Embeddings of Kac-Moody affine Grassmannian slices

Alex Weekes University of Saskatchewan

August 25, 2023 Canada-Mexico-US Conference, Montréal

Introduction

• Joint work with Dinakar Muthiah, arXiv:2211.04788

- Joint work with Dinakar Muthiah, arXiv:2211.04788
- **Goal**: Understand affine Grassmannian for Kac-Moody types, and its ties to representation theory

- Joint work with Dinakar Muthiah, arXiv:2211.04788
- **Goal**: Understand affine Grassmannian for Kac-Moody types, and its ties to representation theory

Main Theorem (rough statement)

- Joint work with Dinakar Muthiah, arXiv:2211.04788
- **Goal**: Understand affine Grassmannian for Kac-Moody types, and its ties to representation theory

Main Theorem (rough statement)

There exist closed embeddings of affine Grassmannian slices

$$\overline{\mathcal{W}}_{\mu}^{
u} \subseteq \overline{\mathcal{W}}_{\mu}^{\lambda}$$

for all symmetric Kac-Moody types

Introduction

1. Affine Grassmannian slices

- 1. Affine Grassmannian slices
- 2. Coulomb branches

- 1. Affine Grassmannian slices
- 2. Coulomb branches
- 3. Closed embeddings and main theorem

• Let G be a connected reductive group over \mathbb{C} , with Lie algebra \mathfrak{g} (eg. $G = SL_n$ and $\mathfrak{g} = \mathfrak{sl}_n$)

- Let G be a connected reductive group over C, with Lie algebra g (eg. G = SL_n and g = sl_n)
- Fix triangular decomposition g = n⁺ ⊕ h ⊕ n⁻, with corresponding subgroups U⁺, T, U⁻ ⊂ G

- Let G be a connected reductive group over C, with Lie algebra g (eg. G = SL_n and g = sl_n)
- Fix triangular decomposition g = n⁺ ⊕ h ⊕ n⁻, with corresponding subgroups U⁺, T, U⁻ ⊂ G
- Simple roots $\alpha_i \in \mathfrak{h}^*$ and simple coroots $\alpha_i^{\vee} \in \mathfrak{h}$

- Let G be a connected reductive group over C, with Lie algebra g (eg. G = SL_n and g = sl_n)
- Fix triangular decomposition g = n⁺ ⊕ h ⊕ n⁻, with corresponding subgroups U⁺, T, U⁻ ⊂ G
- Simple roots $\alpha_i \in \mathfrak{h}^*$ and simple coroots $\alpha_i^{\vee} \in \mathfrak{h}$
- Coweights λ : C[×] → T identified with lattice in h, and λ is dominant coweight if all ⟨λ, α_i⟩ ≥ 0

- Let G be a connected reductive group over C, with Lie algebra g (eg. G = SL_n and g = sl_n)
- Fix triangular decomposition g = n⁺ ⊕ h ⊕ n⁻, with corresponding subgroups U⁺, T, U⁻ ⊂ G
- Simple roots $\alpha_i \in \mathfrak{h}^*$ and simple coroots $\alpha_i^{\vee} \in \mathfrak{h}$
- Coweights λ : C[×] → T identified with lattice in 𝔥, and λ is dominant coweight if all ⟨λ, α_i⟩ ≥ 0
- Dominance order:

$$\lambda \ge \mu \quad \Longleftrightarrow \quad \lambda - \mu = \sum_{i} \mathbf{v}_i \alpha_i^{\lor} \text{ with all } \mathbf{v}_i \ge 0$$

• Can make sense of A-points G(A) for any commutative alg A

$$\mathsf{SL}_2(A) = \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} : a, b, c, d \in A, ad - bc = 1
ight\}$$

• Can make sense of A-points G(A) for any commutative alg A

$$\mathsf{SL}_2(A) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in A, ad - bc = 1 \right\}$$

• Can form various loop groups, such as

$$G[z] = G(\mathbb{C}[z]), \qquad G((z^{-1})) = G(\mathbb{C}((z^{-1})))$$

• Can make sense of A-points G(A) for any commutative alg A

$$\mathsf{SL}_2(A) = \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} : a, b, c, d \in A, \ ad - bc = 1
ight\}$$

• Can form various loop groups, such as

$$G[z] = G(\mathbb{C}[z]), \qquad G((z^{-1})) = G(\mathbb{C}((z^{-1})))$$

These carry Zariski topologies: they are ind-schemes

• Can make sense of A-points G(A) for any commutative alg A

$$\mathsf{SL}_2(A) = \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} : a, b, c, d \in A, \ ad - bc = 1
ight\}$$

