T-Shifts on Reduced Plabic Graphs and Legendrian Weaves

Daping Weng

UC Davis

August 2023

Joint work with Roger Casals, Ian Le, and Melissa Sherman-Bennett

arXiv:2308.06184

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q (~ 1/29)

2 Positroid Strata and Reduced Plabic Graphs

3 Legendrian Weaves

4 Legendrian Weaves from Reduced Plabic Graphs

<□ ▶ < @ ▶ < E ▶ < E ▶ E の へ C 2/29

 Positroid strata are subvarieties inside Grassmannians [Pos06, KLS13], and they are interesting objects to study from both representation theory [Paw23, Pre23] and mathematical physics [AHBC⁺16] perspectives.

- Positroid strata are subvarieties inside Grassmannians [Pos06, KLS13], and they are interesting objects to study from both representation theory [Paw23, Pre23] and mathematical physics [AHBC⁺16] perspectives.
- A special feature on positroid strata is their cluster structures [GL19, SSBW19], which are typically captured combinatorially by reduced plabic graphs.

- Positroid strata are subvarieties inside Grassmannians [Pos06, KLS13], and they are interesting objects to study from both representation theory [Paw23, Pre23] and mathematical physics [AHBC⁺16] perspectives.
- A special feature on positroid strata is their cluster structures [GL19, SSBW19], which are typically captured combinatorially by reduced plabic graphs.

 However, one can only realize certain mutations as moves on reduced plabic graphs.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ へ ○ 4/29

- Positroid strata are subvarieties inside Grassmannians [Pos06, KLS13], and they are interesting objects to study from both representation theory [Paw23, Pre23] and mathematical physics [AHBC⁺16] perspectives.
- A special feature on positroid strata is their cluster structures [GL19, SSBW19], which are typically captured combinatorially by reduced plabic graphs.

- However, one can only realize certain mutations as moves on reduced plabic graphs.
- On the other hand, the recent introduction and development of Legendrian weaves [CZ22, CW22, CGG⁺22] has built an explicit connection between cluster structures and geometry.

- Positroid strata are subvarieties inside Grassmannians [Pos06, KLS13], and they are interesting objects to study from both representation theory [Paw23, Pre23] and mathematical physics [AHBC⁺16] perspectives.
- A special feature on positroid strata is their cluster structures [GL19, SSBW19], which are typically captured combinatorially by reduced plabic graphs.

- However, one can only realize certain mutations as moves on reduced plabic graphs.
- On the other hand, the recent introduction and development of Legendrian weaves [CZ22, CW22, CGG⁺22] has built an explicit connection between cluster structures and geometry.
- The initial goal of our project is to construct weaves from reduced plabic graphs, which gives rise to a geometric interpretation of the cluster structures on positroid strata. As an application, we prove the conjecture of the equality between the Muller-Speyer twist map and the Donaldson-Thomas transformation.

Positroid Strata and Reduced Plabic Graphs

$$\operatorname{Gr}_{m,n}(\mathbb{R}) = \operatorname{GL}_m(\mathbb{R}) \setminus \operatorname{Mat}_{m,n}^{\operatorname{full ranked}}(\mathbb{R})$$

$$\operatorname{Gr}_{3,6}(\mathbb{R}) = \operatorname{GL}_3(\mathbb{R}) \setminus \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} \\ x_{21} & x_{22} & x_{23} & x_{24} & x_{25} & x_{26} \\ x_{31} & x_{32} & x_{33} & x_{34} & x_{35} & x_{36} \end{pmatrix}$$

$$\operatorname{Gr}_{3,6}(\mathbb{R}) = \operatorname{GL}_3(\mathbb{R}) \setminus \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} \\ x_{21} & x_{22} & x_{23} & x_{24} & x_{25} & x_{26} \\ x_{31} & x_{32} & x_{33} & x_{34} & x_{35} & x_{36} \end{pmatrix}$$

For any *m*-element subset *I* of $[n] := \{1, 2, ..., n\}$, the **Plücker coordinate** Δ_I is the determinant of the submatrix formed by the column vectors indexed by *I*.

◆□▶ < @ ▶ < E ▶ < E ▶ E の Q @ 6/29</p>

Definition of Positroids

Positroid strata come from a stratification of $\operatorname{Gr}_{m,n}^{\geq 0}(\mathbb{R})$ [Pos06]. For $m \leq n$,

$$\operatorname{Gr}_{3,6}(\mathbb{R}) = \operatorname{GL}_3(\mathbb{R}) \setminus \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} \\ x_{21} & x_{22} & x_{23} & x_{24} & x_{25} & x_{26} \\ x_{31} & x_{32} & x_{33} & x_{34} & x_{35} & x_{36} \end{pmatrix}$$

For any *m*-element subset *I* of $[n] := \{1, 2, ..., n\}$, the **Plücker coordinate** Δ_I is the determinant of the submatrix formed by the column vectors indexed by *I*. For example,

$$\Delta_{2,3,5} = \det \begin{pmatrix} x_{12} & x_{13} & x_{15} \\ x_{22} & x_{23} & x_{25} \\ x_{32} & x_{33} & x_{35} \end{pmatrix}.$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

$$\operatorname{Gr}_{m,n}^{\geq 0}(\mathbb{R}) = \operatorname{GL}_m^+(\mathbb{R}) \setminus \left\{ M \in \operatorname{Mat}_{m,n}^{\mathsf{full ranked}}(\mathbb{R}) \ \Big| \ \Delta_I(M) \geq 0 \right\}$$

For any *m*-element subset *I* of $[n] := \{1, 2, ..., n\}$, the **Plücker coordinate** Δ_I is the determinant of the submatrix formed by the column vectors indexed by *I*.

The **totally non-negative Grassmannian** $\operatorname{Gr}_{m,n}^{\geq 0}(\mathbb{R})$ is defined to be the subspace of $\operatorname{Gr}_{m,n}(\mathbb{R})$ where all Plücker coordinates can be simultaneously non-negative.

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ◆ ○ < ○ 6/29</p>

$$\operatorname{Gr}_{m,n}^{\geq 0}(\mathbb{R}) = \operatorname{GL}_m^+(\mathbb{R}) \setminus \left\{ M \in \operatorname{Mat}_{m,n}^{\mathsf{full ranked}}(\mathbb{R}) \ \Big| \ \Delta_I(M) \geq 0 \right\}$$

For any *m*-element subset *I* of $[n] := \{1, 2, ..., n\}$, the **Plücker coordinate** Δ_I is the determinant of the submatrix formed by the column vectors indexed by *I*.

The totally non-negative Grassmannian $\operatorname{Gr}_{m,n}^{\geq 0}(\mathbb{R})$ is defined to be the subspace of $\operatorname{Gr}_{m,n}(\mathbb{R})$ where all Plücker coordinates can be simultaneously non-negative.

