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Overview

Positroid strata are subvarieties inside Grassmannians [Pos06, KLS13], and they
are interesting objects to study from both representation theory [Paw23, Pre23]
and mathematical physics [AHBC+16] perspectives.

A special feature on positroid strata is their cluster structures [GL19, SSBW19],
which are typically captured combinatorially by reduced plabic graphs.

However, one can only realize certain mutations as moves on reduced plabic
graphs.

On the other hand, the recent introduction and development of Legendrian
weaves [CZ22, CW22, CGG+22] has built an explicit connection between cluster
structures and geometry.

The initial goal of our project is to construct weaves from reduced plabic graphs,
which gives rise to a geometric interpretation of the cluster structures on
positroid strata. As an application, we prove the conjecture of the equality
between the Muller-Speyer twist map and the Donaldson-Thomas transformation.
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Positroid Strata and Reduced Plabic Graphs



6/29

Definition of Positroids

Positroid strata come from a stratification of Gr≥0
m,n(R) [Pos06]. For m ≤ n,

Grm,n(R) = GLm(R)
∖
Matfull rankedm,n (R)

For any m-element subset I of [n] := {1, 2, . . . , n}, the Plücker coordinate ∆I is the
determinant of the submatrix formed by the column vectors indexed by I .

The totally non-negative Grassmannian Gr≥0
m,n(R) is defined to be the subspace of

Grm,n(R) where all Plücker coordinates can be simultaneously non-negative.

Let
([n]
m

)
denote the set of m-element subsets in [n]. For any collection P ⊂

([n]
m

)
, we

define
CP := {[M] ∈ Gr≥0

m,n(R) | ∆I (M) ̸= 0 ⇐⇒ I ∈ P}.

Definition

P is called a positroid of type (m, n) if the subset CP ⊂ Gr≥0
m,n(R) is non-empty.

We call m the rank of P.
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determinant of the submatrix formed by the column vectors indexed by I .

The totally non-negative Grassmannian Gr≥0
m,n(R) is defined to be the subspace of
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Grassmann Necklace and Positroid Stratum

For each i ∈ [n] := {1, 2, . . . , n}, we define a linear order <i on [n] by

i <i i + 1 <i · · · <i n <i 1 <i · · · <i i − 1.

This linear order induces a lexicographic partial order on
([n]
m

)
.

For example, to

compare {1, 4, 5} and {3, 5, 6} in
([6]
3

)
with respect to <2, we have

{4 <2 5 <2 1} >2 {3 <2 5 <2 6}

Let P ⊂
([n]
m

)
be a positroid. Then for each i ∈ [n], there exists a unique minimal

element Ii ∈ P with respect to the partial order <i .

Definition

The sequence IP := (I1, I2, · · · , In) is called the (target) Grassmann necklace.

Definition ([KLS13])

Let P ⊂
([n]
m

)
be a positroid and let IP = (I1, . . . , In) be its Grassmann necklace. The

(open) positroid stratum Π◦
P is defined to be the following subvariety of G̃rm,n:1

Π◦
P =

{
[M] ∈ G̃rm,n

∣∣∣∣∣ ∏
i

∆Ii (M) ̸= 0 and ∆I ([M]) = 0 for all I /∈ P
}

.

1Here G̃rm,n denotes the affine cone of the Grassmannian Grm,n with respect to the Plücker embedding.
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Positroid Legendrian Link

Given a Grassmann necklace IP = (I1, I2, . . . , In), we can draw a Legendrian link2 ΛP
by

List elements in Ii with respect to the <i ordering.

Connect the corresponding elements in Ii and Ii+1 (index mod n).

Connect the remaining pair of distinct elements in Ii and Ii+1 (index mod n).

2A Legendrian link is a link in R3
x,y,z satisfying y = dz/dx . Here we are describing the Legendrian link as a

satellite of the max tb unknot.
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x,y,z satisfying y = dz/dx . Here we are describing the Legendrian link as a

satellite of the max tb unknot.
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Bounded Affine Permutations

In a Grassmann necklace IP = (I1, . . . , In), any two cyclically consecutive entries differ
at most by one element. Thus, we define the bounded affine permutation f of P by

fP (i) =

 j if i ∈ Ii and Ii+1 = (Ii \ {i}) ∪ {j} for j > i ,
j + n if i ∈ Ii and Ii+1 = (Ii \ {i}) ∪ {j} for j ≤ i ,
i if i /∈ Ii .

