Monoidal Triangular Geometry with Applications to Representation Theory

(joint work with Kent Vashaw and Milen Yakimov)

Daniel K. Nakano

Department of Mathematics University of Georgia

[NVY22a] D.K. Nakano, K.B. Vashaw, M.T. Yakimov, *Noncommutative tensor triangular geometry*, American J. Math., 144, (2022), 1-44.

[NVY22b] D.K. Nakano, K.B. Vashaw, M.T. Yakimov, *Noncommutative tensor triangular geometry and the tensor product property for support maps*, IMRN, 22, (2022), 17766-17796.

[NVY23] D.K. Nakano, K.B. Vashaw, M.T. Yakimov, *On the spectrum and support theory of finite tensor categories*, ArXiv 2112.11170.

Definition (Alperin, 1977)

Let A be a finite-dimensional k-algebra, and $M \in \text{mod}(A)$. Let $P_{\bullet} \twoheadrightarrow M$ be a minimal projective resolution for M.

Define the complexity of M, $c_A(M) = s$, to be the rate of growth of this projective resolution, $r(\{P_n : n = 0, 1, 2, ...\})$, (i.e., smallest integer $s \ge 0$ such that dim $P_n \le Cn^{s-1}$ for some C > 0)

Note that if A is self-injective then $c_A(M) = 0$ if and only if M is a projective A-module.

Let $\mathfrak{g} = \mathfrak{sl}(2)$ and $A = u(\mathfrak{g})$. The simple modules in the principal block are indexed by L(0) and L(p-2). The projective cover $P(\lambda)$ of $L(\lambda)$ is 2*p*-dimensional for $\lambda = 0, p-2$.

The minimal projective resolution of the trivial module L(0) is given by

$$\cdots
ightarrow P(p-2)\oplus P(p-2)
ightarrow P(0)
ightarrow L(0)
ightarrow 0.$$

Therefore, dim $P_n = (2p)(n+1)$ and $c_{u(g)}(L(0)) = 2$ (rate of growth of the minimal proj. resolution). In fact, one can also show that $c_{u(g)}(L(p-2)) = 2$.

Let A be a finite-dimensional Hopf algebra over k (e.g., A = kG where G is a finite group). Set $R = H^{\bullet}(A, k)$ cohomology ring and assume that R is finitely generated and $Ext^{\bullet}_{A}(M, N)$ is a finitely generated R-module for all $M, N \in mod(A)$.

Definition (Carlson et. al. 1980's)

The *support variety* of *M*:

 $V_A(M) = \{P \in \operatorname{Spec}(\operatorname{H}^{\bullet}(A,k)) : \operatorname{Ext}^{\bullet}_A(M,M)_P \neq 0\}.$

Let A be a finite-dimensional Hopf algebra over k (e.g., A = kG where G is a finite group). Set $R = H^{\bullet}(A, k)$ cohomology ring and assume that R is finitely generated and $Ext^{\bullet}_{A}(M, N)$ is a finitely generated R-module for all $M, N \in mod(A)$.

Definition (Carlson et. al. 1980's)

The *support variety* of *M*:

$$V_A(M) = \{P \in \operatorname{Spec}(\operatorname{H}^{\bullet}(A,k)) : \operatorname{Ext}^{\bullet}_A(M,M)_P \neq 0\}.$$

• $c_A(M) = \dim V_A(M)$

• The finite generation for arbitrary finite tensor categories is an open conjecture (Etingof-Ostrik). For cocommutative Hopf algebra, this was established by Friedlander-Suslin (1995).

Let G be a simple, simply connected algebraic group (scheme) defined over \mathbb{F}_p , $F: G \to G$ the Frobenius morphism, and $G_1 = \ker F$.

- $R = H^{\bullet}(G_1, k) \cong H^{\bullet}(u(\mathfrak{g}), k)$ is finitely generated.
- $V_{G_1}(k) \cong \{x \in \mathfrak{g} : x^{[p]} = 0\}$ (support variety of the trivial module)
- $V_{G_1}(M) \subseteq \mathcal{N}$ where \mathcal{N} is the nilpotent cone for $M \in \text{mod}(G_1)$.