Let $\binom{[n]}{m}$ denote the set of *m*-element subsets in [*n*]. For any collection $\mathcal{P} \subset \binom{[n]}{m}$, we define

$$C_{\mathcal{P}} := \{ [M] \in \mathrm{Gr}_{m,n}^{\geq 0}(\mathbb{R}) \mid \Delta_{I}(M) \neq 0 \iff I \in \mathcal{P} \}.$$

$$\operatorname{Gr}_{m,n}^{\geq 0}(\mathbb{R}) = \operatorname{GL}_m^+(\mathbb{R}) \setminus \left\{ M \in \operatorname{Mat}_{m,n}^{\mathsf{full ranked}}(\mathbb{R}) \ \Big| \ \Delta_I(M) \geq 0 \right\}$$

For any *m*-element subset *I* of $[n] := \{1, 2, ..., n\}$, the **Plücker coordinate** Δ_I is the determinant of the submatrix formed by the column vectors indexed by *I*.

The totally non-negative Grassmannian $\operatorname{Gr}_{m,n}^{\geq 0}(\mathbb{R})$ is defined to be the subspace of $\operatorname{Gr}_{m,n}(\mathbb{R})$ where all Plücker coordinates can be simultaneously non-negative.

Let $\binom{[n]}{m}$ denote the set of *m*-element subsets in [*n*]. For any collection $\mathcal{P} \subset \binom{[n]}{m}$, we define

$$C_{\mathcal{P}} := \{ [M] \in \mathrm{Gr}_{m,n}^{\geq 0}(\mathbb{R}) \mid \Delta_{I}(M) \neq 0 \iff I \in \mathcal{P} \}.$$

Definition

 \mathcal{P} is called a **positroid** of type (m, n) if the subset $C_{\mathcal{P}} \subset \operatorname{Gr}_{m,n}^{\geq 0}(\mathbb{R})$ is non-empty. We call m the **rank** of \mathcal{P} .

For each $i \in [n] := \{1, 2, \dots, n\}$, we define a linear order $<_i$ on [n] by

 $i <_i i + 1 <_i \cdots <_i n <_i 1 <_i \cdots <_i i - 1.$

◆□▶ < @ ▶ < E ▶ < E ▶ E の Q @ 7/29</p>

This linear order induces a lexicographic partial order on $\binom{[n]}{m}$.

For each $i \in [n] := \{1, 2, ..., n\}$, we define a linear order $<_i$ on [n] by $i <_i i + 1 <_i \dots <_i n <_i 1 <_i \dots <_i i - 1$.

This linear order induces a lexicographic partial order on $\binom{[n]}{m}$. For example, to compare $\{1,4,5\}$ and $\{3,5,6\}$ in $\binom{[6]}{3}$ with respect to $<_2$, we have

$$\{1, 4, 5\}$$

 $\{3, 5, 6\}$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

For each $i \in [n] := \{1, 2, ..., n\}$, we define a linear order $<_i$ on [n] by $i <_i i + 1 <_i \cdots <_i n <_i 1 <_i \cdots <_i i - 1$.

This linear order induces a lexicographic partial order on $\binom{[n]}{m}$. For example, to compare $\{1,4,5\}$ and $\{3,5,6\}$ in $\binom{[6]}{3}$ with respect to $<_2$, we have

 $\{4<_2 5<_2 1\}$

 $\{3<_2 5 <_2 6\}$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

For each $i \in [n] := \{1, 2, ..., n\}$, we define a linear order $<_i$ on [n] by $i <_i i + 1 <_i \cdots <_i n <_i 1 <_i \cdots <_i i - 1$.

This linear order induces a lexicographic partial order on $\binom{[n]}{m}$. For example, to compare $\{1, 4, 5\}$ and $\{3, 5, 6\}$ in $\binom{[6]}{3}$ with respect to $<_2$, we have

 $\{ 4 <_2 5 <_2 1 \} \\ \lor_2 \parallel_2 \lor_2 \\ \{ 3 <_2 5 <_2 6 \}$

For each $i \in [n] := \{1, 2, ..., n\}$, we define a linear order $<_i$ on [n] by

$$i <_i i + 1 <_i \cdots <_i n <_i 1 <_i \cdots <_i i - 1.$$

This linear order induces a lexicographic partial order on $\binom{[n]}{m}$. For example, to compare $\{1, 4, 5\}$ and $\{3, 5, 6\}$ in $\binom{[6]}{3}$ with respect to $<_2$, we have

 $\{4<_2 5<_2 1\}>_2 \{3<_2 5<_2 6\}$

For each $i \in [n] := \{1, 2, ..., n\}$, we define a linear order $<_i$ on [n] by

$$i <_i i + 1 <_i \cdots <_i n <_i 1 <_i \cdots <_i i - 1.$$

This linear order induces a lexicographic partial order on $\binom{[n]}{m}$. For example, to compare $\{1, 4, 5\}$ and $\{3, 5, 6\}$ in $\binom{[6]}{3}$ with respect to $<_2$, we have

$$\{4 <_2 5 <_2 1\} >_2 \{3 <_2 5 <_2 6\}$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Let $\mathcal{P} \subset {[n] \choose m}$ be a positroid. Then for each $i \in [n]$, there exists a unique minimal element $I_i \in \mathcal{P}$ with respect to the partial order $<_i$.

For each $i \in [n] := \{1, 2, ..., n\}$, we define a linear order $<_i$ on [n] by

$$i <_i i + 1 <_i \cdots <_i n <_i 1 <_i \cdots <_i i - 1.$$

This linear order induces a lexicographic partial order on $\binom{[n]}{m}$. For example, to compare $\{1, 4, 5\}$ and $\{3, 5, 6\}$ in $\binom{[6]}{3}$ with respect to $<_2$, we have

$$\{4<_2 5<_2 1\}>_2 \{3<_2 5<_2 6\}$$

Let $\mathcal{P} \subset {[n] \choose m}$ be a positroid. Then for each $i \in [n]$, there exists a unique minimal element $I_i \in \mathcal{P}$ with respect to the partial order $<_i$.

Definition

The sequence $\mathcal{I}_{\mathcal{P}} := (I_1, I_2, \cdots, I_n)$ is called the **(target) Grassmann necklace**.

For each $i \in [n] := \{1, 2, ..., n\}$, we define a linear order $<_i$ on [n] by

$$i <_i i + 1 <_i \cdots <_i n <_i 1 <_i \cdots <_i i - 1.$$

This linear order induces a lexicographic partial order on $\binom{[n]}{m}$. For example, to compare $\{1, 4, 5\}$ and $\{3, 5, 6\}$ in $\binom{[6]}{3}$ with respect to $<_2$, we have

$$\{4<_2 5<_2 1\}>_2 \{3<_2 5<_2 6\}$$

Let $\mathcal{P} \subset {[n] \choose m}$ be a positroid. Then for each $i \in [n]$, there exists a unique minimal element $I_i \in \mathcal{P}$ with respect to the partial order $<_i$.

Definition

The sequence $\mathcal{I}_{\mathcal{P}} := (I_1, I_2, \cdots, I_n)$ is called the **(target) Grassmann necklace**.

