Categorical Connections

Emily Peters
joint with David Penneys and Noah Snyder http://webpage.math.luc.edu/~epeters3

Centre de Recherches Mathématiques 26 August 2023

A von Neumann algebra A is a factor if $A \cap A^{\prime}=\mathbb{C} \cdot I d$.
Suppose $A \subset B$ is a subfactor, ie a unital inclusion of type I_{1} factors.

Definition

The index of $A \subset B$ is $[B: A]:=\operatorname{dim}_{A}(B)$.

Example

If R is the hyperfinite I_{1} factor, and G is a finite group which acts outerly on R, then $R \subset R \rtimes G$ is a subfactor of index $|G|$. If $H \leq G$, then $R \rtimes H \subset R \rtimes G$ is a subfactor of index [$G: H$].

Theorem (Jones)

The possible indices for a subfactor are

$$
\left\{\left.4 \cos \left(\frac{\pi}{n}\right)^{2} \right\rvert\, n \geq 3\right\} \cup[4, \infty]
$$

Let $X={ }_{A} B_{B}$ and $\bar{X}={ }_{B} B_{A}$, and $\otimes=\otimes_{A}$ or \otimes_{B} as needed.

Definition

The standard invariant of $A \subset B$ is the (planar) algebra of bimodules generated by X, denoted $\operatorname{Bim}(A, B)$:

$$
\begin{array}{lllll}
X, & X \otimes \bar{X}, & X \otimes \bar{X} \otimes X, & X \otimes \bar{X} \otimes X \otimes \bar{X}, & \ldots \\
\bar{X}, & \bar{X} \otimes X, & \bar{X} \otimes X \otimes \bar{X}, & \bar{X} \otimes X \otimes \bar{X} \otimes X, & \ldots
\end{array}
$$

Definition

The principal graph of $A \subset B$ has vertices for (isomorphism classes of) irreducible $A-A$ and $A-B$ bimodules, and an edge from ${ }_{A} Y_{A}$ to ${ }_{A} Z_{B}$ if $Z \subset Y \otimes X$ (iff $Y \subset Z \otimes \bar{X}$).

Ditto for the dual principal graph, with $B-B$ and $B-A$ bimodules.

Again, let G be a finite group with subgroup H, and act outerly on R. Consider $A=R \rtimes H \subset R \rtimes G=B$.
The irreducible $B-B$ bimodules are of the form $R \otimes V$ where V is an irreducible G representation. The irreducible $B-A$ bimodules are of the form $R \otimes W$ where W is an H irrep.
The dual principal graph of $A \subset B$ is the induction-restriction graph for irreps of H and G.

Example $\left(S_{3} \leq S_{4}\right)$

(The principal graph is an induction-restriction graph too, for H and various subgroups of H.)

Some other principal graphs:
■ Some Dynkin diagrams: $A_{n}, D_{2 n}, E_{6}, E_{8}$
■ All extended Dynkin diagrams: $A_{n}^{(1)}, D_{n}^{(1)}, E_{n}^{(1)}, A_{\infty}, A_{\infty}^{(1)}, D_{\infty}$.

■

- And more!

Definition

If the principal graphs of $A \subset B$ are finite, then we say $A \subset B$ is finite depth.

Question

How to construct examples (of subfactors, principal graphs, ...)?

■ Some come from other algebraic objects

- We leverage the ones we know

■ Planar algebra constructions

- Connections on potential principal graphs

The combinatorial data of a subfactor is a connection: The principal graphs can be assembled into a 4-partite graph:

$$
\begin{aligned}
& A-A \xrightarrow{-\otimes X} A-B \\
& \downarrow \bar{x} \otimes-\quad \downarrow \bar{\chi} \otimes- \\
& B-A \xrightarrow{-\otimes X} B-B
\end{aligned}
$$

A connection assigns a number in \mathbb{C} to any loop around this graph:

$$
\begin{aligned}
& P \xrightarrow[e_{1}]{ } Q \\
& \left|e_{4}\right| e_{2}=c(P, Q, R, S) \\
& S \xrightarrow{e_{3}} R
\end{aligned}
$$

A connection assigns a number in \mathbb{C} to any loop around the 4-partite principal graph:

$$
\begin{aligned}
& P \xlongequal{e_{1}} Q \\
& \left|e_{4}\right| e_{2}=c(P, Q, R, S) \\
& S \xrightarrow{e_{3}} R
\end{aligned}
$$

This number is the coefficient of $(\bar{X} \otimes P) \otimes X \rightarrow S \otimes X \rightarrow R$ when $\bar{X} \otimes(P \otimes X) \rightarrow X \otimes Q \rightarrow R$ is written in the basis

$$
(\bar{X} \otimes P) \otimes X \rightarrow ? ? \otimes X \rightarrow R
$$

So, $c(P, \cdot, R, \cdot)$ is a change-of-basis matrix for $\operatorname{Hom}(\bar{X} \otimes P \otimes X, R)$.

