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A von Neumann algebra A is a factor if A ∩ A′ = C · Id .
Suppose A ⊂ B is a subfactor, ie a unital inclusion of type II1 factors.

Definition
The index of A ⊂ B is [B : A] := dimA(B).

Example
If R is the hyperfinite II1 factor, and G is a finite group which acts outerly
on R, then R ⊂ R o G is a subfactor of index |G |.

If H ≤ G , then R o H ⊂ R o G is a subfactor of index [G : H].

Theorem (Jones)
The possible indices for a subfactor are

{4 cos
(
π

n

)2
|n ≥ 3} ∪ [4,∞].
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Let X =ABB and X =BBA, and ⊗ = ⊗A or ⊗B as needed.

Definition
The standard invariant of A ⊂ B is the (planar) algebra of bimodules
generated by X, denoted Bim(A,B):

X , X ⊗ X , X ⊗ X ⊗ X , X ⊗ X ⊗ X ⊗ X , . . .

X , X ⊗ X , X ⊗ X ⊗ X , X ⊗ X ⊗ X ⊗ X , . . .

Definition
The principal graph of A ⊂ B has vertices for (isomorphism classes of)
irreducible A-A and A-B bimodules, and an edge from AYA to AZB if
Z ⊂ Y ⊗ X (iff Y ⊂ Z ⊗ X).

Ditto for the dual principal graph, with B-B and B-A bimodules.
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Again, let G be a finite group with subgroup H, and act outerly on R.
Consider A = R o H ⊂ R o G = B.
The irreducible B-B bimodules are of the form R ⊗ V where V is an
irreducible G representation. The irreducible B-A bimodules are of the
form R ⊗W where W is an H irrep.
The dual principal graph of A ⊂ B is the induction-restriction graph for
irreps of H and G .

Example (S3 ≤ S4)

trivial standard V sign⊗standard sign

trivial standard sign

(The principal graph is an induction-restriction graph too, for H and
various subgroups of H.)

Emily Peters
Categorical Connections 4 / 31



Subfactors Planar algebras Ptensor categories Flatness

Some other principal graphs:

Some Dynkin diagrams: An, D2n, E6, E8

All extended Dynkin diagrams: A(1)
n , D(1)

n , E (1)
n , A∞, A(1)

∞ , D∞.

,

,

And more!

Definition
If the principal graphs of A ⊂ B are finite, then we say A ⊂ B is finite
depth.
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Question
How to construct examples (of subfactors, principal graphs, . . . )?

Some come from other algebraic objects
We leverage the ones we know
Planar algebra constructions
Connections on potential principal graphs
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The combinatorial data of a subfactor is a connection:
The principal graphs can be assembled into a 4-partite graph:

A− A A− B

B − A B − B

−⊗X

X̄⊗− X̄⊗−
−⊗X

A connection assigns a number in C to any loop around this graph:

P Q

S R

e1

e4 e2

e3

= c(P,Q,R, S)
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A connection assigns a number in C to any loop around the 4-partite
principal graph:

P Q

S R

e1

e4 e2

e3

= c(P,Q,R, S)

This number is the coefficient of (X̄ ⊗ P)⊗ X → S ⊗ X → R when
X̄ ⊗ (P ⊗ X )→ X ⊗ Q → R is written in the basis

(X̄ ⊗ P)⊗ X →??⊗ X → R

So, c(P, ·,R, ·) is a change-of-basis matrix for Hom(X̄ ⊗ P ⊗ X ,R).
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The connection c(·, ·, ·, ·) satisfies
biunitarity:

c(P, ·,R, ·) · c(P, ·,R, ·) = Id

and
c(·,Q, ·,S) · c(·,Q, ·,S) = Id

renormalization:

c(P,Q,R,S) = c(Q,P, S,R) ·
√

d(Q)d(S)
d(P)d(R)

flatness: . . .
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flatness: for all choices of Pi and Qi ,

1 P1 P2 · · · 1

Q1 . . · · · Q1

Q2 . . · · · Q2

...
...

...
...