Definition ([KLS13])

Let $\mathcal{P} \subset {\binom{[n]}{m}}$ be a positroid and let $\mathcal{I}_{\mathcal{P}} = (I_1, \ldots, I_n)$ be its Grassmann necklace. The **(open) positroid stratum** $\Pi_{\mathcal{P}}^{\circ}$ is defined to be the following subvariety of $\widetilde{\operatorname{Gr}}_{m,n}$:¹

$$\Pi_{\mathcal{P}}^{\circ} = \left\{ [M] \in \widetilde{\operatorname{Gr}}_{m,n} \; \middle| \; \prod_{i} \Delta_{I_{i}}(M) \neq 0 \text{ and } \Delta_{I}([M]) = 0 \text{ for all } I \notin \mathcal{P} \right\}$$

 $^{^1}$ Here $\widehat{\mathrm{Gr}}_{m,n}$ denotes the affine cone of the Grassmannian $\mathrm{Gr}_{m,n}$ with respect to the Plücker embedding. $^{\circ}$ 9.0 $^{\circ}$ 7/29

Positroid Legendrian Link

Given a Grassmann necklace $\mathcal{I}_{\mathcal{P}} = (I_1, I_2, \dots, I_n)$, we can draw a Legendrian link² $\Lambda_{\mathcal{P}}$ by

²A Legendrian link is a link in $\mathbb{R}^3_{x,y,z}$ satisfying y = dz/dx. Here we are describing the Legendrian link as a satellite of the max tb unknot.

Given a Grassmann necklace $\mathcal{I}_{\mathcal{P}} = (I_1, I_2, \dots, I_n)$, we can draw a Legendrian link² $\Lambda_{\mathcal{P}}$ by

- List elements in I_i with respect to the $<_i$ ordering.
- Connect the corresponding elements in I_i and I_{i+1} (index mod n).
- Connect the remaining pair of distinct elements in I_i and I_{i+1} (index mod n).

 2 A Legendrian link is a link in $\mathbb{R}^3_{x,y,z}$ satisfying y = dz/dx. Here we are describing the Legendrian link as a satellite of the max tb unknot.

Given a Grassmann necklace $\mathcal{I}_{\mathcal{P}}=(I_1,I_2,\ldots,I_n)$, we can draw a Legendrian link² $\Lambda_{\mathcal{P}}$ by

- List elements in I_i with respect to the $<_i$ ordering.
- Connect the corresponding elements in I_i and I_{i+1} (index mod n).
- Connect the remaining pair of distinct elements in I_i and I_{i+1} (index mod n).

²A Legendrian link is a link in $\mathbb{R}^3_{x,y,z}$ satisfying y = dz/dx. Here we are describing the Legendrian link as a satellite of the max tb unknot.

Positroid Legendrian Link

Given a Grassmann necklace $\mathcal{I}_{\mathcal{P}} = (I_1, I_2, \dots, I_n)$, we can draw a Legendrian link² $\Lambda_{\mathcal{P}}$ by

- List elements in I_i with respect to the $<_i$ ordering.
- Connect the corresponding elements in I_i and I_{i+1} (index mod n).
- Connect the remaining pair of distinct elements in I_i and I_{i+1} (index mod n).

²A Legendrian link is a link in $\mathbb{R}^3_{x,y,z}$ satisfying y = dz/dx. Here we are describing the Legendrian link as a satellite of the max tb unknot.

Bounded Affine Permutations

In a Grassmann necklace $\mathcal{I}_{\mathcal{P}} = (I_1, \ldots, I_n)$, any two cyclically consecutive entries differ at most by one element. Thus, we define the **bounded affine permutation** f of \mathcal{P} by

$$f_{\mathcal{P}}(i) = \begin{cases} j & \text{if } i \in I_i \text{ and } I_{i+1} = (I_i \setminus \{i\}) \cup \{j\} \text{ for } j > i, \\ j+n & \text{if } i \in I_i \text{ and } I_{i+1} = (I_i \setminus \{i\}) \cup \{j\} \text{ for } j \leq i, \\ i & \text{if } i \notin I_i. \end{cases}$$

◆□▶ ◆□▶ ◆ E▶ ◆ E▶ E の Q @ 9/29

Bounded Affine Permutations

In a Grassmann necklace $\mathcal{I}_{\mathcal{P}} = (I_1, \ldots, I_n)$, any two cyclically consecutive entries differ at most by one element. Thus, we define the **bounded affine permutation** f of \mathcal{P} by

$$f_{\mathcal{P}}(i) = \begin{cases} j & \text{if } i \in I_i \text{ and } I_{i+1} = (I_i \setminus \{i\}) \cup \{j\} \text{ for } j > i, \\ j+n & \text{if } i \in I_i \text{ and } I_{i+1} = (I_i \setminus \{i\}) \cup \{j\} \text{ for } j \leq i, \\ i & \text{if } i \notin I_i. \end{cases}$$

One can also think of $f_{\mathcal{P}}$ as searching for the first column vector $v_{f_{\mathcal{P}}(i)}$ to the right of v_i (cyclically) in [*M*] such that v_i is in the span of $\{v_{i+1}, \ldots, v_{f_{\mathcal{P}}(i)}\}$. For example,

$$M = \begin{pmatrix} 1 & 0 & * & * & 1 & 1 \\ 0 & 1 & * & * & 1 & 0 \\ 0 & 0 & * & * & 0 & 0 \end{pmatrix} \qquad f_{\mathcal{P}}(5) = 2 + 6 = 8$$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ へ ○ 9/29

Bounded Affine Permutations

In a Grassmann necklace $\mathcal{I}_{\mathcal{P}} = (I_1, \dots, I_n)$, any two cyclically consecutive entries differ at most by one element. Thus, we define the **bounded affine permutation** f of \mathcal{P} by

$$f_{\mathcal{P}}(i) = \begin{cases} j & \text{if } i \in I_i \text{ and } I_{i+1} = (I_i \setminus \{i\}) \cup \{j\} \text{ for } j > i, \\ j+n & \text{if } i \in I_i \text{ and } I_{i+1} = (I_i \setminus \{i\}) \cup \{j\} \text{ for } j \leq i, \\ i & \text{if } i \notin I_i. \end{cases}$$

One can also think of $f_{\mathcal{P}}$ as searching for the first column vector $v_{f_{\mathcal{P}}(i)}$ to the right of v_i (cyclically) in [*M*] such that v_i is in the span of $\{v_{i+1}, \ldots, v_{f_{\mathcal{P}}(i)}\}$.

Theorem (Postnikov [Pos06])

Positroids, Grassmann necklaces, and bounded affine permutations are all in bijection with each other.

In a Grassmann necklace $\mathcal{I}_{\mathcal{P}} = (I_1, \dots, I_n)$, any two cyclically consecutive entries differ at most by one element. Thus, we define the **bounded affine permutation** f of \mathcal{P} by

$$f_{\mathcal{P}}(i) = \begin{cases} j & \text{if } i \in I_i \text{ and } I_{i+1} = (I_i \setminus \{i\}) \cup \{j\} \text{ for } j > i, \\ j+n & \text{if } i \in I_i \text{ and } I_{i+1} = (I_i \setminus \{i\}) \cup \{j\} \text{ for } j \leq i, \\ i & \text{if } i \notin I_i. \end{cases}$$

One can also think of $f_{\mathcal{P}}$ as searching for the first column vector $v_{f_{\mathcal{P}}(i)}$ to the right of v_i (cyclically) in [*M*] such that v_i is in the span of $\{v_{i+1}, \ldots, v_{f_{\mathcal{P}}(i)}\}$.

Theorem (Postnikov [Pos06])

Positroids, Grassmann necklaces, and bounded affine permutations are all in bijection with each other.