• Can form various loop groups, such as

$$G[z] = G(\mathbb{C}[z]), \qquad G((z^{-1})) = G(\mathbb{C}((z^{-1})))$$

These carry Zariski topologies: they are ind-schemes

• Congruence subgroup $G_1[[z^{-1}]] \subset G[[z^{-1}]]$ defined by

$$1 \longrightarrow G_1[[z^{-1}]] \longrightarrow G[[z^{-1}]] \xrightarrow{z^{-1} \mapsto 0} G \longrightarrow 1$$

• Coweight λ defines $z^{\lambda} \in G((z^{-1}))$

$$G = GL_n: \lambda = (\lambda_1, \dots, \lambda_n) \longmapsto z^{\lambda} = \begin{pmatrix} z^{\lambda_1} & & \\ & \ddots & \\ & & z^{\lambda_n} \end{pmatrix}$$

• Coweight
$$\lambda$$
 defines $z^\lambda \in \mathcal{G}((z^{-1}))$

$$G = GL_n: \quad \lambda = (\lambda_1, \dots, \lambda_n) \quad \longmapsto \quad z^{\lambda} = \begin{pmatrix} z^{\lambda_1} & & \\ & \ddots & \\ & & z^{\lambda_n} \end{pmatrix}$$

Definition: (Braverman-Finkelberg-Nakajima)

Let λ be a dominant coweight, and μ a coweight with $\mu \leq \lambda$.

• Coweight
$$\lambda$$
 defines $z^\lambda \in \mathcal{G}((z^{-1}))$

$$G = GL_n : \lambda = (\lambda_1, \dots, \lambda_n) \longmapsto z^{\lambda} = \begin{pmatrix} z^{\lambda_1} & & \\ & \ddots & \\ & & z^{\lambda_n} \end{pmatrix}$$

Definition: (Braverman-Finkelberg-Nakajima) Let λ be a dominant coweight, and μ a coweight with $\mu \leq \lambda$. The generalized affine Grassmannian slice $\overline{W}^{\lambda}_{\mu}$ is defined to be $\overline{W}^{\lambda}_{\mu} = U_1^+[[z^{-1}]]T_1[[z^{-1}]]z^{\mu}U_1^-[[z^{-1}]] \cap \overline{G[z]z^{\lambda}G[z]}$

• Coweight
$$\lambda$$
 defines $z^\lambda \in \mathcal{G}((z^{-1}))$

$$G = \operatorname{GL}_n : \lambda = (\lambda_1, \dots, \lambda_n) \longmapsto z^{\lambda} = \begin{pmatrix} z^{\lambda_1} & & \\ & \ddots & \\ & & z^{\lambda_n} \end{pmatrix}$$

Definition: (Braverman-Finkelberg-Nakajima) Let λ be a dominant coweight, and μ a coweight with $\mu \leq \lambda$. The generalized affine Grassmannian slice $\overline{W}^{\lambda}_{\mu}$ is defined to be $\overline{W}^{\lambda}_{\mu} = U_1^+[[z^{-1}]]T_1[[z^{-1}]]z^{\mu}U_1^-[[z^{-1}]] \cap \overline{G[z]z^{\lambda}G[z]}$ Call affine Grassmannian slice if μ is dominant. • Consider the nilpotent cone:

$$\mathcal{N}_{\mathfrak{sl}_n} = \{X \in M_{n \times n}(\mathbb{C}) : X \text{ is nilpotent}\}$$

Some examples

• Consider the nilpotent cone:

$$\mathcal{N}_{\mathfrak{sl}_n} = \{ X \in M_{n \times n}(\mathbb{C}) : X \text{ is nilpotent} \}$$

Lusztig defined isomorphism to slice for $G = SL_n$:

$$\mathcal{N}_{\mathfrak{sl}_n} \xrightarrow{\sim} \overline{\mathcal{W}}_0^{(n-1,-1,\dots,-1)}, \qquad X \longmapsto I + z^{-1}X$$

• Consider the nilpotent cone:

$$\mathcal{N}_{\mathfrak{sl}_n} = \{ X \in M_{n \times n}(\mathbb{C}) : X \text{ is nilpotent} \}$$

Lusztig defined isomorphism to slice for $G = SL_n$:

$$\mathcal{N}_{\mathfrak{sl}_n} \xrightarrow{\sim} \overline{\mathcal{W}}_0^{(n-1,-1,\dots,-1)}, \qquad X \longmapsto I + z^{-1}X$$

