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Introduction

� Joint work with Dinakar Muthiah, arXiv:2211.04788

� Goal: Understand affine Grassmannian for Kac-Moody types,

and its ties to representation theory

Main Theorem (rough statement)

There exist closed embeddings of affine Grassmannian slices

Wν
µ ⊆ W

λ
µ

for all symmetric Kac-Moody types
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Introduction

Plan for this talk:

1. Affine Grassmannian slices

2. Coulomb branches

3. Closed embeddings and main theorem
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Affine Grassmannian Slices



Some notation

� Let G be a connected reductive group over C, with Lie

algebra g (eg. G = SLn and g = sln)

� Fix triangular decomposition g = n+ ⊕ h⊕ n−, with

corresponding subgroups U+,T ,U− ⊂ G

� Simple roots αi ∈ h∗ and simple coroots α∨
i ∈ h

� Coweights λ : C× → T identified with lattice in h, and λ is

dominant coweight if all ⟨λ, αi ⟩ ≥ 0

� Dominance order:

λ ≥ µ ⇐⇒ λ− µ =
∑
i

viα
∨
i with all vi ≥ 0
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Loop groups

� Can make sense of A–points G (A) for any commutative alg A

SL2(A) =

{(
a b

c d

)
: a, b, c , d ∈ A, ad − bc = 1

}

� Can form various loop groups, such as

G [z ] = G
(
C[z ]

)
, G ((z−1)) = G

(
C((z−1))

)
These carry Zariski topologies: they are ind-schemes

� Congruence subgroup G1[[z
−1]] ⊂ G [[z−1]] defined by

1 G1[[z
−1]] G [[z−1]] G 1

z−1 7→0

5
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Affine Grassmannian slices

� Coweight λ defines zλ ∈ G ((z−1))

G = GLn : λ = (λ1, . . . , λn) 7−→ zλ =

zλ1

. . .

zλn


Definition: (Braverman-Finkelberg-Nakajima)

Let λ be a dominant coweight, and µ a coweight with µ ≤ λ.

The generalized affine Grassmannian slice Wλ
µ is defined to be

Wλ
µ = U+

1 [[z−1]]T1[[z
−1]]zµU−

1 [[z−1]] ∩ G [z ]zλG [z ]

Call affine Grassmannian slice if µ is dominant.
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Some examples

� Consider the nilpotent cone:

Nsln = {X ∈ Mn×n(C) : X is nilpotent}

Lusztig defined isomorphism to slice for G = SLn:

Nsln
∼−→W(n−1,−1,...,−1)

0 , X 7−→ I + z−1X

� Restricts to nilpotent orbits: if (λ1 ≥ . . . ≤ λn) ⊢ n

O(λ1,...,λn)
∼−→ W(λ1−1,...,λn−1)

0

� Mirković-Vybornov: in type A, for λ ≥ µ both dominant

Wλ
µ
∼= Sµ̃ ∩Oλ̃
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Properties of Wλ

µ

� Wλ
µ is an affine variety over C, with

dimCW
λ
µ = 2

∑
i

vi if λ− µ =
∑
i

vi

� Wλ
µ carries a Poisson structure, and has symplectic

singularities (Kamnitzer-Webster-W.-Yacobi,

Braverman-Finkelberg-Nakajima, Zhou)

� If µ ≤ ν ≤ λ with ν, λ dominant, then

Wν
µ ⊆ W

λ
µ

because G [z ]zνG [z ] ⊆ G [z ]zλG [z ] iff ν ≤ λ
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Properties of Wλ

µ

� The Affine Grassmannian for G is

GrG = G [z , z−1]/G [z ]

Cartan decomposition into left G [z ]-orbits:

GrG =
⊔

λ dom.

G [z ]zλG [z ]/G [z ]

� (Spherical) Schubert varieties: Grλ = G [z ]zλG [z ]/G [z ]

� If µ ≤ λ both dominant, then Grµ ⊆ Grλ and Wλ
µ provides

transversal slice
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Geometric Satake Correspondence

� Subvariety (Wλ
µ)

+ = zµU−
1 [[z−1]] ∩ G [z ]zλG [z ]

Geometric Satake

(Lusztig, Ginzburg, Mirković-Vilonen, Krylov)

For any dominant coweight λ, action of Langlands dual G∨ on

top Borel-Moore homology⊕
µ≤λ

HBM
top

(
(Wλ

µ)
+
) ∼= ⊕

µ≤λ

V (λ)µ = V (λ)

isomorphic to irrep V (λ) with highest (co)weight λ

10
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For any dominant coweight λ, action of Langlands dual G∨ on

top Borel-Moore homology⊕
µ≤λ

HBM
top

(
(Wλ

µ)
+
) ∼= ⊕

µ≤λ

V (λ)µ = V (λ)

isomorphic to irrep V (λ) with highest (co)weight λ

10



Geometric Satake Correspondence

� Subvariety (Wλ
µ)

+ = zµU−
1 [[z−1]] ∩ G [z ]zλG [z ]

Geometric Satake

(Lusztig, Ginzburg, Mirković-Vilonen, Krylov)
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Geometric Satake Correspondence?

� Usual (stronger) statement:

PervG [[z]]

(
GrG

) ∼= RepG∨

IC(Grλ) 7→ V (λ)

� For G a Kac-Moody group, seems hard to make sense of this!