In particular, the rank of a positroid can be recovered from its bounded affine permutation as the following average:

$$m=\frac{1}{n}\sum_{i=1}^{n}(f_{\mathcal{P}}(i)-i).$$

In a Grassmann necklace $\mathcal{I}_{\mathcal{P}} = (I_1, \dots, I_n)$, any two cyclically consecutive entries differ at most by one element. Thus, we define the **bounded affine permutation** f of \mathcal{P} by

$$f_{\mathcal{P}}(i) = \begin{cases} j & \text{if } i \in I_i \text{ and } I_{i+1} = (I_i \setminus \{i\}) \cup \{j\} \text{ for } j > i, \\ j+n & \text{if } i \in I_i \text{ and } I_{i+1} = (I_i \setminus \{i\}) \cup \{j\} \text{ for } j \leq i, \\ i & \text{if } i \notin I_i. \end{cases}$$

One can also think of $f_{\mathcal{P}}$ as searching for the first column vector $v_{f_{\mathcal{P}}(i)}$ to the right of v_i (cyclically) in [*M*] such that v_i is in the span of $\{v_{i+1}, \ldots, v_{f_{\mathcal{P}}(i)}\}$.

Theorem (Postnikov [Pos06])

Positroids, Grassmann necklaces, and bounded affine permutations are all in bijection with each other.

In particular, the rank of a positroid can be recovered from its bounded affine permutation as the following average:

$$m=\frac{1}{n}\sum_{i=1}^{n}(f_{\mathcal{P}}(i)-i).$$

For example, the top dimensional positroid stratum in $\operatorname{Gr}_{m,n}$ corresponds to the bounded affine permutation $f_{\mathcal{P}}(i) = i + m$.

Each positroid stratum $\Pi_{\mathcal{P}}^{\circ}$ is a cluster $\mathcal{A}\text{-variety.}$ An initial cluster seed of $\Pi_{\mathcal{P}}^{\circ}$ can be constructed from a reduced plabic graph.

Reduced Plabic Graphs

Each positroid stratum $\Pi^{\circ}_{\mathcal{P}}$ is a cluster \mathcal{A} -variety. An initial cluster seed of $\Pi^{\circ}_{\mathcal{P}}$ can be constructed from a **reduced plabic graph**.

A plabic graph \mathbb{G} is a planar graph on a disk \mathbb{D} with solid and empty vertices and external edges attached to $\partial \mathbb{D}$. We label the external edges by $1, 2, \ldots, n$.

Reduced Plabic Graphs

Each positroid stratum $\Pi^{\circ}_{\mathcal{P}}$ is a cluster \mathcal{A} -variety. An initial cluster seed of $\Pi^{\circ}_{\mathcal{P}}$ can be constructed from a reduced plabic graph.

A plabic graph \mathbb{G} is a planar graph on a disk \mathbb{D} with solid and empty vertices and external edges attached to $\partial \mathbb{D}$. We label the external edges by $1, 2, \ldots, n$. By following "rules of the road", we can draw zig-zags along edges of \mathbb{G} .

Reduced Plabic Graphs

Each positroid stratum $\Pi^{\circ}_{\mathcal{P}}$ is a cluster \mathcal{A} -variety. An initial cluster seed of $\Pi^{\circ}_{\mathcal{P}}$ can be constructed from a **reduced plabic graph**.

A plabic graph \mathbb{G} is a planar graph on a disk \mathbb{D} with solid and empty vertices and external edges attached to $\partial \mathbb{D}$. We label the external edges by $1, 2, \ldots, n$. By following "rules of the road", we can draw zig-zags along edges of \mathbb{G} .

A plabic graph is said to be **reduced** if its zig-zags do not form loops, self-intersection, or parallel bigons.

Reduced Plabic Graphs

Each positroid stratum $\Pi^{\circ}_{\mathcal{P}}$ is a cluster \mathcal{A} -variety. An initial cluster seed of $\Pi^{\circ}_{\mathcal{P}}$ can be constructed from a reduced plabic graph.

A plabic graph \mathbb{G} is a planar graph on a disk \mathbb{D} with solid and empty vertices and external edges attached to $\partial \mathbb{D}$. We label the external edges by $1, 2, \ldots, n$. By following "rules of the road", we can draw zig-zags along edges of \mathbb{G} .

A plabic graph is said to be **reduced** if its zig-zags do not form loops, self-intersection, or parallel bigons.

A reduced plabic graph \mathbb{G} is associated with a positroid \mathcal{P} if the zig-zags in \mathbb{G} go from *i* to $f_{\mathcal{P}}(i) \mod n$ for each *i*.

Let \mathbb{G} be a reduced plabic graph for a positroid \mathcal{P} of type (m, n). To each face F of \mathbb{G} , we can associate an *m*-element set I_F by using the targets of zig-zags (also known as the **target labeling**).

We can then draw a collection of arrows across edges such that they form a counterclockwise cycle around solid vertices. This defines a quiver Q with frozen vertices. The pair $(\{\Delta_{I_F}\}_F, Q)$ defines an initial seed for the cluster structure on $\Pi_{\mathcal{D}}^{\circ}$.

Let \mathbb{G} be a reduced plabic graph for a positroid \mathcal{P} of type (m, n). To each face F of \mathbb{G} , we can associate an *m*-element set I_F by using the targets of zig-zags (also known as the **target labeling**).

We can then draw a collection of arrows across edges such that they form a counterclockwise cycle around solid vertices. This defines a quiver Q with frozen vertices. The pair $(\{\Delta_{I_F}\}_F, Q)$ defines an initial seed for the cluster structure on $\Pi_{\mathcal{D}}^{\circ}$.

Let \mathbb{G} be a reduced plabic graph for a positroid \mathcal{P} of type (m, n). To each face F of \mathbb{G} , we can associate an *m*-element set I_F by using the targets of zig-zags (also known as the **target labeling**).

We can then draw a collection of arrows across edges such that they form a counterclockwise cycle around solid vertices. This defines a quiver Q with frozen vertices. The pair $(\{\Delta_{I_F}\}_F, Q)$ defines an initial seed for the cluster structure on $\Pi_{\mathcal{P}}^{\circ}$.

Here is a javascript program that can generate a Le plabic graph together with the initial cluster seed for a positroid. $\langle \Box \rangle \langle \overline{\sigma} \rangle \langle \overline{z} \rangle$ Legendrian Weaves

< □ ▶ < 酉 ▶ < ☰ ▶ < ☰ ▶ Ξ の Q @ 12/29

Let x_1 and x_2 be coordinates on \mathbb{D} and let z be the height coordinate for $\Sigma_{\mathfrak{w}}$. By setting $y_i := \frac{\partial z}{\partial x_i}$, we get an exact Lagrangian surface $L_{\mathfrak{w}}$ in $\mathcal{T}^* \mathbb{D} \cong \mathbb{R}^4_{x_1, x_2, y_1, y_2}$. In particular, $L_{\mathfrak{w}}$ is diffeomorphic to the *m*-fold spectral cover of \mathbb{D} .