• Restricts to nilpotent orbits: if $(\lambda_1 \ge \ldots \le \lambda_n) \vdash n$

$$\overline{\mathbb{O}_{(\lambda_1,...,\lambda_n)}} \xrightarrow{\sim} \overline{\mathcal{W}}_0^{(\lambda_1-1,...,\lambda_n-1)}$$

• Consider the nilpotent cone:

$$\mathcal{N}_{\mathfrak{sl}_n} = \{ X \in M_{n \times n}(\mathbb{C}) : X \text{ is nilpotent} \}$$

Lusztig defined isomorphism to slice for $G = SL_n$:

$$\mathcal{N}_{\mathfrak{sl}_n} \xrightarrow{\sim} \overline{\mathcal{W}}_0^{(n-1,-1,\dots,-1)}, \qquad X \longmapsto I + z^{-1}X$$

• Restricts to nilpotent orbits: if $(\lambda_1 \ge \ldots \le \lambda_n) \vdash n$

$$\overline{\mathbb{O}_{(\lambda_1,...,\lambda_n)}} \xrightarrow{\sim} \overline{\mathcal{W}}_0^{(\lambda_1-1,...,\lambda_n-1)}$$

• *Mirković-Vybornov*: in type A, for $\lambda \ge \mu$ both dominant

$$\overline{\mathcal{W}}_{\mu}^{\lambda} \cong \mathcal{S}_{ ilde{\mu}} \cap \overline{\mathbb{O}_{ ilde{\lambda}}}$$

•
$$\overline{\mathcal{W}}^{\lambda}_{\mu}$$
 is an affine variety over \mathbb{C} , with

$$\dim_{\mathbb{C}} \overline{\mathcal{W}}_{\mu}^{\lambda} = 2 \sum_{i} \mathbf{v}_{i} \quad \text{if} \quad \lambda - \mu = \sum_{i} \mathbf{v}_{i}$$

Properties of $\overline{\mathcal{W}}_{\mu}^{\lambda}$

• $\overline{\mathcal{W}}^{\lambda}_{\mu}$ is an affine variety over \mathbb{C} , with

$$\dim_{\mathbb{C}} \overline{\mathcal{W}}_{\mu}^{\lambda} = 2 \sum_{i} \mathbf{v}_{i} \quad \text{if} \quad \lambda - \mu = \sum_{i} \mathbf{v}_{i}$$

W^λ_μ carries a Poisson structure, and has symplectic singularities (Kamnitzer-Webster-W.-Yacobi, Braverman-Finkelberg-Nakajima, Zhou)

Properties of $\overline{\mathcal{W}}_{\mu}^{\lambda}$

• $\overline{\mathcal{W}}^{\lambda}_{\mu}$ is an affine variety over \mathbb{C} , with

$$\dim_{\mathbb{C}} \overline{\mathcal{W}}_{\mu}^{\lambda} = 2 \sum_{i} \mathbf{v}_{i} \quad \text{if} \quad \lambda - \mu = \sum_{i} \mathbf{v}_{i}$$

- *W*^λ_μ carries a Poisson structure, and has symplectic singularities (Kamnitzer-Webster-W.-Yacobi, Braverman-Finkelberg-Nakajima, Zhou)
- If $\mu \leq \nu \leq \lambda$ with ν,λ dominant, then

$$\overline{\mathcal{W}}_{\mu}^{
u} \subseteq \overline{\mathcal{W}}_{\mu}^{\lambda}$$

Properties of $\overline{\mathcal{W}}_{\mu}^{\lambda}$

• $\overline{\mathcal{W}}^{\lambda}_{\mu}$ is an affine variety over \mathbb{C} , with

$$\dim_{\mathbb{C}} \overline{\mathcal{W}}_{\mu}^{\lambda} = 2 \sum_{i} \mathbf{v}_{i} \quad \text{if} \quad \lambda - \mu = \sum_{i} \mathbf{v}_{i}$$

- *W*^λ_μ carries a Poisson structure, and has symplectic singularities (Kamnitzer-Webster-W.-Yacobi, Braverman-Finkelberg-Nakajima, Zhou)
- If $\mu \leq \nu \leq \lambda$ with ν, λ dominant, then

$$\overline{\mathcal{W}}_{\mu}^{\nu} \subseteq \overline{\mathcal{W}}_{\mu}^{\lambda}$$

because $\overline{G[z]z^{\nu}G[z]} \subseteq \overline{G[z]z^{\lambda}G[z]}$ iff $\nu \leq \lambda$

$$Gr_G = G[z, z^{-1}]/G[z]$$

$$\operatorname{Gr}_{G} = G[z, z^{-1}]/G[z]$$

Cartan decomposition into left G[z]-orbits:

$$\operatorname{Gr}_{G} = \bigsqcup_{\lambda \text{ dom.}} G[z] z^{\lambda} G[z] / G[z]$$

$$\operatorname{Gr}_{G} = G[z, z^{-1}]/G[z]$$

Cartan decomposition into left G[z]-orbits:

$$\operatorname{Gr}_{G} = \bigsqcup_{\lambda \text{ dom.}} G[z] z^{\lambda} G[z] / G[z]$$