� Braverman-Finkelberg: for Kac-Moody types, should try to

define Wλ
µ and aim for

G∨ ⟳ ⊕
µ≤λ

HBM
top

(
(Wλ

µ)
+
) ∼= ⊕

µ≤λ

V (λ)µ = V (λ)

11
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Coulomb branches



Coulomb branches

� G connected reductive over C, and N a finite-dim rep of G

� Braverman-Finkelberg-Nakajima (BFN) construct an affine

variety

MC (G ,N)

called the Coulomb branch associated to (G ,N)

� Arises as moduli space in quantum field theory, from 3d

N = 4 QFT associated to (G ,N ⊕ N∗)

12
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Coulomb branches

� More precisely, BFN define:

RG ,N =

{
[g , n] ∈

(
G ((z))× N[[z ]]

)
/G [[z ]] : gn ∈ N[[z ]]

}

and

A = H
G [[z]]
∗ (RG ,N ,C)

� Endow A with commutative algebra structure, and define:

MC (G ,N) = SpecA

� They showMC (G ,N) is irreducible, normal, and Poisson

13
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Quiver gauge theories

� Fix a quiver, for example:

• ←− • −→ • ←− •

� Take two dimension vectors v,w:

1 2 8 w = (1, 2, 0, 8)

5 2 7 7 v = (5, 2, 7, 7)

� Define:

G =
∏
i

GL(vi ),

N =
⊕
i→j

Hom(Cvi ,Cvj )⊕
⊕
i

Hom(Cwi ,Cvi )

14
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BFN Theorem

Theorem (Braverman-Finkelberg-Nakajima)

If quiver is oriented Dynkin diagram of finite ADE type, then

MC (G ,N) ∼= Wλ
µ

is a generalized affine Grassmannian slice for GADE

� Construction uses G =
∏

i GL(vi ), produces slice for GADE

� Dimension vectors w, v encode coweights λ, µ

⟨λ, αi ⟩ = wi , λ− µ =
∑
i

viα
∨
i

� Independent of quiver orientation

15
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Examples

� Nsln
∼=W(n−1,−1,...,−1)

0 corresponds to

n

1 2 · · · n − 1

� O(3,1,1)
∼=W(2,0,0,−1,−1)

0 corresponds to

1 2

1 2 2 2
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Kac-Moody slices

� Can work with arbitrary quiver as input!

� For symmetric Kac-Moody types, BFN propose to define

Wλ
µ := MC (G ,N)

for appropriate quiver data

Question

Does this definition satisfy expected properties?
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Kac-Moody slices

� In particular, anticipate Geometric Satake

G∨ ⟳ ⊕
µ≤λ

HBM
top

(
(Wλ

µ)
+
) ∼= ⊕

µ≤λ

V (λ)µ = V (λ)

� For affine type A, proven by Nakajima using bow varieties

� In general, no concrete geometric model for Wλ
µ =MC (G ,N)

18
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Closed embeddings



Main Theorem

Theorem (Muthiah-W.)

For any symmetric Kac-Moody type, there are closed Poisson

embeddings

Wν
µ ⊆ W

λ
µ

whenever the following conditions hold:

(i) µ ≤ ν ≤ λ with ν, λ dominant,

(ii) the “slice” Wλ
ν is good (conical)

This agrees with usual embedding in finite ADE types

� Explanation: Expect Wλ
ν transversal slice to Wν

µ ⊆ W
λ
µ,

which should be conical by Kaledin

19
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Main Theorem

� Construct H
G [[z]]
∗ (RG ,N) ↠ H

G ′[[z]]
∗ (RG ′,N′) algebraically

� Effect on quiver data:

1 2

O(3,1,1) : 1 2 2 2

5

Nsl5 : 1 2 3 4
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Fundamental monopole operators

� Monopole operators studied in physics: certain equivariant

classes in H
G [[z]]
∗ (RG ,N ,C)

� Simplest cases give functions we call fundamental monopole

operators (FMOs)

Theorem (W.)

FMOs generate coordinate ring of Wλ
µ =MC (G ,N), for any

quiver

� FMOs are explicit rational functions, in certain birational

coordinates:∑
Γ=(Γi )i∈I

∏
i→j

∏
r∈Γi ,s /∈Γj (wj ,s − wi ,r )∏

r∈Γi ,s /∈Γi (wi ,r − wi ,s)

∏
r∈Γi

ui ,r

21
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Proof of the theorem

� We show that in finite type, FMOs restrict to FMOs under

Wν
µ Wλ

µ

MC (G
′,N ′) MC (G ,N)

∼ ∼

� In all types, we show that this ansatz defines a closed

embedding (under the assumptions of the theorem)

22
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Aside: Quantization

� Coulomb branches admit deformation quantization:

Aℏ = H
G [[z]]⋊C×

∗ (RG ,N)

Algebra over H∗
C×(pt) = C[ℏ], with Aℏ/ℏAℏ ∼= A

� For quivers: truncated shifted Yangians (Braverman-

Finkelberg-Kamnitzer-Kodera-Nakajima-Webster-W.)

� In general the embedding Wν
µ ⊆ W

λ
µ does not quantize,

without fine tuning some parameters involved

=⇒ geometric H
G [[z]]
∗ (RG ,N) ↠ H

G ′[[z]]
∗ (RG ′,N′) should be

subtle

23
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Fundamental monopole operators, revisited

� Recall: for finite ADE type Wλ
µ has loop group description

Question

What are the FMOs as functions, in loop group terms?

� Even for Nsln , we don’t know what they are!

Include many natural functions:

(a) matrix entries of X ∈ Nsln

(b) Gelfand-Tsetlin integrable system

(c) More generally, coefficients of certain minors of I + z−1X

� Motto: FMOs relevant to study of Wλ
µ, even in finite types!

24
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Thank you for your attention!

I refuse to answer that question on the grounds that I don’t know

the answer.

- Douglas Adams

25



Thank you for your attention!

I refuse to answer that question on the grounds that I don’t know

the answer.

- Douglas Adams

25


	Affine Grassmannian Slices
	Coulomb branches
	Closed embeddings