Let x_1 and x_2 be coordinates on \mathbb{D} and let z be the height coordinate for $\Sigma_{\mathfrak{w}}$. By setting $y_i := \frac{\partial z}{\partial x_i}$, we get an exact Lagrangian surface $L_{\mathfrak{w}}$ in $\mathcal{T}^* \mathbb{D} \cong \mathbb{R}^4_{x_1, x_2, y_1, y_2}$. In particular, $L_{\mathfrak{w}}$ is diffeomorphic to the *m*-fold spectral cover of \mathbb{D} .

For an *m*-weave \mathfrak{w} , we can compute the Euler characteristic of $L_{\mathfrak{w}}$ by

 $\chi(L_{\mathfrak{w}}) = m - \#$ trivalent vertices

Let x_1 and x_2 be coordinates on \mathbb{D} and let z be the height coordinate for $\Sigma_{\mathfrak{w}}$. By setting $y_i := \frac{\partial z}{\partial x_i}$, we get an exact Lagrangian surface $L_{\mathfrak{w}}$ in $\mathcal{T}^* \mathbb{D} \cong \mathbb{R}^4_{x_1, x_2, y_1, y_2}$. In particular, $L_{\mathfrak{w}}$ is diffeomorphic to the *m*-fold spectral cover of \mathbb{D} .

For an *m*-weave \mathfrak{w} , we can compute the Euler characteristic of $L_{\mathfrak{w}}$ by

 $\chi(L_{\mathfrak{w}}) = m - \#$ trivalent vertices

We can also depict certain 1-cycles on $L_{\mathfrak{w}}$ using edges in \mathfrak{w} . These 1-cycles are known as **Y-cycles**.

Let x_1 and x_2 be coordinates on \mathbb{D} and let z be the height coordinate for $\Sigma_{\mathfrak{W}}$. By setting $y_i := \frac{\partial z}{\partial x_i}$, we get an exact Lagrangian surface $L_{\mathfrak{W}}$ in $\mathcal{T}^* \mathbb{D} \cong \mathbb{R}^4_{x_1, x_2, y_1, y_2}$. In particular, $L_{\mathfrak{W}}$ is diffeomorphic to the *m*-fold spectral cover of \mathbb{D} .

For an *m*-weave \mathfrak{w} , we can compute the Euler characteristic of $L_{\mathfrak{w}}$ by

 $\chi(L_{\mathfrak{w}}) = m - \#$ trivalent vertices

We can also depict certain 1-cycles on L_{w} using edges in w. These 1-cycles are known as **Y-cycles**.

Let x_1 and x_2 be coordinates on \mathbb{D} and let z be the height coordinate for $\Sigma_{\mathfrak{W}}$. By setting $y_i := \frac{\partial z}{\partial x_i}$, we get an exact Lagrangian surface $L_{\mathfrak{W}}$ in $T^* \mathbb{D} \cong \mathbb{R}^4_{x_1, x_2, y_1, y_2}$. In particular, $L_{\mathfrak{W}}$ is diffeomorphic to the *m*-fold spectral cover of \mathbb{D} .

For an *m*-weave \mathfrak{w} , we can compute the Euler characteristic of $L_{\mathfrak{w}}$ by

 $\chi(L_{\mathfrak{w}}) = m - \#$ trivalent vertices

We can also depict certain 1-cycles on L_{w} using edges in w. These 1-cycles are known as **Y-cycles**.

Let x_1 and x_2 be coordinates on \mathbb{D} and let z be the height coordinate for $\Sigma_{\mathfrak{W}}$. By setting $y_i := \frac{\partial z}{\partial x_i}$, we get an exact Lagrangian surface $L_{\mathfrak{W}}$ in $T^* \mathbb{D} \cong \mathbb{R}^4_{x_1, x_2, y_1, y_2}$. In particular, $L_{\mathfrak{W}}$ is diffeomorphic to the *m*-fold spectral cover of \mathbb{D} .

For an *m*-weave \mathfrak{w} , we can compute the Euler characteristic of $L_{\mathfrak{w}}$ by

 $\chi(L_{\mathfrak{w}}) = m - \#$ trivalent vertices

We can also depict certain 1-cycles on L_{w} using edges in w. These 1-cycles are known as **Y-cycles**.

Y-cycles have two possible behaviors at a hexavalent weave vertex:

1-Cycles and Quiver

Y-cycles have two possible behaviors at a hexavalent weave vertex:

1-Cycles and Quiver

Y-cycles have two possible behaviors at a hexavalent weave vertex:

< □ ▶ < 酉 ▶ < ☰ ▶ < ☰ ▶ Ξ ∽ ♀ ? 15/29

Y-cycles have two possible behaviors at a hexavalent weave vertex:

The intersection pairing between these 1-cycles can be computed by summing up local contributions.

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ ・ ク Q ペ 15/29

Cluster Ensemble from Legendrian Weaves

In [CW22], we lay down the framework of describing a cluster ensemble structure using Legendrian weaves.

 $\begin{array}{c} \mathsf{cluster seed} \longleftrightarrow \mathsf{Legendrian weave} \\ \mathsf{quiver vertices} \longleftrightarrow \mathsf{Y}\text{-}\mathsf{cycles on } L_{\mathfrak{w}} \\ \mathsf{quiver arrows} \longleftrightarrow \mathsf{intersection pairing between Y-cycles} \\ \mathsf{cluster } \mathcal{X}\text{-}\mathsf{torus} \longleftrightarrow \mathsf{rank 1 local system on } L_{\mathfrak{w}} \\ \mathsf{cluster } \mathcal{X}\text{-}\mathsf{variables} \longleftrightarrow \mathsf{monodromies along Y-cycles} \\ \mathsf{cluster } \mathcal{A}\text{-}\mathsf{torus} \longleftrightarrow \mathsf{decorated rank 1 local system on } L_{\mathfrak{w}} \\ \mathsf{cluster } \mathcal{A}\text{-}\mathsf{variables} \longleftrightarrow \mathsf{decorated rank 1 local system on } L_{\mathfrak{w}} \\ \mathsf{cluster } \mathcal{A}\text{-}\mathsf{variables} \longleftrightarrow \mathsf{parallel transports along relative 1-cycles} \\ \mathsf{cluster } \mathcal{A}\text{-}\mathsf{variables} \longleftrightarrow \mathsf{parallel transports along relative 1-cycles} \\ \mathsf{cluster mutation} \longleftrightarrow \mathsf{Polterovich surgerv} \\ \end{array}$

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · 9 < ℃ 16/29</p>

 $\begin{array}{c} \mathsf{cluster seed} \longleftrightarrow \mathsf{Legendrian weave} \\ \mathsf{quiver vertices} \longleftrightarrow \mathsf{Y}\text{-cycles on } L_{\mathfrak{w}} \\ \mathsf{quiver arrows} \longleftrightarrow \mathsf{intersection pairing between Y-cycles} \\ \mathsf{cluster } \mathcal{X}\text{-torus} \longleftrightarrow \mathsf{rank 1 local system on } L_{\mathfrak{w}} \\ \mathsf{cluster } \mathcal{X}\text{-variables} \longleftrightarrow \mathsf{monodromies along Y-cycles} \\ \mathsf{cluster } \mathcal{A}\text{-torus} \longleftrightarrow \mathsf{decorated rank 1 local system on } L_{\mathfrak{w}} \\ \mathsf{cluster } \mathcal{A}\text{-torus} \longleftrightarrow \mathsf{decorated rank 1 local system on } L_{\mathfrak{w}} \\ \mathsf{cluster } \mathcal{A}\text{-torus} \longleftrightarrow \mathsf{decorated rank 1 local system on } L_{\mathfrak{w}} \\ \mathsf{cluster } \mathcal{A}\text{-torus} \longleftrightarrow \mathsf{decorated rank 1 local system on } L_{\mathfrak{w}} \\ \mathsf{cluster } \mathcal{A}\text{-variables} \longleftrightarrow \mathsf{parallel transports along relative 1-cycles} \\ \mathsf{that are Poincaré dual to the Y-cycles} \\ \mathsf{cluster mutation} \longleftrightarrow \mathsf{Polterovich surgery} \\ \end{array}$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ● □ • • ○ へ ○ 16/29