One can also think of fP as searching for the first column vector vfP (i) to the right of
vi (cyclically) in [M] such that vi is in the span of {vi+1, . . . , vfP (i)}.

Theorem (Postnikov [Pos06])

Positroids, Grassmann necklaces, and bounded affine permutations are all in bijection
with each other.

In particular, the rank of a positroid can be recovered from its bounded affine
permutation as the following average:

m =
1

n

n∑
i=1

(fP (i)− i).

For example, the top dimensional positroid stratum in Grm,n corresponds to the
bounded affine permutation fP (i) = i +m.
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Reduced Plabic Graphs

Each positroid stratum Π◦
P is a cluster A-variety. An initial cluster seed of Π◦

P can be
constructed from a reduced plabic graph.

A plabic graph G is a planar graph on a disk D with solid and empty vertices and
external edges attached to ∂D. We label the external edges by 1, 2, . . . , n. By
following “rules of the road”, we can draw zig-zags along edges of G.

1

2

34

5

A plabic graph is said to be reduced if its zig-zags do not form loops, self-intersection,
or parallel bigons.

A reduced plabic graph G is associated with a positroid P if the zig-zags in G go from
i to fP (i) mod n for each i .
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Initial Cluster Seed

Let G be a reduced plabic graph for a positroid P of type (m, n). To each face F of
G, we can associate an m-element set IF by using the targets of zig-zags (also known
as the target labeling).

1

2

34

5

We can then draw a collection of arrows across edges such that they form a
counterclockwise cycle around solid vertices. This defines a quiver Q with frozen
vertices. The pair ({∆IF }F ,Q) defines an initial seed for the cluster structure on Π◦

P .

Here is a javascript program that can generate a Le plabic graph together with the
initial cluster seed for a positroid.

https://www.math.ucdavis.edu/~daping/Le_diagram_drawer.html
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Legendrian Weaves
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Definition

Legendrian weaves were introduced by Casals and Zaslow [CZ22]. A Legendrian
m-weave w is a graph on D with colored edges special vertices, and it describes the
singular locus of certain immersed surface Σw that is a generic m : 1 cover of D.

↓

↓

Graph of

z = Im(w3/2)

s3

s1
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Exact Lagrangian Surface

Let x1 and x2 be coordinates on D and let z be the height coordinate for Σw. By
setting yi :=

∂z
∂xi

, we get an exact Lagrangian surface Lw in T∗D ∼= R4
x1,x2,y1,y2

. In

particular, Lw is diffeomorphic to the m-fold spectral cover of D.

For an m-weave w, we can compute the Euler characteristic of Lw by

χ(Lw) = m −#trivalent vertices

We can also depict certain 1-cycles on Lw using edges in w. These 1-cycles are known
as Y-cycles.

↓
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1-Cycles and Quiver

Y-cycles have two possible behaviors at a hexavalent weave vertex:

The intersection pairing between these 1-cycles can be computed by summing up local
contributions.
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Cluster Ensemble from Legendrian Weaves

In [CW22], we lay down the framework of describing a cluster ensemble structure
using Legendrian weaves.

cluster seed←→ Legendrian weave

quiver vertices←→ Y-cycles on Lw

quiver arrows←→ intersection pairing between Y-cycles

cluster X -torus←→ rank 1 local system on Lw

cluster X -variables←→ monodromies along Y-cycles

cluster A-torus←→ decorated rank 1 local system on Lw

cluster A-variables←→ parallel transports along relative 1-cycles
that are Poincaré dual to the Y-cycles

cluster mutation←→ Polterovich surgery

←→

Following [CZ22], the (decorated) rank 1 local system on Lw can be described as
certain flag moduli space on D.

It was also proved in [CW22] that if a Y-cycle is given by a tree on w (also known as a
Y-tree), then the new exact Lagrangian surface from Polterovich surgery can again be
described by Legendrian weaves.
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Y-tree), then the new exact Lagrangian surface from Polterovich surgery can again be
described by Legendrian weaves.
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Example: A2 Cluster Ensemble
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Legendrian Weaves from Reduced Plabic Graphs
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T-Shift of Reduced Plabic Graphs

When studying m = 2 amplituhedron, Parisi, Sherman-Bennett, and Williams
[PSBW21] develop a procedure that produces a new reduced plabic graph G↓ of rank
m − 1 from a reduced plabic graph G of rank m. We call this procedure a T-shift3.

