points.
- A planar diagram acts on Temperley-Lieb diagrams by placing the TL diagrams in the input disks, joining strings, and replacing closed loops of string by ·δ.

Planar algebras

Ptensor categories

Example

The Temperley-Lieb planar algebra TL:

- The vector space TL_{2n} has a basis consisting of all Temperley-Lieb diagrams on 2n points.
- A planar diagram acts on Temperley-Lieb diagrams by placing the TL diagrams in the input disks, joining strings, and replacing closed loops of string by $\cdot \delta$.

Example

The standard invariant of a subfactor (recall that this is built from those A-A, A-B, B-A and B-B bimodules tensor generated by $X =_A B_B$ and $\overline{X} =_B B_A$) is a planar algebra:

The vector space V_n is $Hom(X^{\otimes n}, X^{\otimes n})$.

Action of planar tangles is built by labelling all strings by X or X, interpreting concatenation as tensor product, and interpreting cups/caps using subfactor structure (inclusion, conditional expectation, multiplication).

3

イロン イロン イヨン イヨン

Subfactors	Planar algebras	Ptensor categories	Flatness
000000000	0000000●	0000000	00000

Planar algebraic flatness: A connection is a biunitary 4-box in a graph planar algebra. An element x is flat if there is an element y such that

Definition

A monoidal category is a category $\mathcal C$ with a functor $\otimes:\mathcal C\times\mathcal C\to\mathcal C$ and

- a unit object **1** of C;
- <u>unitor</u> natural isomorphisms $\lambda_X : \mathbf{1} \otimes X \to X$ and $\rho_X : X \otimes \mathbf{1} \to X$;
- **associator** natural isomorphism $\alpha_{A,B,C}$: $(A \otimes B) \otimes C \rightarrow A \otimes (B \otimes C)$;

3

Planar algebras

Ptensor categories

Definition

Emily Peters

Categorical Connections

Planar algebras

Ptensor categories

Definition

A <u>ptensor category</u> is a monoidal category C with additional structure:

- For all objects C, D, Hom(C, D) is a finite dimensional C-vector space.
- *C* is rigid: all objects have left, right duals: *A*, **A*, *A**, **A***, etc., and maps $ev : A \otimes A^* \to 1$, coev $: 1 \to A^* \otimes A$ satisfying the zig-zag requirement that

$$\lambda_{\mathcal{A}} \circ (\mathit{ev} \otimes \mathit{id}_{\mathcal{A}}) \circ (\mathit{id}_{\mathcal{A}} \otimes \mathit{coev}) \circ
ho_{\mathcal{A}}^{-1} = \mathit{id}_{\mathcal{A}}$$

- which turns into the picture

• C is pivotal: there is a natural isomorphism $\psi : A \to A^{**}$.

C is Karoubi complete, ie it is additively and idempotent closed.

Emily Peters Categorical Connections

Subfactors	Planar algebras	Ptensor categories	Flatness
000000000	00000000		00000

Example

Among bimodules for a subfactor $A \subset B$ generated by $X =_A B_B$, the A - A bimodules form a ptensor category (as do the B - B bimodules):

- objects are bimodules,
- hom spaces are bimodule intertwiners,
- tensor is \otimes_A (or \otimes_B),
- unit is $_{A}A_{A}$ (or $_{B}B_{B}$),
- duality is given by *.

イロト イポト イヨト イヨト

Planar algebras

Ptensor categories

Flatness 00000

Example

The Temperley-Lieb-Jones ptensor category TLJ(d):

- objects are finite strings of points on a horizontal line,
- hom spaces are connections among the points on two lines, modulo loop parameter d,
- Composition of morphisms is defined as vertical stacking, e.g.,

 The tensor operation is horizontal concatenation (of points on a line, or of diagrams), e.g.,

Emily Peters Categorical Connections

Example

The graph category on a fixed set of vertices: Graph(V, d)

- objects are oriented graphs on V,
- Hom(Γ, Λ) is given by linear maps C^{Γ(v→w)} → C^{Λ(v→w)} for all v, w.
 Composition is component-wise.
- The tensor operation is given by

$$(\Gamma \otimes \Lambda)(v \to w) := \sqcup_{u \in V} \Gamma(v \to u) \Lambda(u \to w).$$

- The unit of Graph(V, d) consists of a disjoint union of loops, one for each v ∈ V.
- And the dual of Γ is the same graph with its edges reversed.

The universal property of TLJ(d) is that, if C is a ptensor category, giving a pivotal ptensor functor $TLJ(d) \rightarrow C$ is equivalent to choosing an object

 X^{\vee}

X of ${\mathcal C}$ with the property that

$$(\psi_X)$$
 $x^{\vee} = d \cdot \mathbf{1}_{1_C}$

Definition

A connection is a pair of functors $F, G : TLJ(d) \rightarrow Graph(V, d)$ and a commutator natural isomorphism $\kappa_{c,d} : F(c) \otimes G(d) \rightarrow G(d) \otimes F(c)$, which is bi-invertible:

Subfactors	Planar algebras	Ptensor categories	Flatness
			00000

Recall that flatness of a connection means that for all choices of P_i and Q_i ,

 $P_1 - P_2 - P_2$ ____ ... _____ Q_2

(Interpret this diagram as a sum over all possible edges and labels on the interior, and for each such labelling, take the product of the component unit squares.)

イロト イポト イヨト イヨト

Planar algebraic flatness: A connection is a biunitary 4-box in a graph planar algebra. An element x is flat if there is an element y such that

Suppose \mathcal{M} is a semisimiple TLJ(d) - TLJ(d) bimodule category. The categories $End(\mathcal{M})$ and Graph(V, d) are equivalent if #V is the number of isomorphism classes of simples of \mathcal{M} .

Given *m*, is it possible to put a compatible ptensor structure with unit *m* on \mathcal{M} ? Define the left flat part \mathcal{L} of \mathcal{M} to be the dominant image of TLJ in End_{*TLJ*}(\mathcal{M}).

Consider the composite map $\mathcal{L} \to \mathcal{M}$, still denoted ev_m , which fits into the following commutative diagram.

If the evaluation map $\mathcal{L} \to \mathcal{M}$ is full, there is a splitting $\mathcal{M} \to \mathcal{L}$:

A splitting gives an equivalence between \mathcal{L} and \mathcal{M} and allows us to import the tensor structure of \mathcal{L} to \mathcal{M} . So if such a splitting exists, we say \mathcal{M} is a flat TLJ - TLJ bimodule.

The End!

Emily Peters Categorical Connections

31 / 31

ъ.

・ロン ・四 と ・ ヨ と ・ 日 と