 $\begin{array}{c} \mathsf{cluster} \; \mathsf{seed} \longleftrightarrow \mathsf{Legendrian} \; \mathsf{weave} \\ \mathsf{quiver} \; \mathsf{vertices} \longleftrightarrow \mathsf{Y}\text{-}\mathsf{cycles} \; \mathsf{on} \; \mathit{L}_{\mathfrak{W}} \\ \mathsf{quiver} \; \mathsf{arrows} \longleftrightarrow \; \mathsf{intersection} \; \mathsf{pairing} \; \mathsf{between} \; \mathsf{Y}\text{-}\mathsf{cycles} \\ \mathsf{cluster} \; \mathcal{X}\text{-}\mathsf{torus} \longleftrightarrow \; \mathsf{rank} \; 1 \; \mathsf{local} \; \mathsf{system} \; \mathsf{on} \; \mathit{L}_{\mathfrak{W}} \\ \mathsf{cluster} \; \mathcal{X}\text{-}\mathsf{variables} \longleftrightarrow \; \mathsf{monodromies} \; \mathsf{along} \; \mathsf{Y}\text{-}\mathsf{cycles} \\ \mathsf{cluster} \; \mathcal{A}\text{-}\mathsf{torus} \longleftrightarrow \; \mathsf{decorated} \; \mathsf{rank} \; 1 \; \mathsf{local} \; \mathsf{system} \; \mathsf{on} \; \mathit{L}_{\mathfrak{W}} \\ \mathsf{cluster} \; \mathcal{A}\text{-}\mathsf{torus} \longleftrightarrow \; \mathsf{decorated} \; \mathsf{rank} \; 1 \; \mathsf{local} \; \mathsf{system} \; \mathsf{on} \; \mathit{L}_{\mathfrak{W}} \\ \mathsf{cluster} \; \mathcal{A}\text{-}\mathsf{variables} \longleftrightarrow \; \mathsf{parallel} \; \mathsf{transports} \; \mathsf{along} \; \mathsf{relative} \; 1\text{-}\mathsf{cycles} \\ \mathsf{that} \; \mathsf{are} \; \mathsf{Poincare} \; \mathsf{dual} \; \mathsf{to} \; \mathsf{the} \; \mathsf{Y}\text{-}\mathsf{cycles} \\ \mathsf{cluster} \; \mathsf{mutation} \longleftrightarrow \; \mathsf{Polterovich} \; \mathsf{surgery} \\ \end{array}$

Following [CZ22], the (decorated) rank 1 local system on L_{w} can be described as certain flag moduli space on \mathbb{D} .

cluster seed \leftrightarrow Legendrian weave quiver vertices \longleftrightarrow Y-cycles on $L_{\mathfrak{w}}$ quiver arrows \longleftrightarrow intersection pairing between Y-cycles cluster \mathcal{X} -torus \longleftrightarrow rank 1 local system on $L_{\mathfrak{m}}$ cluster \mathcal{X} -variables \longleftrightarrow monodromies along Y-cycles cluster \mathcal{A} -torus \longleftrightarrow decorated rank 1 local system on $L_{\mathfrak{m}}$ cluster \mathcal{A} -variables \longleftrightarrow parallel transports along relative 1-cycles that are Poincaré dual to the Y-cycles cluster mutation \leftrightarrow Polterovich surgerv

Following [CZ22], the (decorated) rank 1 local system on L_{w} can be described as certain flag moduli space on \mathbb{D} .

It was also proved in [CW22] that if a Y-cycle is given by a tree on \mathfrak{w} (also known as a **Y-tree**), then the new exact Lagrangian surface from Polterovich surgery can again be described by Legendrian weaves.

Example: A₂ Cluster Ensemble

◆□ → < 団 → < Ξ → < Ξ → Ξ → ○ Q (* 17/29)</p>

Example: A₂ Cluster Ensemble

• ------- •

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ • ⑦ � ○ 17/29
Example: A₂ Cluster Ensemble

< □ ▶ < 酉 ▶ < ≧ ▶ < ≧ ▶ Ξ ● ○ Q ○ 17/29

Legendrian Weaves from Reduced Plabic Graphs

 $^{^{3}}$ This procedure is called "T-duality" in loc. cit.; we change it to "T-shift" to avoid confusion with the **T-duality** in mirror symmetry.

- Make all solid vertices trivalent.
- Put a new empty vertex of \mathbb{G}^{\downarrow} at each solid vertex of \mathbb{G} .
- Put a new solid vertex of \mathbb{G}^{\downarrow} inside each face of \mathbb{G} .
- Connect the adjacent solid and empty vertices of \mathbb{G}^{\downarrow} .
- Shift boundary marked points counterclockwise by 1 tick.
- \blacksquare Connect the solid vertices of \mathbb{G}^{\downarrow} in the boundary faces of \mathbb{G} with the new boundary marked points.

 $^{^{3}}$ This procedure is called "T-duality" in loc. cit.; we change it to "T-shift" to avoid confusion with the T-duality in mirror symmetry.

- Make all solid vertices trivalent.
- Put a new empty vertex of \mathbb{G}^{\downarrow} at each solid vertex of \mathbb{G} .
- Put a new solid vertex of \mathbb{G}^{\downarrow} inside each face of \mathbb{G} .
- Connect the adjacent solid and empty vertices of \mathbb{G}^{\downarrow} .
- Shift boundary marked points counterclockwise by 1 tick.
- \blacksquare Connect the solid vertices of \mathbb{G}^\downarrow in the boundary faces of \mathbb{G} with the new boundary marked points.

³This procedure is called "T-duality" in loc. cit.; we change it to "T-shift" to avoid confusion with the **T-duality** in mirror symmetry. $\Box \rightarrow \langle \Box \rangle = \langle \Box \rangle = \langle \Xi \rangle = \langle \Xi \rangle$

When studying m = 2 amplituhedron, Parisi, Sherman-Bennett, and Williams [PSBW21] develop a procedure that produces a new reduced plabic graph \mathbb{G}^{\downarrow} of rank m - 1 from a reduced plabic graph \mathbb{G} of rank m. We call this procedure a **T-shift**³.

- Make all solid vertices trivalent.
- Put a new empty vertex of \mathbb{G}^{\downarrow} at each solid vertex of \mathbb{G} .
- Put a new solid vertex of \mathbb{G}^{\downarrow} inside each face of \mathbb{G} .
- Connect the adjacent solid and empty vertices of \mathbb{G}^{\downarrow} .
- Shift boundary marked points counterclockwise by 1 tick.
- \blacksquare Connect the solid vertices of \mathbb{G}^\downarrow in the boundary faces of \mathbb{G} with the new boundary marked points.