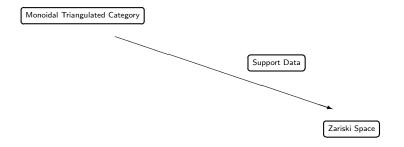
Theorem (Nakano, Parshall, Vella (2002))

Let G be a simple simply connected algebraic group and assume that p is good. Let $\lambda \in X(T)_+$. Choose $w \in W$ such that $w(\Phi_{\lambda,p}) = \Phi_J$ for some $J \subseteq \Delta$. Then $V_{G_1}(\nabla(\lambda)) = G \cdot \mathfrak{u}_J$ where $\nabla(\lambda) = \mathcal{H}^0(G/B, \mathcal{L}(\lambda))$.

Hence, $c_{G_1}(\nabla(\lambda)) = 2 \dim \mathfrak{u}_J$.

Given a symmetric tensor triangular category, K, Balmer (2005) first introduced the notion of the categorical spectrum Spc(K) by defining (completely) prime ideals in K via object-wise tensoring. These ideas are known as *tensor triangular geometry*.

Given a symmetric tensor triangular category, K, Balmer (2005) first introduced the notion of the categorical spectrum Spc(K) by defining (completely) prime ideals in K via object-wise tensoring. These ideas are known as *tensor triangular geometry*.



Monoidal Triangulated Categories [NVY]

Definition

A monoidal triangulated category (M Δ C) is a triple (K, \otimes , 1) such that

- (i) K is a triangulated category,
- (ii) **K** has a monodial tensor product \otimes : **K** × **K** → **K** which is exact in each variable with unit object 1.

Examples:

Example

Let A be a finite-dimensional Hopf algebra. Then

- (iii) $\mathbf{K}^{c} = \operatorname{stmod}(A)$ stable module category of finite-dimensional modules for A
- (iv) $\mathbf{K} = \operatorname{StMod}(A)$ stable module category for $\operatorname{Mod}(A)$.

Examples:

Example

Let A be a finite-dimensional Hopf algebra. Then

- (iii) $\mathbf{K}^{c} = \operatorname{stmod}(A)$ stable module category of finite-dimensional modules for A
- (iv) $\mathbf{K} = \operatorname{StMod}(A)$ stable module category for $\operatorname{Mod}(A)$.

Example

Let R be a commutative Noetherian ring. Let

- (i) $\mathbf{K}^{c} = D_{perf}^{b}(R)$ bounded derived category of finitely generated projective *R*-modules
- (ii) $\mathbf{K} = D(R)$ derived category of *R*-modules.

Then \mathbf{K}^{c} and \mathbf{K} are tensor triangulated categories.

(a) A *(tensor) ideal* in K is a triangulated subcategory I of K such that $M \otimes N \in I$ and $N \otimes M \in I$ for all $M \in I$ and $N \in K$.

- (a) A *(tensor) ideal* in K is a triangulated subcategory I of K such that $M \otimes N \in I$ and $N \otimes M \in I$ for all $M \in I$ and $N \in K$.
- (b) An ideal I is *thick* if $M_1 \oplus M_2 \in I$ then $M_j \in I$ for j = 1, 2.

- (a) A (tensor) ideal in K is a triangulated subcategory I of K such that $M \otimes N \in I$ and $N \otimes M \in I$ for all $M \in I$ and $N \in K$.
- (b) An ideal I is *thick* if $M_1 \oplus M_2 \in I$ then $M_j \in I$ for j = 1, 2.
- (c) A completely prime ideal \mathbf{P} of \mathbf{K} is a proper thick tensor ideal such that if $M \otimes N \in \mathbf{P}$ then either $M \in \mathbf{P}$ or $N \in \mathbf{P}$.

- (a) A (tensor) ideal in K is a triangulated subcategory I of K such that $M \otimes N \in I$ and $N \otimes M \in I$ for all $M \in I$ and $N \in K$.
- (b) An ideal I is *thick* if $M_1 \oplus M_2 \in I$ then $M_j \in I$ for j = 1, 2.
- (c) A completely prime ideal \mathbf{P} of \mathbf{K} is a proper thick tensor ideal such that if $M \otimes N \in \mathbf{P}$ then either $M \in \mathbf{P}$ or $N \in \mathbf{P}$.
- (d) [NEW] A prime ideal P of K is a proper thick tensor ideal such that $I \otimes J \subseteq P$ implies that $I \subseteq P$ or $J \subseteq P$ for all thick ideals I, J of K.

A Generalization of Paul Balmer's Categorical Spectrum

Definition

The Balmer spectrum is defined as

 $Spc(\mathbf{K}) = {\mathbf{P} \subset \mathbf{K} \mid \mathbf{P} \text{ is a prime ideal}}.$

The topology on $Spc(\mathbf{K})$ is given by closed sets of the form

$$Z(\mathcal{C}) = \{ \mathbf{P} \in \mathsf{Spc}(\mathbf{K}) \mid \mathcal{C} \cap \mathbf{P} = \varnothing \}$$

where C is a family of objects in **K**.