• (Spherical) Schubert varieties: $\overline{\mathrm{Gr}^{\lambda}} = \overline{\mathrm{G}[z]z^{\lambda}\mathrm{G}[z]/\mathrm{G}[z]}$

$$\operatorname{Gr}_{G} = G[z, z^{-1}]/G[z]$$

Cartan decomposition into left G[z]-orbits:

$$\operatorname{Gr}_{G} = \bigsqcup_{\lambda \text{ dom.}} G[z] z^{\lambda} G[z] / G[z]$$

- (Spherical) Schubert varieties: $\overline{Gr^{\lambda}} = \overline{G[z]z^{\lambda}G[z]/G[z]}$
- If $\mu \leq \lambda$ both dominant, then $\overline{\mathrm{Gr}^{\mu}} \subseteq \overline{\mathrm{Gr}^{\lambda}}$ and $\overline{\mathcal{W}}_{\mu}^{\lambda}$ provides transversal slice

Geometric Satake Correspondence

Geometric Satake Correspondence

• Subvariety
$$(\overline{\mathcal{W}}_{\mu}^{\lambda})^{+} = z^{\mu}U_{1}^{-}[[z^{-1}]] \cap \overline{G[z]z^{\lambda}G[z]}$$

• Subvariety
$$(\overline{\mathcal{W}}_{\mu}^{\lambda})^{+} = z^{\mu}U_{1}^{-}[[z^{-1}]] \cap \overline{G[z]z^{\lambda}G[z]}$$

Geometric Satake (Lusztig, Ginzburg, Mirković-Vilonen, Krylov)

• Subvariety
$$(\overline{\mathcal{W}}_{\mu}^{\lambda})^{+} = z^{\mu}U_{1}^{-}[[z^{-1}]] \cap \overline{G[z]z^{\lambda}G[z]}$$

Geometric Satake (Lusztig, Ginzburg, Mirković-Vilonen, Krylov) For any dominant coweight λ , action of Langlands dual G^{\vee} on top Borel-Moore homology

$$\bigoplus_{\mu \leq \lambda} H_{top}^{BM}((\overline{\mathcal{W}}_{\mu}^{\lambda})^{+}) \cong \bigoplus_{\mu \leq \lambda} V(\lambda)_{\mu} = V(\lambda)$$

isomorphic to irrep $V(\lambda)$ with highest (co)weight λ

Geometric Satake Correspondence?

$$\mathsf{Perv}_{G[[z]]} \left(\mathsf{Gr}_{G} \right) \cong \mathsf{Rep} \ G^{\vee}$$
$$\mathsf{IC}(\overline{\mathsf{Gr}^{\lambda}}) \ \mapsto \ V(\lambda)$$

$$\mathsf{Perv}_{G[[z]]} \left(\mathsf{Gr}_{G} \right) \cong \mathsf{Rep} \ G^{\vee}$$
$$\mathsf{IC}(\overline{\mathsf{Gr}^{\lambda}}) \ \mapsto \ V(\lambda)$$

• For G a Kac-Moody group, seems hard to make sense of this!

$$\operatorname{\mathsf{Perv}}_{G[[z]]}(\operatorname{\mathsf{Gr}}_G) \cong \operatorname{\mathsf{Rep}} G^{\vee}$$
$$\operatorname{\mathsf{IC}}(\overline{\operatorname{\mathsf{Gr}}^{\lambda}}) \mapsto V(\lambda)$$

- For G a Kac-Moody group, seems hard to make sense of this!
- Braverman-Finkelberg: for Kac-Moody types, should try to define $\overline{\mathcal{W}}^{\lambda}_{\mu}$ and aim for

$$\operatorname{\mathsf{Perv}}_{G[[z]]}(\operatorname{\mathsf{Gr}}_G) \cong \operatorname{\mathsf{Rep}} G^{\vee}$$
$$\operatorname{\mathsf{IC}}(\overline{\operatorname{\mathsf{Gr}}^{\lambda}}) \mapsto V(\lambda)$$