³This procedure is called "T-duality" in loc. cit.; we change it to "T-shift" to avoid confusion with the **T-duality** in mirror symmetry. $\Box \rightarrow \langle \Box \rangle = \langle \Box \rangle = \langle \Xi \rangle = \langle \Xi \rangle$

^{ر ک} 19/29

When studying m = 2 amplituhedron, Parisi, Sherman-Bennett, and Williams [PSBW21] develop a procedure that produces a new reduced plabic graph \mathbb{G}^{\downarrow} of rank m - 1 from a reduced plabic graph \mathbb{G} of rank m. We call this procedure a **T-shift**³.

- Make all solid vertices trivalent.
- Put a new empty vertex of \mathbb{G}^{\downarrow} at each solid vertex of \mathbb{G} .
- Put a new solid vertex of \mathbb{G}^{\downarrow} inside each face of \mathbb{G} .
- Connect the adjacent solid and empty vertices of \mathbb{G}^{\downarrow} .
- Shift boundary marked points counterclockwise by 1 tick.
- \blacksquare Connect the solid vertices of \mathbb{G}^\downarrow in the boundary faces of \mathbb{G} with the new boundary marked points.

³This procedure is called "T-duality" in loc. cit.; we change it to "T-shift" to avoid confusion with the T-duality in mirror symmetry.

९ (२ 19/29

When studying m = 2 amplituhedron, Parisi, Sherman-Bennett, and Williams [PSBW21] develop a procedure that produces a new reduced plabic graph \mathbb{G}^{\downarrow} of rank m - 1 from a reduced plabic graph \mathbb{G} of rank m. We call this procedure a **T-shift**³.

- Make all solid vertices trivalent.
- Put a new empty vertex of \mathbb{G}^{\downarrow} at each solid vertex of \mathbb{G} .
- Put a new solid vertex of \mathbb{G}^{\downarrow} inside each face of \mathbb{G} .
- Connect the adjacent solid and empty vertices of \mathbb{G}^{\downarrow} .
- Shift boundary marked points counterclockwise by 1 tick.
- \blacksquare Connect the solid vertices of \mathbb{G}^{\downarrow} in the boundary faces of \mathbb{G} with the new boundary marked points.

³This procedure is called "T-duality" in loc. cit.; we change it to "T-shift" to avoid confusion with the **T-duality** in mirror symmetry. $\Box \rightarrow \langle \Box \rangle = \langle \Box \rangle = \langle \Xi \rangle = \langle \Xi \rangle$

۹ (* 19/29

When studying m = 2 amplituhedron, Parisi, Sherman-Bennett, and Williams [PSBW21] develop a procedure that produces a new reduced plabic graph \mathbb{G}^{\downarrow} of rank m - 1 from a reduced plabic graph \mathbb{G} of rank m. We call this procedure a **T-shift**³.

- Make all solid vertices trivalent.
- Put a new empty vertex of \mathbb{G}^{\downarrow} at each solid vertex of \mathbb{G} .
- Put a new solid vertex of \mathbb{G}^{\downarrow} inside each face of \mathbb{G} .
- Connect the adjacent solid and empty vertices of \mathbb{G}^{\downarrow} .
- Shift boundary marked points counterclockwise by 1 tick.
- \blacksquare Connect the solid vertices of \mathbb{G}^{\downarrow} in the boundary faces of \mathbb{G} with the new boundary marked points.

³This procedure is called "T-duality" in loc. cit.; we change it to "T-shift" to avoid confusion with the **T-duality** in mirror symmetry. $\Box \rightarrow \langle \Box \rangle = \langle \Box \rangle = \langle \Xi \rangle = \langle \Xi \rangle$

९ (४ 19/29

- Make all solid vertices trivalent.
- Put a new empty vertex of \mathbb{G}^{\downarrow} at each solid vertex of \mathbb{G} .
- Put a new solid vertex of \mathbb{G}^{\downarrow} inside each face of \mathbb{G} .
- Connect the adjacent solid and empty vertices of \mathbb{G}^{\downarrow} .
- Shift boundary marked points counterclockwise by 1 tick.
- \blacksquare Connect the solid vertices of \mathbb{G}^{\downarrow} in the boundary faces of \mathbb{G} with the new boundary marked points.

³This procedure is called "T-duality" in loc. cit.; we change it to "T-shift" to avoid confusion with the **T-duality** in mirror symmetry. $\Box \rightarrow \langle \Box \rangle = \langle \Box \rangle = \langle \Xi \rangle = \langle \Xi \rangle$

Theorem (Casals-Le-Sherman-Bennett-W.)

Suppose \mathbb{G} is a reduced plabic graph associated with a positroid \mathcal{P} of rank m. Let $\mathbb{G}_m := \mathbb{G}$ and define $\mathbb{G}_k := \mathbb{G}_{k+1}^{\downarrow}$. Then $\mathfrak{w} := \bigcup_{k=1}^{m-1}$ is a Legendrian m-weave, and it encodes the same cluster structure on $\Pi_{\mathcal{P}}^{\circ}$ as \mathbb{G} . We call this weave \mathfrak{w} the **positroid** weave associated with \mathbb{G} .

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · • ○ Q ○ 20/29</p>

Theorem (Casals-Le-Sherman-Bennett-W.)

Note that we can recover the target labeling of the faces of $\mathbb G$ by repeating this backward iteration once more.

Mutation at Non-Square Faces

As we have mentioned at the beginning, one cannot realize mutation at non-square faces using reduced plabic graphs. However, this can be done using Legendrian weaves.

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ · • ○ Q ○ 22/29</p>

Mutation at Non-Square Faces

As we have mentioned at the beginning, one cannot realize mutation at non-square faces using reduced plabic graphs. However, this can be done using Legendrian weaves.

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ の Q @ 22/29

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の < ? 23/29

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の < ? 23/29

२०० 23/29

Theorem

The boundary of a positroid weave \mathfrak{w} is $\Lambda_{\mathcal{P}}$ (in other words, $\mathcal{L}_{\mathfrak{w}}$ is an exact Lagrangian filling of $\Lambda_{\mathcal{P}}$). Moreover, $\Pi_{\mathcal{P}}^{\circ} \cong \mathfrak{M}(\Lambda_{\mathcal{P}}; \mathfrak{t})$, where $\Lambda_{\mathcal{P}}$ is the positroid Legendrian link associated with \mathcal{P} and \mathfrak{t} is a certain way to decorate $\Lambda_{\mathcal{P}}$ with base points.

Theorem

The boundary of a positroid weave \mathfrak{w} is $\Lambda_{\mathcal{P}}$ (in other words, $\mathcal{L}_{\mathfrak{w}}$ is an exact Lagrangian filling of $\Lambda_{\mathcal{P}}$). Moreover, $\Pi_{\mathcal{P}}^{\circ} \cong \mathfrak{M}(\Lambda_{\mathcal{P}}; \mathfrak{t})$, where $\Lambda_{\mathcal{P}}$ is the positroid Legendrian link associated with \mathcal{P} and \mathfrak{t} is a certain way to decorate $\Lambda_{\mathcal{P}}$ with base points.

