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I. Motivation



Modular fusion categories classify 3D Reshetikhin-Turaev TQFTs

 and give algebraic theories of 2d topological quantum matter

classification of modular categories/
topological phases of matter

their topological invariants/
observables

their representation theoretic invariants/
intrinsic quantum computational complexity
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Motivations for studying fusion categories

(Certain symmetric monoidal functors Z: Cob → S)
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II. Background



Fusion categories

Recall that a fusion category is a finite, semisimple tensor category.
(I will write k for an algebraically closed field of characteristic 0 but mean ℂ)

Our main tool will be string diagrams: 
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“Ocneanu rigidity” : fusion categories admit no continuous deformations
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G-graded fusion categories

Every fusion category is faithfully graded by its universal grading group

Grading is faithful if Cg ≠ 0 for all g ∈ G

C = ⨁  Cg
g ∈ G

Example: C(su(2),2) has simple objects 1, σ, ψ with fusion rules
σ ⊗ ψ = ψ ⊗ σ = σ, σ ⊗ σ = 1 ⊗ ψ,      ψ ⊗ ψ = 1

and is ℤ/2ℤ-graded with C(su(2),2) = sVec ⨁ {σ}

A fusion category C is G-graded if

and Xg ∈ Cg, Yh ∈ Ch ⇒ Xg ⊗ Yh ∈ Cgh

Let G be a finite group.



Braided fusion categories

Note: If a braided fusion category is G-graded then G is an abelian group
because Xg ⊗ Yh ≅ Yh ⊗ Xg ⇒ Cgh = Chg for all g,h ∈ G.

We will still use G to denote the abelian group. 

 Denote the braiding isomorphisms by     βX,Y : X ⊗ Y → Y ⊗ X     and depict by

X Y

Y X

βX,Y =



Degeneracy of braiding

Symmetric Non-degenerate

=  id X ⊗ Y =  id X ⊗ Y for all Y ∈ B  if

for all X, Y ∈ B

X

X

Y

Y

X

X

Y

Y  then  X ≅ 1

Rep(G), Rep(G,z)

⑧ ⑨



Main idea: modify fusion rules and ask if it categorifies with the 
desired structure (fusion, braided, ribbon)

Xg ⊗ Yh Xg ⊗ Yh = Xg ⊗ Yh ⊗ λ(g,h)
λ }

∈ Ce ∩ Cpt

Idea of zesting



αX,Y,Z = αX,Y,Z =
λ,ν

where

Before: After:

Monoidal categorification of zested fusion rule  Xg ⊗ Yh ⊗ λ(g,h)

(sometimes I will supress the λ, ν to save space)

⑤
H



Braided categorification of zested fusion rule  Xg ⊗ Yh ⊗ λ(g,h)

Before: After:

and

where

βX,Y = βX,Y =
λ,t



The zesting construction

Let B be a braided fusion category with G-grading. WLOG can assume B strict.

1. Pick 2-cocycle λ ∈ Z²(G, Inv(Bₑ)), i.e. 
λ : G × G → Inv(Bₑ) such that λ(g,h) ⊗ λ(gh,k) ≅ λ(h,k) ⊗ λ(g,hk)

 ( g , h ) ↦ λ(g,h)

2. Pick 3-cochain ν ∈ C³(G, kᕽ)  s.t.
ν(g,h,k) ν(g,hk,l) ν(h,k,l)=βλ(g,h),λ(k,l) ν(gh,k,l)ν(g,h,kl)

3. Pick 2-cochain t ∈ C²(G,kᕽ) s.t.
ν(g,h,k)t(g,hk)ν(h,k,g)=t(g,h)ν(h,g,k)t(g,k) 
+ a similar second equation
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Before: After:

αX,Y,Z =

Summary of braided zesting construction

αX,Y,Z =
λ,ν

βX,Y = βX,Y =
λ,t

⑤
H



Examples of zesting

λa(i,j) = { 1 if i +j < 2
ψ if i +j > 2

There are 8 (unitary) modular fusion categories with the same fusion rules 
as our first example C(su(2),2) and they are all related by zesting:
Let i, j, k ∈ {0,1}

νb(i,j,k) = { 1 if i +j < 2
i if i +j > 2k(a+2b)

ts(i,j) = s where s =    √ i              -ij -(a+2b)+

Modular isotopes Rep(DG  ) for G = ℤq ⋊ ℤp where p,q are certain odd primes 
ω

(here i means the imaginary #)

s

s



Properties of zesting

Braid group representations are 
(projectively) preserved.

Framed link invariants factorize, 
defining a new invariant of 
framed links colored by G that 
can be computed in polynomial 
time in the number of crossings.

!
*
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III. Theory of G-crossed braided“zesting”



G-crossed braided fusion categories

A fusion category C is G-crossed braided if it has 

1. G-grading

2. G-action T: G → Aut(C)
  g  ↦   Tg                          s.t. Tg(Ch) ⊂ Cg hg

3. G-braiding βXg,Yₕ: Xg ⊗ Yₕ → Yₕ ⊗ Th(Xg)

C = ⨁  Cg
g ∈ G

Example: Tambara-Yamagami fusion categories C=TY(A, χ, τ)

{ a | a ∈ A } ⨁ { m }
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ℤ/2ℤ- grading
a

a a

a



Example: Every G-graded braided fusion category is trivially G-crossed braided 
with G-action Tg(Yₕ) = Yₕ and G-braiding  βXg,Yₕ : Xg ⊗ Yₕ ≅ Yₕ ⊗ Xg 