- For G a Kac-Moody group, seems hard to make sense of this!
- Braverman-Finkelberg: for Kac-Moody types, should try to define $\overline{\mathcal{W}}_{\mu}^{\lambda}$ and aim for

$${\mathcal G}^ee \, \subset \, \, igoplus_{\mu \leq \lambda} H^{BM}_{top}ig((\overline{{\mathcal W}}^\lambda_\mu)^+ig) \,\,\cong \,\, igoplus_{\mu \leq \lambda} V(\lambda)_\mu \,\,= \,\, V(\lambda)$$

• G connected reductive over \mathbb{C} , and N a finite-dim rep of G

- G connected reductive over \mathbb{C} , and N a finite-dim rep of G
- *Braverman-Finkelberg-Nakajima* (BFN) construct an affine variety

 $\mathcal{M}_C(G, N)$

called the **Coulomb branch** associated to (G, N)

- G connected reductive over \mathbb{C} , and N a finite-dim rep of G
- *Braverman-Finkelberg-Nakajima* (BFN) construct an affine variety

$$\mathcal{M}_{C}(G, N)$$

called the **Coulomb branch** associated to (G, N)

• Arises as moduli space in quantum field theory, from 3d $\mathcal{N} = 4$ QFT associated to $(G, N \oplus N^*)$

• More precisely, BFN define:

$$\mathcal{R}_{G,N} = \left\{ [g,n] \in \left(G((z)) \times N[[z]] \right) / G[[z]] : gn \in N[[z]] \right\}$$

• More precisely, BFN define:

$$\mathcal{R}_{G,N} = \left\{ [g,n] \in \left(G((z)) \times N[[z]] \right) / G[[z]] : gn \in N[[z]] \right\}$$

 $\quad \text{and} \quad$

$$\mathcal{A} = H^{G[[z]]}_{*}(\mathcal{R}_{G,N},\mathbb{C})$$

• More precisely, BFN define:

$$\mathcal{R}_{G,N} = \left\{ [g,n] \in \left(G((z)) \times N[[z]] \right) / G[[z]] : gn \in N[[z]] \right\}$$

and

$$\mathcal{A} = H^{G[[z]]}_{*}(\mathcal{R}_{G,N},\mathbb{C})$$

 $\bullet\,$ Endow ${\cal A}$ with commutative algebra structure, and define:

$$\mathcal{M}_C(G, N) = \operatorname{Spec} \mathcal{A}$$

• More precisely, BFN define:

$$\mathcal{R}_{G,N} = \left\{ [g,n] \in \left(G((z)) \times N[[z]] \right) / G[[z]] : gn \in N[[z]] \right\}$$

and

$$\mathcal{A} = H^{G[[z]]}_{*}(\mathcal{R}_{G,N},\mathbb{C})$$

• Endow \mathcal{A} with commutative algebra structure, and define:

$$\mathcal{M}_C(G, N) = \operatorname{Spec} \mathcal{A}$$

• They show $\mathcal{M}_C(G, N)$ is irreducible, normal, and Poisson

• Fix a quiver, for example:

• Fix a quiver, for example:

 $\bullet \longleftarrow \bullet \longrightarrow \bullet \longleftarrow \bullet$

• Take two dimension vectors **v**, **w**:

$$w = (1, 2, 0, 8)$$

$$\mathbf{v} = (5, 2, 7, 7)$$

• Fix a quiver, for example:

 $\bullet \longleftarrow \bullet \longrightarrow \bullet \longleftarrow \bullet$

• Take two dimension vectors **v**, **w**:

$$w = (1, 2, 0, 8)$$

$$v = (5, 2, 7, 7)$$

• Define:

$$G = \prod_{i} \operatorname{GL}(\mathbf{v}_{i}),$$
$$N = \bigoplus_{i \to j} \operatorname{Hom}(\mathbb{C}^{\mathbf{v}_{i}}, \mathbb{C}^{\mathbf{v}_{j}}) \oplus \bigoplus_{i} \operatorname{Hom}(\mathbb{C}^{\mathbf{w}_{i}}, \mathbb{C}^{\mathbf{v}_{i}})$$