In [CGG⁺22], Casals, Gorsky, Gorsky, Le, Shen, and Simental use a special family of weaves called **Demazure weaves** to describe cluster structures on braid varieties.

Theorem

For each $1 \le i \le n$, there is a weave equivalence that turns the positroid weave \mathfrak{w} to a Demazure weave. In particular, these weave equivalences are in bijection with acyclic **perfect orientations** on \mathbb{G} .

Theorem

The boundary of a positroid weave \mathfrak{w} is $\Lambda_{\mathcal{P}}$ (in other words, $\mathcal{L}_{\mathfrak{w}}$ is an exact Lagrangian filling of $\Lambda_{\mathcal{P}}$). Moreover, $\Pi_{\mathcal{P}}^{\circ} \cong \mathfrak{M}(\Lambda_{\mathcal{P}}; \mathfrak{t})$, where $\Lambda_{\mathcal{P}}$ is the positroid Legendrian link associated with \mathcal{P} and \mathfrak{t} is a certain way to decorate $\Lambda_{\mathcal{P}}$ with base points.

In [CGG⁺22], Casals, Gorsky, Gorsky, Le, Shen, and Simental use a special family of weaves called **Demazure weaves** to describe cluster structures on braid varieties.

Theorem

For each $1 \le i \le n$, there is a weave equivalence that turns the positroid weave \mathfrak{w} to a Demazure weave. In particular, these weave equivalences are in bijection with acyclic **perfect orientations** on \mathbb{G} .

In [GK13], Goncharov and Kenyon construct a **conjugate surface** $S_{\mathbb{G}}$ from a reduced plabic graph \mathbb{G} . Shende, Treumann, Williams, and Zaslow [STWZ19] prove that the conjugate surface $S_{\mathbb{G}}$ can be seen as an exact Lagrangian surface in $T^*\mathbb{D}$.

Theorem

The iterative T-shift procedure can be viewed geometrically as a Hamiltonian isotopy from $S_{\mathbb{G}}$ to $L_{\varpi}.$

In [CW22] and [CGG⁺22], the **Donaldson-Thomas transformation** of the cluster ensemble can be geometrically described as the composition of a Legendrian isotopy that cyclically rotates $\Lambda_{\mathcal{P}}$ and a contactomorphism that is analogous to a transposition. By comparing this action with the Muller-Speyer twist map [MS17] on positroid strata, we prove that the following conjecture.

Theorem

The Muller-Speyer twist map on a positroid stratum coincides with its (quasi-cluster) Donaldson-Thomas transformation.

In [CW22] and [CGG⁺22], the **Donaldson-Thomas transformation** of the cluster ensemble can be geometrically described as the composition of a Legendrian isotopy that cyclically rotates $\Lambda_{\mathcal{P}}$ and a contactomorphism that is analogous to a transposition. By comparing this action with the Muller-Speyer twist map [MS17] on positroid strata, we prove that the following conjecture.

Theorem

The Muller-Speyer twist map on a positroid stratum coincides with its (quasi-cluster) Donaldson-Thomas transformation.

Corollary

The target labeling seeds and source labeling seeds are quasi-cluster equivalent.
In [CW22] and [CGG⁺22], the **Donaldson-Thomas transformation** of the cluster ensemble can be geometrically described as the composition of a Legendrian isotopy that cyclically rotates $\Lambda_{\mathcal{P}}$ and a contactomorphism that is analogous to a transposition. By comparing this action with the Muller-Speyer twist map [MS17] on positroid strata, we prove that the following conjecture.

Theorem

The Muller-Speyer twist map on a positroid stratum coincides with its (quasi-cluster) Donaldson-Thomas transformation.

Corollary

The target labeling seeds and source labeling seeds are quasi-cluster equivalent.

Recently, Decampo and Muller [DM23] introduce a moduli space of **linear recurrence** with a cluster \mathcal{X} structure for each positroid. These moduli spaces can be thought of as the "mirror" of positroid strata. We can modify our construction and obtain a different decorated flag moduli space with the same cluster \mathcal{X} structure as loc. cit.

Thank You!

< □ ▶ < 酉 ▶ < 壹 ▶ < 壹 ▶ 壹 → ○ Q (? 26/29

Bibliography I

Nima Arkani-Hamed, Jacob Bourjaily, Freddy Cachazo, Alexander Goncharov, Alexander Postnikov, and Jaroslav Trnka.

Grassmannian Geometry of Scattering Amplitudes. Cambridge University Press, 2016. arXiv:1212.5605, doi:10.1017/CB09781316091548.

Roger Casals, Eugene Gorsky, Mikhail Gorsky, Ian Le, Linhui Shen, and José Simental.

Cluster structures on braid varieties. Preprint, 2022. arXiv:2207.11607.

Roger Casals and Daping Weng.

Microlocal theory of Legendrian links and cluster algebras. Geometry & Topology (to appear), 2022. arXiv:2204.13244.

Roger Casals and Eric Zaslow.

Legendrian weaves: N-graph calculus, flag moduli and applications. Geometry & Topology, pages 1–116, 2022. arXiv:2007.04943.

Roi Decampo and Greg Muller.

Linear recurrences with quasiperiodic solutions. In preparation, 2023.

Alexander B. Goncharov and Richard Kenyon.

Dimers and cluster integrable systems.

Ann. Sci. Éc. Norm. Supér. (4), 46(5):747-813, 2013. doi:10.24033/asens.2201.

Pavel Galashin and Thomas Lam.

Positroid varieties and cluster algebras. Preprint, 2019. arXiv:1906.03501.

Bibliography II

Allen Knutson, Thomas Lam, and David E. Speyer.

Positroid varieties: juggling and geometry. Compos. Math., 149(10):1710-1752, 2013. arXiv:1111.3660, doi:10.1112/S0010437X13007240.

Greg Muller and David E. Speyer.

The twist for positroid varieties. Proc. Lond. Math. Soc. (3), 115(5):1014-1071, 2017. arXiv:1606.08383, doi:10.1112/plms.12056.

Brendan Pawlowski.

A representation-theoretic interpretation of positroid classes. *Adv. Math.*, 429:Paper No. 109178, 2023. arXiv:1612.00097, doi:10.1016/j.aim.2023.109178.

Alexander Postnikov.

Total positivity, Grassmannians, and networks. Preprint, 2006. arXiv:math/0609764.

Matthew Pressland.

Quasi-coincidence of cluster structures on positroid varieties. Preprint, 2023. arXiv:2307.13369.

Matteo Parisi, Melissa Sherman-Bennett, and Lauren Williams.

The m=2 amplituhedron and the hypersimplex: signs, clusters, triangulations, Eulerian numbers. Preprint, 2021. arXiv:2104.08254.

arX1v:2104.08

Cluster structures in Schubert varieties in the Grassmannian. Proc. Lond. Math. Soc. (3), 119(6):1694-1744, 2019. arXiv:1902.0080, doi:10.1112/plms.12281.

Vivek Shende, David Treumann, Harold Williams, and Eric Zaslow.

Cluster varieties from Legendrian knots.

Duke Math. J., 168(15):2801-2871, 2019. arXiv:1512.08942, doi:10.1215/00127094-2019-0027.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ⑦ Q (~ 29/29)