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Introduction

e Joint work with Dinakar Muthiah, arXiv:2211.04788

e Goal: Understand affine Grassmannian for Kac-Moody types,
and its ties to representation theory

Main Theorem (rough statement)
There exist closed embeddings of affine Grassmannian slices

5V A
W, C W,

for all symmetric Kac-Moody types
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Plan for this talk:
1. Affine Grassmannian slices
2. Coulomb branches

3. Closed embeddings and main theorem
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e Let G be a connected reductive group over C, with Lie
algebra g (eg. G =SL, and g = sl,)

e Fix triangular decomposition g = nt @ h & n~, with
corresponding subgroups UT, T, U~ C G

e Simple roots «j € h* and simple coroots o) € f

e Coweights A\ : C* — T identified with lattice in b, and X is
dominant coweight if all (A, ;) >0

e Dominance order:

A = )x—,u:Zv,-a,-vwith allv; >0

1
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Loop groups

e Can make sense of A-points G(A) for any commutative alg A

b
SLQ(A):{C d> - a,b,c,d € A ad—bc:l}

e Can form various loop groups, such as
Glz] = G(Clz]),  G((z71) =G(C((z"1))
These carry Zariski topologies: they are ind-schemes
e Congruence subgroup Gi[[z71]] € G[[z™!]] defined by

1 —— Gi[[z7Y]] — Gl[z71]] 2: G—1
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Affine Grassmannian slices

e Coweight \ defines z* € G((z71))
G=GL,: A=(\1,..., ) — 2=

Definition: (Braverman-Finkelberg-Nakajima)
Let A\ be a dominant coweight, and p a coweight with v < A.

The Wz is defined to be
Wy, = U [lz N Tallz N2 Up [l2 M) 0 G2 Gz

Call if 1 is dominant.
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Some examples

e Consider the nilpotent cone:
Nai, = {X € Mpxn(C) : X is nilpotent}

Lusztig defined isomorphism to slice for G = SL;:

Ny ST Xy i

e Restricts to nilpotent orbits: if (A1 > ... < A,)Fn
N~ (A1, Ae—1
@(/\lymv)\n) — W(() ' )

e Mirkovi¢-Vlybornov: in type A, for A > u both dominant

7>\ ~ PR
WM = Sﬂ ﬂ@:\
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Properties of Wi

oA : . :
e W is an affine variety over C, with

I
dim@W2:2Zv; if )\—,u:Zv,-

° W; carries a Poisson structure, and has symplectic
singularities (Kamnitzer-Webster-W.-Yacobi,
Braverman-Finkelberg-Nakajima, Zhou)

o If u < v < X\ with v, A dominant, then

oV oA
W/L g W/L

because G[z]z¥G[z] C G[z]z*G[z] iff v < A
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Properties of Wi

e The Affine Grassmannian for G is
Grg = Glz,z7Y/G][Z]
Cartan decomposition into left G[z]-orbits:

Gre = || Glz12*G[2]/G[Z]
A dom.

e (Spherical) Schubert varieties: Gt = G[z]z*G|z]/G|Z]

) — X = .
e If ;n < X both dominant, then Gr* C Gr* and Wu provides
transversal slice
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Geometric Satake Correspondence

o Subvariety (W,)* = zU; [[z7Y]| N G[z]2* G [2]

Geometric Satake
(Lusztig, Ginzburg, Mirkovi¢-Vilonen, Krylov)

For any dominant coweight ), action of Langlands dual GY on
top Borel-Moore homology

@Htop (Wp)+ = @V()‘)H = V(A)

HSA 7590

isomorphic to irrep V() with highest (co)weight A
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Geometric Satake Correspondence?

e Usual (stronger) statement:
PervG[[z]] (GFG) = Rep Gv
IC(Gr) — V()

e For G a Kac-Moody group, seems hard to make sense of this!

e Braverman-Finkelberg: for Kac-Moody types, should try to
define W:\L and aim for

Vo @HEM(WD) = PV, = V(A

HSA HSA

112
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Coulomb branches

e G connected reductive over C, and N a finite-dim rep of G

e Braverman-Finkelberg-Nakajima (BFN) construct an affine

variety

Mc(G, N)

called the Coulomb branch associated to (G, N)

e Arises as moduli space in quantum field theory, from 3d
N =4 QFT associated to (G, N & N*)
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Coulomb branches

e More precisely, BFN define:

Ren = {[g, nl € (G((2)) x N[[z]l)/Cllz]] : gn e /V[[Z]]}

and
A — H*G[[Z]] (RG,N; C)

e Endow A with commutative algebra structure, and define:

Mc(G,N) = Spec A

e They show M (G, N) is irreducible, normal, and Poisson

13



Quiver gauge theories

14



Quiver gauge theories

e Fix a quiver, for example:

e<— 00— 0<— o0

14



Quiver gauge theories

e Fix a quiver, for example:

e<— 00— 0<— o0

e Take two dimension vectors v, w:

w = (1,2,0,8)

v=(5277)

14



Quiver gauge theories

e Fix a quiver, for example:

e<— 00— 0<— o0

e Take two dimension vectors v, w:

w = (1,2,0,8)

v=(5277)

e Define:

G =[] G6L(vi),

N = P Hom(CY,C*) & € Hom(C", C¥)

i—j i 14
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BFN Theorem

Theorem (Braverman-Finkelberg-Nakajima)

If quiver is oriented Dynkin diagram of finite ADE type, then

Mc(G,N) = W,

is a generalized affine Grassmannian slice for Gapg
e Construction uses G = [[; GL(v;), produces slice for Gape
e Dimension vectors w, v encode coweights A,
<)\, Oé,'> = Wj, A — u = Zv;ay
i

e Independent of quiver orientation

ii5)
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—(n-1,-1,.,-1
o Ngi, = W(() ) corresponds to

o

ra ViR IA) 270>O771771
® 0311 = Wé ) corresponds to
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Kac-Moody slices

e Can work with arbitrary quiver as input!

N
e

o<—@

—®

——
.

e For symmetric Kac-Moody types, BFN propose to define

oA
WH

= Mc(G,N)

for appropriate quiver data
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Kac-Moody slices

e Can work with arbitrary quiver as input!

[ ] —®

Py
AN

o<—@

e For symmetric Kac-Moody types, BFN propose to

A
i

W, = Mc(G,N)

for appropriate quiver data

Question

Does this definition satisfy expected properties?

17



Kac-Moody slices

18



Kac-Moody slices

e In particular, anticipate Geometric Satake

G @ H (W Ot = Bviy, = vy

HEA 750

18



Kac-Moody slices

e In particular, anticipate Geometric Satake

G @ H (W Ot = Bviy, = vy

HEA 750

e For affine type A, proven by Nakajima using bow varieties

18



Kac-Moody slices

e In particular, anticipate Geometric Satake

G @ H (W Ot = Bviy, = vy

HEA [0

e For affine type A, proven by Nakajima using bow varieties

. oA
e In general, no concrete geometric model for W, = Mc(G, N)
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Theorem (Muthiah-W.)

For any symmetric Kac-Moody type, there are closed Poisson

embeddings
W, < W,
whenever the following conditions hold:
(i) p <v < X with v, X\ dominant,
(ii) the “slice” W;} is good (conical)
This agrees with usual embedding in finite ADE types
A

. A . — —
e Explanation: Expect W, transversal slice to W; W,
which should be conical by Kaledin

19
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Fundamental monopole operators

e Monopole operators studied in physics: certain equivariant
classes in HC Il (Re.n,C)

e Simplest cases give functions we call fundamental monopole
operators (FMOs)
Theorem (W.)

FMOs generate coordinate ring of Wi = Mc(G, N), for any

quiver

e FMOs are explicit rational functions, in certain birational
coordinates:

Hi—)j Hrer,-,s%rj( = W, r
> [T vir
Wi s

Wi, —
F=(M1)ics Hrer,‘,5¢r;( hr rel;

21



Proof of the theorem

22



Proof of the theorem

e We show that in finite type, FMOs restrict to FMOs under

iy [
Mc(G' N') ----- » Mc(G,N)

22



Proof of the theorem

e We show that in finite type, FMOs restrict to FMOs under

iy [
Mc(G' N') ----- » Mc(G,N)

e In all types, we show that this ansatz defines a closed

embedding (under the assumptions of the theorem)
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Aside: Quantization

e Coulomb branches admit deformation quantization:

Ah — ’I_LE[[Z]]>“(C>< (RG N)

)

Algebra over HZ, (pt) = C[R], with Ap/hA, = A

e For quivers: truncated shifted Yangians (Braverman-
Finkelberg-Kamnitzer-Kodera-Nakajima-Webster-W.)

. v oA .
e In general the embedding WZ C W, does not quantize,
without fine tuning some parameters involved

—> geometric H*G[[z]](RG’N) —» H*G/[[Z”(RG/’N/) should be
subtle
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Fundamental monopole operators, revisited

e Recall: for finite ADE type W;\b has loop group description

Question

What are the FMOs as functions, in loop group terms?

e Even for N, we don't know what they are!

Include many natural functions:

(a) matrix entries of X € Ny,
(b) Gelfand-Tsetlin integrable system

(c) More generally, coefficients of certain minors of [ +z71X

e Motto: FMOs relevant to study of Wi even in finite types!

24
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Thank you for your attention!

| refuse to answer that question on the grounds that | don't know
the answer.

- Douglas Adams
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