BFN Theorem

If quiver is oriented Dynkin diagram of finite ADE type, then

$$\mathcal{M}_{C}(G, N) \cong \overline{\mathcal{W}}_{\mu}^{\lambda}$$

is a generalized affine Grassmannian slice for G_{ADE}

If quiver is oriented Dynkin diagram of finite ADE type, then

$$\mathcal{M}_{C}(G, N) \cong \overline{\mathcal{W}}_{\mu}^{\lambda}$$

is a generalized affine Grassmannian slice for G_{ADE}

• Construction uses $G = \prod_i GL(\mathbf{v}_i)$, produces slice for G_{ADE}

If quiver is oriented Dynkin diagram of finite ADE type, then

$$\mathcal{M}_{C}(G, N) \cong \overline{\mathcal{W}}_{\mu}^{\lambda}$$

is a generalized affine Grassmannian slice for G_{ADE}

- Construction uses $G = \prod_i GL(\mathbf{v}_i)$, produces slice for G_{ADE}
- Dimension vectors \mathbf{w},\mathbf{v} encode coweights λ,μ

$$\langle \lambda, \alpha_i \rangle = \mathbf{w}_i, \qquad \lambda - \mu = \sum_i \mathbf{v}_i \alpha_i^{\vee}$$

If quiver is oriented Dynkin diagram of finite ADE type, then

$$\mathcal{M}_{C}(G, N) \cong \overline{\mathcal{W}}_{\mu}^{\lambda}$$

is a generalized affine Grassmannian slice for G_{ADE}

- Construction uses $G = \prod_i GL(\mathbf{v}_i)$, produces slice for G_{ADE}
- Dimension vectors \mathbf{w}, \mathbf{v} encode coweights λ, μ

$$\langle \lambda, \alpha_i \rangle = \mathbf{w}_i, \qquad \lambda - \mu = \sum_i \mathbf{v}_i \alpha_i^{\vee}$$

• Independent of quiver orientation

Examples

Examples

•
$$\mathcal{N}_{\mathfrak{sl}_n}\cong\overline{\mathcal{W}}_0^{(n-1,-1,...,-1)}$$
 corresponds to

Examples

•
$$\mathcal{N}_{\mathfrak{sl}_n}\cong\overline{\mathcal{W}}_0^{(n-1,-1,...,-1)}$$
 corresponds to

•
$$\overline{\mathbb{O}_{(3,1,1)}}\cong \overline{\mathcal{W}}_0^{(2,0,0,-1,-1)}$$
 corresponds to

• Can work with arbitrary quiver as input!

• Can work with arbitrary quiver as input!

• Can work with arbitrary quiver as input!

• For symmetric Kac-Moody types, BFN propose to define

$$\overline{\mathcal{W}}_{\mu}^{\lambda} := \mathcal{M}_{C}(G, N)$$

for appropriate quiver data

• Can work with arbitrary quiver as input!

• For symmetric Kac-Moody types, BFN propose to define

$$\overline{\mathcal{W}}_{\mu}^{\lambda} := \mathcal{M}_{\mathcal{C}}(\mathcal{G}, \mathcal{N})$$

for appropriate quiver data

Question

Does this definition satisfy expected properties?

• In particular, anticipate Geometric Satake

$$G^{ee} \bigcirc \bigoplus_{\mu \leq \lambda} H^{BM}_{top} ig((\overline{\mathcal{W}}^{\lambda}_{\mu})^+ig) \ \cong \ \bigoplus_{\mu \leq \lambda} V(\lambda)_{\mu} \ = \ V(\lambda)$$

• In particular, anticipate Geometric Satake

$$G^{\vee} \bigcirc \bigoplus_{\mu \leq \lambda} H^{BM}_{top} ((\overline{\mathcal{W}}^{\lambda}_{\mu})^{+}) \cong \bigoplus_{\mu \leq \lambda} V(\lambda)_{\mu} = V(\lambda)$$

• For affine type A, proven by Nakajima using bow varieties

• In particular, anticipate Geometric Satake

$$G^{\vee} \bigcirc \bigoplus_{\mu \leq \lambda} H^{BM}_{top} ((\overline{\mathcal{W}}^{\lambda}_{\mu})^{+}) \cong \bigoplus_{\mu \leq \lambda} V(\lambda)_{\mu} = V(\lambda)$$

- For affine type A, proven by Nakajima using bow varieties
- In general, no concrete geometric model for $\overline{\mathcal{W}}^{\lambda}_{\mu} = \mathcal{M}_{\mathcal{C}}(\mathcal{G}, \mathcal{N})$

Closed embeddings

Theorem (Muthiah-W.)

