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Complexity

Definition (Alperin, 1977)

Let A be a finite-dimensional k-algebra, and M ∈ mod(A). Let P• � M
be a minimal projective resolution for M.

Define the complexity of M, cA(M) = s, to be the rate of growth of this
projective resolution, r({Pn : n = 0, 1, 2, . . . }), (i.e., smallest integer
s ≥ 0 such that dimPn ≤ Cns−1 for some C > 0)

Note that if A is self-injective then cA(M) = 0 if and only if M is a
projective A-module.
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Example

Let g = sl(2) and A = u(g). The simple modules in the principal block are
indexed by L(0) and L(p − 2). The projective cover P(λ) of L(λ) is
2p-dimensional for λ = 0, p − 2.

The minimal projective resolution of the trivial module L(0) is given by

· · · → P(p − 2)⊕ P(p − 2)→ P(0)→ L(0)→ 0.

Therefore, dimPn = (2p)(n + 1) and cu(g)(L(0)) = 2 (rate of growth of
the minimal proj. resolution). In fact, one can also show that
cu(g)(L(p − 2)) = 2.
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Finite Generation of Cohomology and Support Varieties

Let A be a finite-dimensional Hopf algebra over k (e.g., A = kG where G
is a finite group). Set R = H•(A, k) cohomology ring and assume that R
is finitely generated and Ext•A(M,N) is a finitely generated R-module for
all M,N ∈ mod(A).

Definition (Carlson et. al. 1980’s)

The support variety of M:

VA(M) = {P ∈ Spec(H•(A, k)) : Ext•A(M,M)P 6= 0}.

• cA(M) = dimVA(M)

• The finite generation for arbitrary finite tensor categories is an open
conjecture (Etingof-Ostrik). For cocommutative Hopf algebra, this was
established by Friedlander-Suslin (1995).
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A Lie Theoretic Example: Jantzen’s Conjecture

Let G be a simple, simply connected algebraic group (scheme) defined
over Fp, F : G → G the Frobenius morphism, and G1 = ker F .

• R = H•(G1, k) ∼= H•(u(g), k) is finitely generated.

• VG1(k) ∼= {x ∈ g : x [p] = 0} (support variety of the trivial module)

• VG1(M) ⊆ N where N is the nilpotent cone for M ∈ mod(G1).

Theorem (Nakano, Parshall, Vella (2002))

Let G be a simple simply connected algebraic group and assume that p is
good. Let λ ∈ X (T )+. Choose w ∈W such that w(Φλ,p) = ΦJ for some
J ⊆ ∆. Then VG1(∇(λ)) = G · uJ where ∇(λ) = H0(G/B,L(λ)).

Hence, cG1(∇(λ)) = 2 dim uJ .
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“Categories Have Hidden Geometry”

Given a symmetric tensor triangular category, K, Balmer (2005) first
introduced the notion of the categorical spectrum Spc(K) by defining
(completely) prime ideals in K via object-wise tensoring. These ideas are
known as tensor triangular geometry.

�� ��Monoidal Triangulated Category

�� ��Zariski Space

PPPPPPPPPPPPPPPPPq

�� ��Support Data
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Monoidal Triangulated Categories [NVY]

Definition

A monoidal triangulated category (M∆C) is a triple (K,⊗, 1) such that

(i) K is a triangulated category,

(ii) K has a monodial tensor product ⊗ : K×K→ K which is exact in
each variable with unit object 1.
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Examples:

Example

Let A be a finite-dimensional Hopf algebra. Then

(iii) Kc = stmod(A) stable module category of finite-dimensional modules
for A

(iv) K = StMod(A) stable module category for Mod(A).

Example

Let R be a commutative Noetherian ring. Let

(i) Kc = Db
perf (R) bounded derived category of finitely generated

projective R-modules

(ii) K = D(R) derived category of R-modules.

Then Kc and K are tensor triangulated categories.
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“Treat a M∆C Like a Ring”

Definition

(a) A (tensor) ideal in K is a triangulated subcategory I of K such that
M ⊗ N ∈ I and N ⊗M ∈ I for all M ∈ I and N ∈ K.

(b) An ideal I is thick if M1 ⊕M2 ∈ I then Mj ∈ I for j = 1, 2.

(c) A completely prime ideal P of K is a proper thick tensor ideal such
that if M ⊗ N ∈ P then either M ∈ P or N ∈ P.

(d) [NEW] A prime ideal P of K is a proper thick tensor ideal such that
I⊗ J ⊆ P implies that I ⊆ P or J ⊆ P for all thick ideals I, J of K. .
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A Generalization of Paul Balmer’s Categorical Spectrum

Definition

The Balmer spectrum is defined as

Spc(K) = {P ⊂ K | P is a prime ideal}.