⇒ {braided fusion categories with G-grading} ⊂ { G-crossed braided fusion categories}   

Relation between braided fusion categories with G-grading and G-crossed braided fusion categories

Conversely, a G-crossed braided fusion category is braided if there 
exists a trivialization of the G-action functor T: G → Aut(C), i.e. a 
monoidal natural isomorphism η of T with the identity functor on C

X

X

g

ηgfor all g ∈ G have natural isomorphisms satisfying conditions



Classification of G-crossed braided extensions of braided fusion categories

A braided fusion category B has a G-crossed braided extension if it 
admits a monoidal 2-functor G →  BrPic(B)

These are classified by (ρ, λ, ω)

group homomorphism ρ : G → Aut(B)

λ ∈ H²(G, Inv(B))

ω ∈ H³(G, kᕽ)

ρ

⑳

⑧

⑧



G-HQFTs and SET phases

G-crossed braided fusion categories with modular trivially-graded 
component classify 3D Homotopy QFTs with target BG, which are 
expected to give the low-energy effective field theory description of 
symmetry defects in (bosonic) symmetry-enriched topological phases of 
matter in 2 spatial dimensions 



The zesting construction

Let B be a braided fusion category with G-grading. WLOG can assume B strict.

1. Pick 2-cocycle λ ∈ Z²(G, Inv(Bₑ)), i.e. 
λ : G × G → Inv(Bₑ) such that λ(g,h) ⊗ λ(gh,k) ≅ λ(h,k) ⊗ λ(g,hk)

 ( g , h ) ↦ λ(g,h)

2. Pick 3-cochain ν ∈ C³(G, kᕽ)  s.t.
ν(g,h,k) ν(g,hk,l) ν(h,k,l)=βλ(g,h),λ(k,l) ν(gh,k,l)ν(g,h,kl)

3. Pick 2-cochain t ∈ C²(G,kᕽ) s.t.
ν(g,h,k)t(g,hk)ν(h,k,g)=t(g,h)ν(h,g,k)t(g,k) 
+ a similar second equation
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The G-crossed braided zesting construction

Let B be a braided fusion category with G-grading. WLOG can assume B strict.

1. Pick 2-cocycle λ ∈ Z²(G, Inv(Bₑ)) with G-action, i.e. 
λ : G × G → Inv(Bₑ) such that λ(g,h) ⊗ λ(gh,k) ≅ λ(h,k) ⊗ λ(g,hk)

 ( g , h ) ↦ λ(g,h)

2. Pick 3-cochain ν ∈ C³(G, kᕽ)  s.t.
ν(g,h,k) ν(g,hk,l) ν(h,k,l)=βλ(g,h),λ(k,l) ν(gh,k,l)ν(g,h,kl)

3. Pick 2-cochain t ∈ C²(G,kᕽ) s.t.
ν(g,h,k)t(g,hk)ν(h,k,g)=t(g,h)ν(h,g,k)t(g,k) 
+ a similar second equation
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αX,Y,Z = αX,Y,Z =
λ,ν

where

Before: After:

Monoidal categorification of zested fusion rule  Xg ⊗ Yh ⊗ λ(g,h)

⑤ A

H

v
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Theorem: the fusion category obtained from associative zesting  of a G-crossed 
braided fusion category is automatically G-crossed braided with: 

G-action on objects:

G-braiding:

Tensorators:

Compositors:

Structure morphisms of zested G-crossed braided fusion categories



Theorem: Any two G-crossed extensions of a braided fusion category B 
with the same group homomorphism ρ: G → Pic(B) are related by G-crossed 
braided zesting.

C = ⨁  Cg , Ce = B
g ∈ G

D = ⨁  Dg , De = B
g ∈ G

and Cg = Dg as B-module categories for all g ∈ G

if

then there exists G-crossed zesting data (λ,ν) such that D ≅ C λ,ν

Relation between extension theory and G-crossed braided zesting



Recovering braided zesting from G-crossed braided zesting*

Theorem: 
Every zesting (λ,ν,t) of a braided fusion category B (where λ takes 
values in a symmetric subcategory of Be) comes from the G-crossed 
zesting (λ,ν) together with a trivialization η.

Proof: (η satisfies the 
definition of a 
trivialization 
iff t satisfies 
the braided 
zesting 
equations)

*technically this only works if λ takes values in a symmetric subcategory



C = ⨁  Cg 
g ∈ G

Braided fusion category

viewed with trivial 
G-action/G-braiding

C = ⨁  Cg 
g ∈ G

zest

C      = ⨁  Cg 
g ∈ G

λ,ν,t

with trivializable 
G-action

G C    = ⨁  Cg 
g ∈ G

G-crossed braided fusion category

G 
G-crossed zest

G-crossed braided fusion category

Braided fusion category

λ,ν
λ,ν

Recovering braided zesting from G-crossed braided zesting*

(change extension class)

*technically this only works if λ takes values in a symmetric subcategory

nee

nee



Physics interpretation

RT TQFT

viewed with trivial 
G-action/G-braiding

zest λ,ν,t

with trivializable 
G-action

change symmetry 
fractionalization classHQFT with target BG

RT TQFT

HQFT    with target BG
λ,ν

“defectifi
catio
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Connecting zesting to representation theory

What is the right notion of “zesting” (weak) Hopf algebras or vertex 
operator algebras so that the following diagram commutes? 

Rep(H) Rep(H)

H H

λ,ν,t

λ,ν,t

zest

And how much of this story still works when we relax our assumptions 
about finiteness and semisimplicity?

???

e

mener



Thanks!