For any symmetric Kac-Moody type, there are closed Poisson embeddings

$$\overline{\mathcal{W}}_{\mu}^{
u} \subseteq \overline{\mathcal{W}}_{\mu}^{\lambda}$$

whenever the following conditions hold:

For any symmetric Kac-Moody type, there are closed Poisson embeddings

$$\overline{\mathcal{W}}_{\mu}^{
u} \; \subseteq \; \overline{\mathcal{W}}_{\mu}^{\lambda}$$

whenever the following conditions hold:

(i) $\mu \leq \nu \leq \lambda$ with ν, λ dominant,

(ii) the "slice" $\overline{\mathcal{W}}_{\nu}^{\lambda}$ is **good** (conical)

For any symmetric Kac-Moody type, there are closed Poisson embeddings

$$\overline{\mathcal{W}}_{\mu}^{
u} \; \subseteq \; \overline{\mathcal{W}}_{\mu}^{\lambda}$$

whenever the following conditions hold:

(i) $\mu \leq \nu \leq \lambda$ with ν, λ dominant,

(ii) the "slice" $\overline{\mathcal{W}}_{\nu}^{\lambda}$ is **good** (conical)

This agrees with usual embedding in finite ADE types

For any symmetric Kac-Moody type, there are closed Poisson embeddings

$$\overline{\mathcal{W}}_{\mu}^{
u} \subseteq \overline{\mathcal{W}}_{\mu}^{\lambda}$$

whenever the following conditions hold:

(i)
$$\mu \leq \nu \leq \lambda$$
 with ν, λ dominant,

(ii) the "slice"
$$\overline{\mathcal{W}}_{\nu}^{\lambda}$$
 is **good** (conical)

This agrees with usual embedding in finite ADE types

• Explanation: Expect $\overline{\mathcal{W}}_{\nu}^{\lambda}$ transversal slice to $\overline{\mathcal{W}}_{\mu}^{\nu} \subseteq \overline{\mathcal{W}}_{\mu}^{\lambda}$, which should be conical by Kaledin

• Construct $H^{G[[z]]}_*(\mathcal{R}_{G,N}) \twoheadrightarrow H^{G'[[z]]}_*(\mathcal{R}_{G',N'})$ algebraically

- Construct $H^{G[[z]]}_*(\mathcal{R}_{G,N}) \twoheadrightarrow H^{G'[[z]]}_*(\mathcal{R}_{G',N'})$ algebraically
- Effect on quiver data:

- Construct $H^{G[[z]]}_*(\mathcal{R}_{G,N}) \twoheadrightarrow H^{G'[[z]]}_*(\mathcal{R}_{G',N'})$ algebraically
- Effect on quiver data:

 Monopole operators studied in physics: certain equivariant classes in H^{G[[z]]}_{*} (R_{G,N}, C)

- Monopole operators studied in physics: certain equivariant classes in H^{G[[z]]}_{*} (R_{G,N}, C)
- Simplest cases give functions we call **fundamental monopole operators** (FMOs)

- Monopole operators studied in physics: certain equivariant classes in H^{G[[z]]}_{*} (R_{G,N}, C)
- Simplest cases give functions we call **fundamental monopole operators** (FMOs)

Theorem (W.)

FMOs generate coordinate ring of $\overline{\mathcal{W}}^{\lambda}_{\mu} = \mathcal{M}_{\mathcal{C}}(G, N)$, for any quiver

- Monopole operators studied in physics: certain equivariant classes in H^{G[[z]]}_{*} (R_{G,N}, C)
- Simplest cases give functions we call **fundamental monopole operators** (FMOs)

Theorem (W.)

FMOs generate coordinate ring of $\overline{\mathcal{W}}_{\mu}^{\lambda} = \mathcal{M}_{C}(G, N)$, for any quiver

• FMOs are explicit rational functions, in certain birational coordinates:

$$\sum_{\Gamma = (\Gamma_i)_{i \in I}} \frac{\prod_{i \to j} \prod_{r \in \Gamma_i, s \notin \Gamma_j} (w_{j,s} - w_{i,r})}{\prod_{r \in \Gamma_i, s \notin \Gamma_i} (w_{i,r} - w_{i,s})} \prod_{r \in \Gamma_i} u_{i,r}$$

Proof of the theorem

• We show that in finite type, FMOs restrict to FMOs under

• We show that in finite type, FMOs restrict to FMOs under

• In all types, we show that this ansatz defines a closed embedding (under the assumptions of the theorem)

• Coulomb branches admit deformation quantization:

$$\mathcal{A}_{\hbar} = H^{G[[z]] \rtimes \mathbb{C}^{\times}}_{*}(\mathcal{R}_{G,N})$$

Algebra over $H^*_{\mathbb{C}^{ imes}}(\rho t) = \mathbb{C}[\hbar]$, with $\mathcal{A}_{\hbar}/\hbar \mathcal{A}_{\hbar} \cong \mathcal{A}$