Make all solid vertices trivalent.

Put a new empty vertex of G↓ at each solid vertex of G.

Put a new solid vertex of G↓ inside each face of G.

Connect the adjacent solid and empty vertices of G↓.

Shift boundary marked points counterclockwise by 1 tick.

Connect the solid vertices of G↓ in the boundary faces of G with the new
boundary marked points.

3This procedure is called “T-duality” in loc. cit.; we change it to “T-shift” to avoid confusion with the
T-duality in mirror symmetry.
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Main Theorem

Since the rank of the reduced plabic graph goes down by 1 in every T-shift, if we
apply T-shifts iteratively, the process will terminate in finite steps.

Theorem (Casals-Le-Sherman-Bennett-W.)

Suppose G is a reduced plabic graph associated with a positroid P of rank m. Let

Gm := G and define Gk := G↓
k+1. Then w :=

⋃m−1
k=1 is a Legendrian m-weave, and it

encodes the same cluster structure on Π◦
P as G. We call this weave w the positroid

weave associated with G.
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Flag Moduli Space

The flag moduli space associated with a positroid weave w associates a flag with each
connected component of the complement of w. We can recover these flags by going
backward along the iterative T-shifts.

1 2

3

45

6

Note that we can recover the target labeling of the faces of G by repeating this
backward iteration once more.
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Mutation at Non-Square Faces

As we have mentioned at the beginning, one cannot realize mutation at non-square
faces using reduced plabic graphs. However, this can be done using Legendrian weaves.
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Mutate−−−−→
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A Non-Top-Cell Example
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Implications

Theorem

The boundary of a positroid weave w is ΛP (in other words, Lw is an exact Lagrangian
filling of ΛP ). Moreover, Π◦

P
∼= M(ΛP ; t), where ΛP is the positroid Legendrian link

associated with P and t is a certain way to decorate ΛP with base points.

In [CGG+22], Casals, Gorsky, Gorsky, Le, Shen, and Simental use a special family of
weaves called Demazure weaves to describe cluster structures on braid varieties.

Theorem

For each 1 ≤ i ≤ n, there is a weave equivalence that turns the positroid weave w to a
Demazure weave. In particular, these weave equivalences are in bijection with acyclic
perfect orientations on G.

In [GK13], Goncharov and Kenyon construct a conjugate surface SG from a reduced
plabic graph G. Shende, Treumann, Williams, and Zaslow [STWZ19] prove that the
conjugate surface SG can be seen as an exact Lagrangian surface in T∗D.

Theorem

The iterative T-shift procedure can be viewed geometrically as a Hamiltonian isotopy
from SG to Lw.
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More Implications

In [CW22] and [CGG+22], the Donaldson-Thomas transformation of the cluster
ensemble can be geometrically described as the composition of a Legendrian isotopy
that cyclically rotates ΛP and a contactomorphism that is analogous to a
transposition. By comparing this action with the Muller-Speyer twist map [MS17] on
positroid strata, we prove that the following conjecture.

Theorem

The Muller-Speyer twist map on a positroid stratum coincides with its (quasi-cluster)
Donaldson-Thomas transformation.

Corollary

The target labeling seeds and source labeling seeds are quasi-cluster equivalent.

Recently, Decampo and Muller [DM23] introduce a moduli space of linear recurrence
with a cluster X structure for each positroid. These moduli spaces can be thought of
as the “mirror” of positroid strata. We can modify our construction and obtain a
different decorated flag moduli space with the same cluster X structure as loc. cit.
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Thank You!
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Cluster structures on braid varieties.
Preprint, 2022.
arXiv:2207.11607.

Roger Casals and Daping Weng.

Microlocal theory of Legendrian links and cluster algebras.
Geometry & Topology (to appear), 2022.
arXiv:2204.13244.

Roger Casals and Eric Zaslow.

Legendrian weaves: N-graph calculus, flag moduli and applications.
Geometry & Topology, pages 1–116, 2022.
arXiv:2007.04943.

Roi Decampo and Greg Muller.

Linear recurrences with quasiperiodic solutions.
In preparation, 2023.

Alexander B. Goncharov and Richard Kenyon.

Dimers and cluster integrable systems.
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