The connection $c(\cdot, \cdot, \cdot, \cdot)$ satisfies

- biunitarity:

$$
c(P, \cdot, R, \cdot) \cdot \overline{c(P, \cdot, R, \cdot)}=I d
$$

and

$$
c(\cdot, Q, \cdot, S) \cdot \overline{c(\cdot, Q, \cdot, S)}=I d
$$

- renormalization:

$$
c(P, Q, R, S)=\overline{c(Q, P, S, R)} \cdot \sqrt{\frac{d(Q) d(S)}{d(P) d(R)}}
$$

- flatness: ...
flatness: for all choices of P_{i} and Q_{i},

(Interpret this diagram as a sum over all possible edges and labels on the interior, and for each such labelling, take the product of the component unit squares.)

Theorem (Ocneanu)

A flat biunitary connection on a pair of finite graphs gives a subfactor of the hyperfinite I_{1} factor with these principal graphs.

Flatness can also be stated planar algebraically or ptensor categorically.

Definition (Jones)

A planar diagram has

- a finite number of inner boundary circles
- an outer boundary circle
- non-intersecting strings
- a marked point \star on each boundary circle

In normal algebra (the kind with sets and functions), we have one dimension of composition:

$$
X \xrightarrow{f} Y \xrightarrow{g} Z
$$

In planar algebras, we have two dimensions of composition

In abstract algebra, sets are given additional structure by functions. For example, a group is a set G with a multiplication law

$$
\circ: G \times G \rightarrow G
$$

A planar algebra also has sets, and maps giving them structure; there are a lot more of them.

Definition

A planar algebra is
■ a family of vector spaces $V_{k}, k=0,1,2, \ldots$, and
■ an interpretation of any planar diagram as a multi-linear map among

$$
V_{2} \times V_{5} \times V_{4} \rightarrow V_{7}
$$

Definition

A planar algebra is

- a family of vector spaces $V_{k}, k=0,1,2, \ldots$, and
- Planar diagrams giving multi-linear map among V_{i},
such that composition of multilinear maps, and composition of diagrams, agree:

Definition

A Temperley-Lieb diagram is a way of connecting up points on the boundary of a circle labelled $1, \ldots, 2 n$, so that the connecting strings don't cross.

For example, when $n=3$:

Example

The Temperley-Lieb planar algebra $T L$:

- The vector space $T L_{2 n}$ has a basis consisting of all Temperley-Lieb diagrams on $2 n$ points.
- A planar diagram acts on Temperley-Lieb diagrams by placing the TL diagrams in the input disks, joining strings, and replacing closed loops of string by δ.

Example

The Temperley-Lieb planar algebra $T L$:

- The vector space $T L_{2 n}$ has a basis consisting of all Temperley-Lieb diagrams on $2 n$ points.
- A planar diagram acts on Temperley-Lieb diagrams by placing the TL diagrams in the input disks, joining strings, and replacing closed loops of string by δ.

Example

The standard invariant of a subfactor (recall that this is built from those $A-A, A-B, B-A$ and $B-B$ bimodules tensor generated by $X={ }_{A} B_{B}$ and $\bar{X}={ }_{B} B_{A}$) is a planar algebra:
The vector space V_{n} is $\operatorname{Hom}\left(X^{\otimes n}, X^{\otimes n}\right)$.
Action of planar tangles is built by labelling all strings by X or \bar{X}, interpreting concatenation as tensor product, and interpreting cups/caps using subfactor structure (inclusion, conditional expectation, multiplication).

Planar algebraic flatness: A connection is a biunitary 4-box in a graph planar algebra. An element x is flat if there is an element y such that

Definition

A monoidal category is a category \mathcal{C} with a functor $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ and

- a unit object $\mathbf{1}$ of \mathcal{C};
- unitor natural isomorphisms $\lambda_{X}: \mathbf{1} \otimes X \rightarrow X$ and $\rho_{X}: X \otimes \mathbf{1} \rightarrow X$;
- associator natural isomorphism $\alpha_{A, B, C}:(A \otimes B) \otimes C \rightarrow A \otimes(B \otimes C)$;

Definition

A monoidal category is $(\mathcal{C}, \otimes, \mathbf{1}, \lambda, \rho, \alpha)$ satisfying

$$
(A \otimes \mathbf{1}) \otimes B \xrightarrow[\rho_{A}]{\alpha_{A, 1, B}} A \otimes(\mathbf{1} \otimes B)
$$

- (\triangle) triangle equation :
- (\checkmark) pentagon equation :

Definition

A ptensor category is a monoidal category \mathcal{C} with additional structure:

- For all objects $C, D, \operatorname{Hom}(C, D)$ is a finite dimensional \mathbb{C}-vector space.
■ \mathcal{C} is rigid: all objects have left, right duals: $A,{ }^{*} A, A^{*},{ }^{*} A^{* *}$, etc., and maps ev : $A \otimes A^{*} \rightarrow 1$, coev : $1 \rightarrow A^{*} \otimes A$ satisfying the zig-zag requirement that

$$
\lambda_{A} \circ\left(e v \otimes i d_{A}\right) \circ\left(i d_{A} \otimes \operatorname{coev}\right) \circ \rho_{A}^{-1}=i d_{A}
$$

- which turns into the picture

$\square \mathcal{C}$ is pivotal: there is a natural isomorphism $\psi: A \rightarrow A^{* *}$.
$\square \mathcal{C}$ is Karoubi complete, ie it is additively and idempotent closed.

Example

Among bimodules for a subfactor $A \subset B$ generated by $X={ }_{A} B_{B}$, the $A-A$ bimodules form a ptensor category (as do the $B-B$ bimodules):

- objects are bimodules,

■ hom spaces are bimodule intertwiners,

- tensor is $\otimes_{A}\left(\right.$ or $\left.\otimes_{B}\right)$,
- unit is ${ }_{A} A_{A}\left(\right.$ or $\left.{ }_{B} B_{B}\right)$,
- duality is given by $*$.

Example

The Temperley-Lieb-Jones ptensor category $\operatorname{TLJ}(d)$:

- objects are finite strings of points on a horizontal line,
- hom spaces are connections among the points on two lines, modulo loop parameter d,
- Composition of morphisms is defined as vertical stacking, e.g.,

0

$:=$

- The tensor operation is horizontal concatenation (of points on a line, or of diagrams), e.g.,

\otimes

Example

The graph category on a fixed set of vertices: $\operatorname{Graph}(V, d)$

- objects are oriented graphs on V,
- $\operatorname{Hom}(\Gamma, \Lambda)$ is given by linear maps $\mathbb{C}^{\Gamma(v \rightarrow w)} \rightarrow \mathbb{C}^{\Lambda(v \rightarrow w)}$ for all v, w. Composition is component-wise.
- The tensor operation is given by

$$
(\Gamma \otimes \Lambda)(v \rightarrow w):=\sqcup_{u \in V} \Gamma(v \rightarrow u) \Lambda(u \rightarrow w)
$$

- The unit of $\operatorname{Graph}(V, d)$ consists of a disjoint union of loops, one for each $v \in V$.
■ And the dual of Γ is the same graph with its edges reversed.

The universal property of $\operatorname{TLJ}(d)$ is that, if \mathcal{C} is a ptensor category, giving a pivotal ptensor functor $\operatorname{TLJ}(d) \rightarrow \mathcal{C}$ is equivalent to choosing an object

X of \mathcal{C} with the property that $\overbrace{x}^{\psi_{X} \vee \vee} x^{\vee}=d \cdot \mathbf{1}_{1_{\mathcal{C}}}$

Definition

A connection is a pair of functors $F, G: T L J(d) \rightarrow \operatorname{Graph}(V, d)$ and a commutator natural isomorphism $\kappa_{c, d}: F(c) \otimes G(d) \rightarrow G(d) \otimes F(c)$, which is bi-invertible:

and

Recall that flatness of a connection means that for all choices of P_{i} and Q_{i},

(Interpret this diagram as a sum over all possible edges and labels on the interior, and for each such labelling, take the product of the component unit squares.)

Planar algebraic flatness: A connection is a biunitary 4-box in a graph planar algebra. An element x is flat if there is an element y such that

Suppose \mathcal{M} is a semisimiple $T L J(d)-T L J(d)$ bimodule category. The categories $\operatorname{End}(\mathcal{M})$ and $\operatorname{Graph}(V, d)$ are equivalent if $\# V$ is the number of isomorphism classes of simples of M.
Given m, is it possible to put a compatible ptensor structure with unit m on \mathcal{M} ? Define the left flat part \mathcal{L} of \mathcal{M} to be the dominant image of TLJ in End ${ }_{T L J}(\mathcal{M})$.

Consider the composite map $\mathcal{L} \rightarrow \mathcal{M}$, still denoted ev_{m}, which fits into the following commutative diagram.

If the evaluation map $\mathcal{L} \rightarrow \mathcal{M}$ is full, there is a splitting $\mathcal{M} \rightarrow \mathcal{L}$:

A splitting gives an equivalence between \mathcal{L} and \mathcal{M} and allows us to import the tensor structure of \mathcal{L} to \mathcal{M}. So if such a splitting exists, we say \mathcal{M} is a flat TLJ - TLJ bimodule.

The End!