• Coulomb branches admit deformation quantization:

$$\mathcal{A}_{\hbar} = H^{G[[z]] \rtimes \mathbb{C}^{\times}}_{*}(\mathcal{R}_{G,N})$$

Algebra over $H^*_{\mathbb{C}^{ imes}}(pt) = \mathbb{C}[\hbar]$, with $\mathcal{A}_{\hbar}/\hbar \mathcal{A}_{\hbar} \cong \mathcal{A}$

• For quivers: **truncated shifted Yangians** (*Braverman-Finkelberg-Kamnitzer-Kodera-Nakajima-Webster-W.*)

• Coulomb branches admit deformation quantization:

$$\mathcal{A}_{\hbar} = H^{G[[z]] \rtimes \mathbb{C}^{\times}}_{*}(\mathcal{R}_{G,N})$$

Algebra over $H^*_{\mathbb{C}^{\times}}(pt) = \mathbb{C}[\hbar]$, with $\mathcal{A}_{\hbar}/\hbar \mathcal{A}_{\hbar} \cong \mathcal{A}$

- For quivers: truncated shifted Yangians (Braverman-Finkelberg-Kamnitzer-Kodera-Nakajima-Webster-W.)
- In general the embedding W^ν_μ ⊆ W^λ_μ does not quantize, without fine tuning some parameters involved
 ⇒ geometric H^G_{*}^{[[z]]}(R_{G,N}) → H^{G'}_{*}^{[[z]]}(R_{G',N'}) should be subtle

• Recall: for finite ADE type $\overline{\mathcal{W}}_{\mu}^{\lambda}$ has loop group description

• Recall: for finite ADE type $\overline{\mathcal{W}}_{\mu}^{\lambda}$ has loop group description

Question

- Recall: for finite ADE type $\overline{\mathcal{W}}_{\mu}^{\lambda}$ has loop group description

Question

What are the FMOs as functions, in loop group terms?

• Recall: for finite ADE type $\overline{\mathcal{W}}^{\lambda}_{\mu}$ has loop group description

Question

What are the FMOs as functions, in loop group terms?

• Even for $\mathcal{N}_{\mathfrak{sl}_n},$ we don't know what they are!

• Recall: for finite ADE type $\overline{\mathcal{W}}^{\lambda}_{\mu}$ has loop group description

Question

What are the FMOs as functions, in loop group terms?

 Even for N_{sln}, we don't know what they are! Include many natural functions:

• Recall: for finite ADE type $\overline{\mathcal{W}}^{\lambda}_{\mu}$ has loop group description

Question

What are the FMOs as functions, in loop group terms?

• Even for $\mathcal{N}_{\mathfrak{sl}_n}$, we don't know what they are! Include many natural functions:

(a) matrix entries of $X\in\mathcal{N}_{\mathfrak{sl}_n}$

• Recall: for finite ADE type $\overline{\mathcal{W}}^{\lambda}_{\mu}$ has loop group description

Question

What are the FMOs as functions, in loop group terms?

 Even for N_{sln}, we don't know what they are! Include many natural functions:

(a) matrix entries of
$$X\in\mathcal{N}_{\mathfrak{sl}_n}$$

(b) Gelfand-Tsetlin integrable system

• Recall: for finite ADE type $\overline{\mathcal{W}}^{\lambda}_{\mu}$ has loop group description

Question

What are the FMOs as functions, in loop group terms?

- Even for N_{sln}, we don't know what they are! Include many natural functions:
 - (a) matrix entries of $X \in \mathcal{N}_{\mathfrak{sl}_n}$
 - (b) Gelfand-Tsetlin integrable system
 - (c) More generally, coefficients of certain minors of $I + z^{-1}X$

• Recall: for finite ADE type $\overline{\mathcal{W}}^{\lambda}_{\mu}$ has loop group description

Question

What are the FMOs as functions, in loop group terms?

- Even for N_{sln}, we don't know what they are! Include many natural functions:
 - (a) matrix entries of $X \in \mathcal{N}_{\mathfrak{sl}_n}$
 - (b) Gelfand-Tsetlin integrable system
 - (c) More generally, coefficients of certain minors of $I + z^{-1}X$
- *Motto*: FMOs relevant to study of $\overline{\mathcal{W}}^{\lambda}_{\mu}$, even in finite types!

Thank you for your attention!

Thank you for your attention!

I refuse to answer that question on the grounds that I don't know the answer.

- Douglas Adams