A Generalization of Paul Balmer's Categorical Spectrum

Definition

The Balmer spectrum is defined as

 $Spc(\mathbf{K}) = {\mathbf{P} \subset \mathbf{K} \mid \mathbf{P} \text{ is a prime ideal}}.$

The topology on $\text{Spc}(\mathbf{K})$ is given by closed sets of the form

$$Z(\mathcal{C}) = \{ \mathbf{P} \in \mathsf{Spc}(\mathbf{K}) \mid \mathcal{C} \cap \mathbf{P} = \varnothing \}$$

where ${\cal C}$ is a family of objects in ${\bf K}.$ One can also define

 $\mathsf{CP}\operatorname{-Spc}(\mathbf{K}) = \{\mathbf{P} \subset \mathbf{K} \mid \mathbf{P} \text{ is a completely prime ideal}\}.$

$$\mathsf{CP}\operatorname{-Spc}(\mathbf{K}) \subseteq \mathsf{Spc}(\mathbf{K}).$$

Daniel K. Nakano (UGA)

Zariski Spaces

Definition

Assume throughout that X is a Noetherian topological space. In this case any closed set in X is the union of finitely many irreducible closed sets. We say that X is a *Zariski space* if in addition any irreducible closed set Y of X has a unique generic point (i.e., $y \in Y$ such that $Y = \overline{\{y\}}$).

Zariski Spaces

Definition

Assume throughout that X is a Noetherian topological space. In this case any closed set in X is the union of finitely many irreducible closed sets. We say that X is a *Zariski space* if in addition any irreducible closed set Y of X has a unique generic point (i.e., $y \in Y$ such that $Y = \overline{\{y\}}$).

Example

Let R is a commutative Noetherian ring.

(1) $X = \operatorname{Spec}(R)$.

- (2) $X = \operatorname{Proj}(\operatorname{Spec}(R)) := \operatorname{Proj}(R)$ if R is graded.
- (3) X = G-Proj(R) if R is graded and G is an algebraic group.

- (ii) \mathcal{X} be the collection of subsets of X.
- (ii) \mathcal{X}_{cl} be the collection of closed subsets of X.
- (iii) \mathcal{X}_{irr} be the set of irreducible closed sets.
- (iv) A subset W in X is specialization closed if and only if $W = \bigcup_{j \in J} W_j$ where W_i are closed sets.
- (v) \mathcal{X}_{sp} be the collection of all specialization closed subsets of X.

Support Data

Definition

A support data (resp. weak support data) is an assignment $\sigma : \mathbf{K} \to \mathcal{X}$ which satisfies the following six properties (for $M, M_i, N, Q \in \mathbf{K}$):

(S1)
$$\sigma(0) = \varnothing, \ \sigma(1) = X;$$

(S2)
$$\sigma(\bigoplus_{i\in I}M_i) = \bigcup_{i\in I}\sigma(M_i)$$
 whenever $\bigoplus_{i\in I}M_i$ is an object of **K**;

(S3)
$$\sigma(\Sigma M) = \sigma(M);$$

(S4) for any distinguished triangle $M \to N \to Q \to \Sigma M$ we have

$$\sigma(\mathsf{N})\subseteq\sigma(\mathsf{M})\cup\sigma(\mathsf{Q});$$

(S5)
$$\bigcup_{C \in \mathbf{K}} \sigma(M \otimes C \otimes N) = \sigma(M) \cap \sigma(N);$$

 $(\mathsf{WS5}) \ \Phi_{\sigma}(\mathsf{I} \otimes \mathsf{J}) = \Phi_{\sigma}(\mathsf{I}) \cap \Phi_{\sigma}(\mathsf{J}), \ \mathsf{I} \text{ and } \mathsf{J} \text{ are ideals of } \mathsf{K}: \ \Phi_{\sigma}(\mathsf{I}) = \cup_{A \in \mathsf{I}} \sigma(A).$

(S6) $\sigma(M) = \sigma(M^*)$ for $M \in \mathbf{K}^c$ [the compact objects have a duality].

We will be interested in support data which satisfy an additional two properties:

- (S7) $\sigma(M) = \emptyset$ if and only if M = 0; (Faithfulness Property)
- (S8) for any $W \in \mathcal{X}_{cl}$ there exists an $M \in \mathbf{K}^c$ such that $\sigma(M) = W$ (Realization Property).