The topology on Spc(K) is given by closed sets of the form

Z (C) = {P ∈ Spc(K) | C ∩ P = ∅}

where C is a family of objects in K.

One can also define

CP-Spc(K) = {P ⊂ K | P is a completely prime ideal}.

CP-Spc(K) ⊆ Spc(K).
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Zariski Spaces

Definition

Assume throughout that X is a Noetherian topological space. In this case
any closed set in X is the union of finitely many irreducible closed sets.
We say that X is a Zariski space if in addition any irreducible closed set Y
of X has a unique generic point (i.e., y ∈ Y such that Y = {y}).

Example

Let R is a commutative Noetherian ring.

(1) X = Spec(R).

(2) X = Proj(Spec(R)) := Proj(R) if R is graded.

(3) X = G -Proj(R) if R is graded and G is an algebraic group.
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Zariski Spaces: Notation

(ii) X be the collection of subsets of X .

(ii) Xcl be the collection of closed subsets of X .

(iii) Xirr be the set of irreducible closed sets.

(iv) A subset W in X is specialization closed if and only if W = ∪j∈JWj

where Wj are closed sets.

(v) Xsp be the collection of all specialization closed subsets of X .
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Support Data

Definition

A support data (resp. weak support data) is an assignment σ : K→ X which
satisfies the following six properties (for M,Mi ,N,Q ∈ K):

(S1) σ(0) = ∅, σ(1) = X ;

(S2) σ(⊕i∈IMi ) =
⋃

i∈I σ(Mi ) whenever ⊕i∈IMi is an object of K;

(S3) σ(ΣM) = σ(M);

(S4) for any distinguished triangle M → N → Q → ΣM we have

σ(N) ⊆ σ(M) ∪ σ(Q);

(S5)
⋃

C∈K σ(M ⊗ C ⊗ N) = σ(M) ∩ σ(N);

(WS5) Φσ(I⊗ J) = Φσ(I) ∩ Φσ(J), I and J are ideals of K: Φσ(I) = ∪A∈Iσ(A).

(S6) σ(M) = σ(M∗) for M ∈ Kc [the compact objects have a duality].
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We will be interested in support data which satisfy an additional two
properties:

(S7) σ(M) = ∅ if and only if M = 0; (Faithfulness Property)

(S8) for any W ∈ Xcl there exists an M ∈ Kc such that σ(M) = W
(Realization Property).
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Classifying Thick Tensor Ideals and the Balmer Spectrum

Theorem (BKN16, Dell’Ambrogio, NVY19)

Let K be a compactly generated M∆C. Let X be a Zariski space and let
σ : K→ X be a weak support data satisfying the additional conditions (S7) and
(S8) with σ(〈M〉) ∈ Xcl for M ∈ Kc . There is a pair of mutually inverse maps

{thick tensor ideals of Kc}
Φσ

−→←−
Θ

Xsp,

given by

Φσ(I) =
⋃
M∈I

σ(M), Θ(W ) = IW ,

where IW = {M ∈ Kc | σ(M) ⊆W }. Moreover, there is a homeomorphism

f : X → Spc(Kc).
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Recap

�� ��Monoidal Triangulated Category

�� ��Zariski Space

PPPPPPPPPPPPPPPPPq

�� ��Support Data
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Finite Group Schemes [Symmetric M∆C]

Example

Let G be a finite group (scheme), A := H•(G , k) = Ext•G (k, k) be the
cohomology ring. Set Kc = stmod(G ) and X = Proj(Spec(A)).

(i) {thick ⊗-ideals of Kc} are in one-to-one correspondence with Xsp.

(ii) Spc(Kc) ∼= Proj(Spec(A)).

The (classifying) support data is given by

W (M) = {P ∈ Proj(Spec(A)) : Ext•G (M,M)P 6= 0}.
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Restricted Lie Algebras

Example

Let G = GLn(k) be the group of invertible n × n matrices over k an
algebraically closed field of characteristic p > 0. Let g = gln(k), G1 the
first Frobenius kernel, and N be the nilpotent n × n matrices.

Theorem (Friedlander-Parshall, Andersen-Jantzen, 1984)

Let p > h

(a) H2•(G1, k) ∼= k[N ]

(b) H2•+1(G1, k) = 0

Then the Balmer Spectrum has a concrete realization via nilpotent
matrices.

Spc(stmod(G1)) ∼= Proj(Spec(k[N ])).
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Perfect Complexes [Symmetric M∆C]

Example

Let R be a commutative Noetherian ring, Kc = Db
perf (R) and

X = Spec(R). Then

(i) {thick ⊗-ideals of Kc} are in one-to-one correspondence with Xsp.