1 P1 P2 · · · 1

= 1

(Interpret this
diagram as a sum
over all possible
edges and labels
on the interior,
and for each such
labelling, take the
product of the
component unit
squares.)
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Theorem (Ocneanu)
A flat biunitary connection on a pair of finite graphs gives a subfactor of
the hyperfinite II1 factor with these principal graphs.

Flatness can also be stated planar algebraically or ptensor categorically.
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Definition (Jones)
A planar diagram has

a finite number of inner boundary circles
an outer boundary circle
non-intersecting strings
a marked point ? on each boundary circle

?

?

? ?
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In normal algebra (the kind with sets and functions), we have one
dimension of composition:

X Y Z
f g

In planar algebras, we have two dimensions of composition

2

1

?

?

3

? ?

◦2

?
?

=
?

?

? ?
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In abstract algebra, sets are given additional structure by functions. For
example, a group is a set G with a multiplication law

◦ : G × G → G .

A planar algebra also has sets, and maps giving them structure; there are a
lot more of them.
Definition
A planar algebra is

a family of vector spaces Vk , k = 0, 1, 2, . . ., and
an interpretation of any planar diagram as a multi-linear map among

Vi : ?

?

? ?

: V2 × V5 × V4 → V7
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Definition
A planar algebra is

a family of vector spaces Vk , k = 0, 1, 2, . . ., and
Planar diagrams giving multi-linear map among Vi ,

such that composition of multilinear maps, and composition of diagrams,
agree:
V4 × V2 × V2 V6

V4 × V4 × V2

?

?

? ?
2

1

?

?

3

? ?
?

?

Emily Peters
Categorical Connections 15 / 31



Subfactors Planar algebras Ptensor categories Flatness

Definition
A Temperley-Lieb diagram is a way of connecting up points on the
boundary of a circle labelled 1, . . . , 2n, so that the connecting strings don’t
cross.

For example, when n = 3:
?

,
?

,
?

,
?

,
?

Example
The Temperley-Lieb planar algebra TL:

The vector space TL2n has a basis consisting of all Temperley-Lieb
diagrams on 2n points.
A planar diagram acts on Temperley-Lieb diagrams by placing the TL
diagrams in the input disks, joining strings, and replacing closed loops
of string by ·δ.
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Example
The Temperley-Lieb planar algebra TL:

The vector space TL2n has a basis consisting of all Temperley-Lieb
diagrams on 2n points.
A planar diagram acts on Temperley-Lieb diagrams by placing the TL
diagrams in the input disks, joining strings, and replacing closed loops
of string by ·δ.

?

?

◦
?

=

?

= δ2

?
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Example
The standard invariant of a subfactor (recall that this is built from those
A-A, A-B, B-A and B-B bimodules tensor generated by X =ABB and
X̄ =BBA) is a planar algebra:

The vector space Vn is Hom(X⊗n,X⊗n).

Action of planar tangles is built by labelling all strings by X or X̄ ,
interpreting concatenation as tensor product, and interpreting cups/caps
using subfactor structure (inclusion, conditional expectation,
multiplication).
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Planar algebraic flatness: A connection is a biunitary 4-box in a graph
planar algebra. An element x is flat if there is an element y such that

K

K∗

x

=

K

K∗

y
.
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Definition
A monoidal category is a category C with a functor ⊗ : C × C → C and

a unit object 1 of C;
unitor natural isomorphisms λX : 1⊗ X → X and ρX : X ⊗ 1→ X;
associator natural isomorphism αA,B,C : (A⊗ B)⊗ C → A⊗ (B ⊗ C);

Emily Peters
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Definition
A monoidal category is (C,⊗, 1, λ, ρ, α) satisfying

(4) triangle equation :
(A⊗ 1)⊗ B A⊗ (1⊗ B)

A⊗ B

ρA

αA,1,B

λB

( ) pentagon equation :

((A⊗ B)⊗ C)⊗ D (A⊗ (B ⊗ C))⊗ D

(A⊗ B)⊗ (C ⊗ D) A⊗ ((B ⊗ C)⊗ D)

A⊗ (B ⊗ (C ⊗ D))

αA⊗B,C,D

αA,B,C⊗idD

αA,B⊗C,D

αA,B,C⊗D

idA⊗αB,C,D
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Definition
A ptensor category is a monoidal category C with additional structure:

For all objects C, D, Hom(C ,D) is a finite dimensional C-vector
space.
C is rigid: all objects have left, right duals: A, ∗A, A∗, ∗A∗∗, etc.,
and maps ev : A⊗ A∗ → 1, coev : 1→ A∗ ⊗ A satisfying the zig-zag
requirement that

λA ◦ (ev ⊗ idA) ◦ (idA ⊗ coev) ◦ ρ−1
A = idA

– which turns into the picture
A A∗

A
=

A
C is pivotal: there is a natural isomorphism ψ : A→ A∗∗.
C is Karoubi complete, ie it is additively and idempotent closed.
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Example
Among bimodules for a subfactor A ⊂ B generated by X =ABB, the A− A
bimodules form a ptensor category (as do the B − B bimodules):

objects are bimodules,
hom spaces are bimodule intertwiners,
tensor is ⊗A (or ⊗B),
unit is AAA (or BBB),
duality is given by ∗.

Emily Peters
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Example
The Temperley-Lieb-Jones ptensor category TLJ(d):

objects are finite strings of points on a horizontal line,
hom spaces are connections among the points on two lines, modulo
loop parameter d ,
Composition of morphisms is defined as vertical stacking, e.g.,

◦ := = d · ,

The tensor operation is horizontal concatenation (of points on a line,
or of diagrams), e.g.,

⊗ := .
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Example
The graph category on a fixed set of vertices: Graph(V , d)

objects are oriented graphs on V ,
Hom(Γ,Λ) is given by linear maps CΓ(v→w) → CΛ(v→w) for all v , w .
Composition is component-wise.
The tensor operation is given by

(Γ⊗ Λ)(v → w) := tu∈V Γ(v → u)Λ(u → w).

The unit of Graph(V , d) consists of a disjoint union of loops, one for
each v ∈ V .
And the dual of Γ is the same graph with its edges reversed.
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The universal property of TLJ(d) is that, if C is a ptensor category, giving
a pivotal ptensor functor TLJ(d)→ C is equivalent to choosing an object

X of C with the property that ψX

X∨∨

X∨

X

= d · 11C

Definition
A connection is a pair of functors F ,G : TLJ(d)→ Graph(V , d) and a
commutator natural isomorphism κc,d : F (c)⊗ G(d)→ G(d)⊗ F (c),
which is bi-invertible:

κX ,Y κ−1
X∨,Y∨ = and κ−1

X∨,Y∨ κX ,Y = .
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Recall that flatness of a connection means that for all choices of Pi and Qi ,

1 P1 P2 · · · 1

Q1 . . · · · Q1

Q2 . . · · · Q2

...
...

...
...

1 P1 P2 · · · 1

= 1

(Interpret this
diagram as a sum
over all possible
edges and labels
on the interior,
and for each such
labelling, take the
product of the
component unit
squares.)
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Planar algebraic flatness: A connection is a biunitary 4-box in a graph
planar algebra. An element x is flat if there is an element y such that

K

K∗

x

=

K

K∗

y
.
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Suppose M is a semisimiple TLJ(d)− TLJ(d) bimodule category. The
categories End(M) and Graph(V , d) are equivalent if #V is the number
of isomorphism classes of simples of M.
Given m, is it possible to put a compatible ptensor structure with unit m
on M? Define the left flat part L of M to be the dominant image of TLJ
in EndTLJ(M).

TLJ L EndTLJ(M) End(M) EndTLJ(M) R TLJ

M

F

−.m
evm

G

m/−

Consider the composite map L →M, still denoted evm, which fits into
the following commutative diagram.

TLJ L

M.

−Bm
evm

Emily Peters
Categorical Connections 29 / 31



Subfactors Planar algebras Ptensor categories Flatness

TLJ L EndTLJ(M) End(M) EndTLJ(M) R TLJ

M

F

−.m
evm

G

m/−

If the evaluation map L →M is full, there is a splitting M→ L:

TLJ L

M.

−Bm
evm

A splitting gives an equivalence between L and M and allows us to import
the tensor structure of L to M. So if such a splitting exists, we say M is
a flat TLJ − TLJ bimodule.
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The End!
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