Theorem (BKN16, Dell'Ambrogio, NVY19)

Let **K** be a compactly generated $M\Delta C$. Let X be a Zariski space and let $\sigma : \mathbf{K} \to \mathcal{X}$ be a weak support data satisfying the additional conditions (S7) and (S8) with $\sigma(\langle M \rangle) \in \mathcal{X}_{cl}$ for $M \in \mathbf{K}^c$. There is a pair of mutually inverse maps

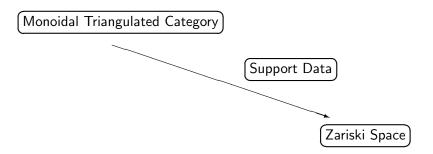
$$\{ thick \ tensor \ ideals \ of \ \mathsf{K}^{\mathsf{c}} \} \ \stackrel{\Phi_{\sigma}}{\underset{\Theta}{\overset{\Phi_{\sigma}}{\underset{}}}} \ \mathcal{X}_{sp},$$

given by

$$\Phi_{\sigma}(\mathbf{I}) = \bigcup_{M \in \mathbf{I}} \sigma(M), \quad \Theta(W) = \mathbf{I}_W,$$

where $\mathbf{I}_W = \{ M \in \mathbf{K}^c \mid \sigma(M) \subseteq W \}$. Moreover, there is a homeomorphism

$$f: X \to \operatorname{Spc}(\mathbf{K}^c).$$



Let G be a finite group (scheme), $A := H^{\bullet}(G, k) = Ext^{\bullet}_{G}(k, k)$ be the cohomology ring. Set $\mathbf{K}^{c} = stmod(G)$ and X = Proj(Spec(A)).

(i) {thick ⊗-ideals of K^c} are in one-to-one correspondence with X_{sp}.
(ii) Spc(K^c) ≅ Proj(Spec(A)).

The (classifying) support data is given by

 $W(M) = \{P \in \operatorname{Proj}(\operatorname{Spec}(A)) : \operatorname{Ext}_{G}^{\bullet}(M, M)_{P} \neq 0\}.$

Let $G = GL_n(k)$ be the group of invertible $n \times n$ matrices over k an algebraically closed field of characteristic p > 0. Let $\mathfrak{g} = \mathfrak{gl}_n(k)$, G_1 the first Frobenius kernel, and \mathcal{N} be the nilpotent $n \times n$ matrices.

Theorem (Friedlander-Parshall, Andersen-Jantzen, 1984)

```
Let p > h
(a) H^{2\bullet}(G_1, k) \cong k[\mathcal{N}]
(b) H^{2\bullet+1}(G_1, k) = 0
```

Then the Balmer Spectrum has a concrete realization via nilpotent matrices.

 $\operatorname{Spc}(\operatorname{stmod}(G_1)) \cong \operatorname{Proj}(\operatorname{Spec}(k[\mathcal{N}])).$

Let R be a commutative Noetherian ring, $\mathbf{K}^{c} = D_{perf}^{b}(R)$ and $X = \operatorname{Spec}(R)$. Then

(i) {thick ⊗-ideals of K^c} are in one-to-one correspondence with X_{sp}.
(ii) Spc(K^c) ≅ Spec(R).

The support data which gives this classification is

 $W(C_{\bullet}) = \{ P \in \operatorname{Spec}(R) : H_*(C_{\bullet})_P \neq 0 \}.$

Benson and Witherspoon considered the stable module categories of Hopf algebras of the form

$$A:=(k[G]\#kH)^*,$$

where

- *G* and *H* are finite groups with *H* acting on *G* by group automorphisms,
- k is a field of positive characteristic dividing the order of G,
- *kH* is the group algebra of *H*, *k*[*G*] is the dual of the group algebra of *G*,
- A is a non-cocommutative Hopf algebra.