(ii) Spc(Kc) ∼= Spec(R).

The support data which gives this classification is

W (C•) = {P ∈ Spec(R) : H∗(C•)P 6= 0}.
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Benson-Witherspoon Hopf Algebras [Non-symmetric M∆C]

Benson and Witherspoon considered the stable module categories of Hopf
algebras of the form

A := (k[G ]#kH)∗,

where

G and H are finite groups with H acting on G by group
automorphisms,

k is a field of positive characteristic dividing the order of G ,

kH is the group algebra of H, k[G ] is the dual of the group algebra of
G ,

A is a non-cocommutative Hopf algebra.
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Enlightening Example

Example

Let p be a prime number and n be a positive integer. Benson and
Witherspoon analyzed the situation for G := (Z/pZ)n, H := Z/nZ (with
H cyclically permuting the factors of G ) and k a field of characteristic p,

In this case, A admits a non-projective finite dimensional module M such
that M ⊗M is projective. In particular, if W is the cohomological support
then

W (M ⊗M) 6= W (M) ∩W (M).
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Classification and the Balmer Spectrum

Theorem (Nakano-Vashaw-Yakimov 19)

Let A = (k[G ]#kH)∗ where G and H are finite groups with H acting on G and k
is a base field of positive characteristic dividing the order of G . Let R = H•(A, k)
and X = H-Proj(R). The following hold:

(a) There exists a bijection

{thick tensor ideals of stmod(A)}
Φ
−→←−
Θ

{specialization closed sets of X}

(b) There exists a homeomorphism f : H-Proj(R)→ Spc(stmod(A)).
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Tensor Product Question

Open Question: When does a support datum σ : K→ Xsp(X ) possesses
the tensor product property

σ(M ⊗ N) = σ(M) ∩ σ(N), ∀M,N ∈ K?

For cohomological supports for modular representations of finite
groups (Carlson, Avrunin-Scott) and for finite group schemes
(Friedlander-Pevtsova), it is known to hold.

Many people have been interested in this question for arbitrary
finite-dimensional Hopf algebras.
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Connection with Completely Prime Ideals

Theorem (NVY20)

For every monoidal triangulated category K, the following are equivalent:

(a) The universal support datum V : K→ X (SpcK) has the tensor
product property

V (M ⊗ N) = V (M) ∩ V (N), ∀M,N ∈ K.

(b) Every prime ideal of K is completely prime.

Universal support datum: V : K→ X : V (M) = {P ∈ SpcK : M /∈ P}.
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Connections with Nilpotent Elements

Theorem (NVY20)

Let K be a monoidal triangulated category in which every object is rigid. If
K has a non-zero nilpotent object M (i.e., M 6∼= 0 but
M⊗n := M ⊗ · · · ⊗M ∼= 0, for some n > 0) then not all prime ideals of K
are completely prime. As a consequence, the universal support datum
V : K→ X (SpcK) does not have the tensor product property.

Recall for the Benson-Witherspoon example, there exists a non-zero
module M (not projective) such that M ⊗M = (0) in K. Therefore, the
universal support datum does not satisfy the tensor product property. This
implies that the cohomological (classifying) support datum does not
satisfy the tensor product property.
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A New and Bold Conjecture

Conjecture (Nakano-Vashaw-Yakimov 2022)

Let T be finite tensor category and T be its stable module category.

(a) There exists a homeomorphism

ρ : SpcT→ ProjC •T.

(b) The monoids ThickId(T) (thick tensor ideals) and Xsp(ProjC •T)
(specialization closed sets) are isomorphic.

Here C •T is a new algebraic object called the categorical center of the
cohomology ring.
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The Categorical Center of the Cohomology Ring

The categorical center C •T of the cohomology ring R•T is the subalgebra
generated by all homogeneous g ∈ HomT(1,Σi1), and for every simple
object M the following diagram commutes::

1⊗M
∼=−−−−→ M ←−−−−∼= M ⊗ 1yg⊗id

yidM ⊗g

Σi1⊗M
∼=−−−−→ ΣiM ←−−−−∼= M ⊗ Σi1
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Our Main Theorem [NVY22]

Theorem
Let K be an M∆C, which is the compact part of a compactly generated M∆C,
K̃. If

(i) K satisfies the (wfg) condition,

(ii) ProjC•K is a Zariski space and

(iii) the central cohomological support of K has an extension to a faithful

extended weak support datum K̃→ X (ProjC•K),

then the following hold:

(a) SpcK is homeomorphic to ProjC•K.

(b) The map
ΦWC

: ThickId(K)→ Xsp(ProjC•K)

is an isomorphism of ordered monoids.
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Thank you for your attention.
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