Let p be a prime number and n be a positive integer. Benson and Witherspoon analyzed the situation for $G := (\mathbb{Z}/p\mathbb{Z})^n$, $H := \mathbb{Z}/n\mathbb{Z}$ (with H cyclically permuting the factors of G) and k a field of characteristic p,

In this case, A admits a non-projective finite dimensional module M such that $M\otimes M$ is projective. In particular, if W is the cohomological support then

 $W(M \otimes M) \neq W(M) \cap W(M).$

Theorem (Nakano-Vashaw-Yakimov 19)

Let $A = (k[G] # kH)^*$ where G and H are finite groups with H acting on G and k is a base field of positive characteristic dividing the order of G. Let $R = H^{\bullet}(A, k)$ and X = H-Proj(R). The following hold:

(a) There exists a bijection

{thick tensor ideals of stmod(A)} $\stackrel{\Phi}{\underset{\Theta}{\longrightarrow}}$ {specialization closed sets of X}

(b) There exists a homeomorphism f : H-Proj $(R) \to \text{Spc}(\text{stmod}(A))$.

Open Question: When does a support datum $\sigma : \mathbf{K} \to \mathcal{X}_{sp}(X)$ possesses the *tensor product property*

$$\sigma(M \otimes N) = \sigma(M) \cap \sigma(N), \quad \forall M, N \in \mathbf{K}?$$

Open Question: When does a support datum $\sigma : \mathbf{K} \to \mathcal{X}_{sp}(X)$ possesses the *tensor product property*

$$\sigma(M \otimes N) = \sigma(M) \cap \sigma(N), \quad \forall M, N \in \mathbf{K}?$$

- For cohomological supports for modular representations of finite groups (Carlson, Avrunin-Scott) and for finite group schemes (Friedlander-Pevtsova), it is known to hold.
- Many people have been interested in this question for arbitrary finite-dimensional Hopf algebras.

Theorem (NVY20)

For every monoidal triangulated category K, the following are equivalent:
(a) The universal support datum V : K → X(Spc K) has the tensor product property

 $V(M \otimes N) = V(M) \cap V(N), \quad \forall M, N \in \mathbf{K}.$

(b) Every prime ideal of K is completely prime.

Universal support datum: $V : \mathbf{K} \to \mathcal{X}$: $V(M) = \{\mathbf{P} \in \text{Spc}\,\mathbf{K} : M \notin \mathbf{P}\}.$

Theorem (NVY20)

Let **K** be a monoidal triangulated category in which every object is rigid. If **K** has a non-zero nilpotent object M (i.e., $M \not\cong 0$ but $M^{\otimes n} := M \otimes \cdots \otimes M \cong 0$, for some n > 0) then not all prime ideals of **K** are completely prime. As a consequence, the universal support datum $V : \mathbf{K} \to \mathcal{X}(\operatorname{Spc} \mathbf{K})$ does not have the tensor product property.

Recall for the Benson-Witherspoon example, there exists a non-zero module M (not projective) such that $M \otimes M = (0)$ in **K**. Therefore, the universal support datum does not satisfy the tensor product property. This implies that the cohomological (classifying) support datum does not satisfy the tensor product property.

Conjecture (Nakano-Vashaw-Yakimov 2022)

Let **T** be finite tensor category and \underline{T} be its stable module category.

(a) There exists a homeomorphism

 $\rho : \operatorname{Spc} \underline{\mathbf{T}} \to \operatorname{Proj} C_{\underline{\mathbf{T}}}^{\bullet}.$

(b) The monoids ThickId(<u>T</u>) (thick tensor ideals) and X_{sp}(Proj C[•]_T) (specialization closed sets) are isomorphic.

Here $C^{\bullet}_{\underline{T}}$ is a new algebraic object called the *categorical center of the cohomology ring*.

The categorical center C^{\bullet}_{T} of the cohomology ring R^{\bullet}_{T} is the subalgebra generated by all homogeneous $g \in \operatorname{Hom}_{\mathsf{T}}(\mathbf{1}, \Sigma^{i}\mathbf{1})$, and for every simple object M the following diagram commutes::

Theorem

Let K be an MAC, which is the compact part of a compactly generated MAC, $\widetilde{K}.$ If

- (i) K satisfies the (wfg) condition,
- (ii) Proj $C_{\mathbf{K}}^{\bullet}$ is a Zariski space and
- (iii) the central cohomological support of K has an extension to a faithful extended weak support datum $\widetilde{K} \to \mathcal{X}(\operatorname{Proj} C^{\bullet}_{K})$,

then the following hold:

(a) Spc **K** is homeomorphic to Proj $C_{\mathbf{K}}^{\bullet}$.

(b) The map

```
\Phi_{W_{\mathcal{C}}}: ThickId(\mathbf{K}) \rightarrow \mathcal{X}_{sp}(\operatorname{Proj} C^{\bullet}_{\mathbf{K}})
```

is an isomorphism of ordered monoids.

Thank you for your attention.

