Embeddings of Kac-Moody affine Grassmannian slices

Alex Weekes

University of Saskatchewan

August 25, 2023
Canada-Mexico-US Conference, Montréal

Introduction

- Joint work with Dinakar Muthiah, arXiv:2211.04788

Introduction

- Joint work with Dinakar Muthiah, arXiv:2211.04788
- Goal: Understand affine Grassmannian for Kac-Moody types, and its ties to representation theory

Introduction

- Joint work with Dinakar Muthiah, arXiv:2211.04788
- Goal: Understand affine Grassmannian for Kac-Moody types, and its ties to representation theory

Main Theorem (rough statement)

Introduction

- Joint work with Dinakar Muthiah, arXiv:2211.04788
- Goal: Understand affine Grassmannian for Kac-Moody types, and its ties to representation theory

Main Theorem (rough statement)

There exist closed embeddings of affine Grassmannian slices

$$
\overline{\mathcal{W}}_{\mu}^{\nu} \subseteq \overline{\mathcal{W}}_{\mu}^{\lambda}
$$

for all symmetric Kac-Moody types

Introduction

Plan for this talk:

Introduction

Plan for this talk:

1. Affine Grassmannian slices

Introduction

Plan for this talk:

1. Affine Grassmannian slices
2. Coulomb branches

Introduction

Plan for this talk:

1. Affine Grassmannian slices
2. Coulomb branches
3. Closed embeddings and main theorem

Affine Grassmannian Slices

Some notation

Some notation

- Let G be a connected reductive group over \mathbb{C}, with Lie algebra $\mathfrak{g} \quad\left(\mathrm{eg} . G=S L_{n}\right.$ and $\left.\mathfrak{g}=\mathfrak{s l}_{n}\right)$

Some notation

- Let G be a connected reductive group over \mathbb{C}, with Lie algebra $\mathfrak{g} \quad\left(\mathrm{eg} . G=S L_{n}\right.$ and $\left.\mathfrak{g}=\mathfrak{s l}_{n}\right)$
- Fix triangular decomposition $\mathfrak{g}=\mathfrak{n}^{+} \oplus \mathfrak{h} \oplus \mathfrak{n}^{-}$, with corresponding subgroups $U^{+}, T, U^{-} \subset G$

Some notation

- Let G be a connected reductive group over \mathbb{C}, with Lie algebra $\mathfrak{g} \quad\left(\mathrm{eg} . G=S L_{n}\right.$ and $\left.\mathfrak{g}=\mathfrak{s l}_{n}\right)$
- Fix triangular decomposition $\mathfrak{g}=\mathfrak{n}^{+} \oplus \mathfrak{h} \oplus \mathfrak{n}^{-}$, with corresponding subgroups $U^{+}, T, U^{-} \subset G$
- Simple roots $\alpha_{i} \in \mathfrak{h}^{*}$ and simple coroots $\alpha_{i}^{\vee} \in \mathfrak{h}$

Some notation

- Let G be a connected reductive group over \mathbb{C}, with Lie algebra $\mathfrak{g} \quad\left(\mathrm{eg} . G=S L_{n}\right.$ and $\left.\mathfrak{g}=\mathfrak{s l}_{n}\right)$
- Fix triangular decomposition $\mathfrak{g}=\mathfrak{n}^{+} \oplus \mathfrak{h} \oplus \mathfrak{n}^{-}$, with corresponding subgroups $U^{+}, T, U^{-} \subset G$
- Simple roots $\alpha_{i} \in \mathfrak{h}^{*}$ and simple coroots $\alpha_{i}^{\vee} \in \mathfrak{h}$
- Coweights $\lambda: \mathbb{C}^{\times} \rightarrow T$ identified with lattice in \mathfrak{h}, and λ is dominant coweight if all $\left\langle\lambda, \alpha_{i}\right\rangle \geq 0$

Some notation

- Let G be a connected reductive group over \mathbb{C}, with Lie algebra $\mathfrak{g} \quad\left(\mathrm{eg} . G=S L_{n}\right.$ and $\left.\mathfrak{g}=\mathfrak{s l}_{n}\right)$
- Fix triangular decomposition $\mathfrak{g}=\mathfrak{n}^{+} \oplus \mathfrak{h} \oplus \mathfrak{n}^{-}$, with corresponding subgroups $U^{+}, T, U^{-} \subset G$
- Simple roots $\alpha_{i} \in \mathfrak{h}^{*}$ and simple coroots $\alpha_{i}^{\vee} \in \mathfrak{h}$
- Coweights $\lambda: \mathbb{C}^{\times} \rightarrow T$ identified with lattice in \mathfrak{h}, and λ is dominant coweight if all $\left\langle\lambda, \alpha_{i}\right\rangle \geq 0$
- Dominance order:

$$
\lambda \geq \mu \quad \Longleftrightarrow \quad \lambda-\mu=\sum_{i} \mathbf{v}_{i} \alpha_{i}^{\vee} \text { with all } \mathbf{v}_{i} \geq 0
$$

Loop groups

Loop groups

- Can make sense of A-points $G(A)$ for any commutative alg A

$$
\mathrm{SL}_{2}(A)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in A, a d-b c=1\right\}
$$

Loop groups

- Can make sense of A-points $G(A)$ for any commutative alg A

$$
\mathrm{SL}_{2}(A)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in A, a d-b c=1\right\}
$$

- Can form various loop groups, such as

$$
G[z]=G(\mathbb{C}[z]), \quad G\left(\left(z^{-1}\right)\right)=G\left(\mathbb{C}\left(\left(z^{-1}\right)\right)\right)
$$

Loop groups

- Can make sense of A-points $G(A)$ for any commutative alg A

$$
\mathrm{SL}_{2}(A)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in A, a d-b c=1\right\}
$$

- Can form various loop groups, such as

$$
G[z]=G(\mathbb{C}[z]), \quad G\left(\left(z^{-1}\right)\right)=G\left(\mathbb{C}\left(\left(z^{-1}\right)\right)\right)
$$

These carry Zariski topologies: they are ind-schemes

Loop groups

- Can make sense of A-points $G(A)$ for any commutative alg A

$$
\mathrm{SL}_{2}(A)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in A, a d-b c=1\right\}
$$

- Can form various loop groups, such as

$$
G[z]=G(\mathbb{C}[z]), \quad G\left(\left(z^{-1}\right)\right)=G\left(\mathbb{C}\left(\left(z^{-1}\right)\right)\right)
$$

These carry Zariski topologies: they are ind-schemes

- Congruence subgroup $G_{1}\left[\left[z^{-1}\right]\right] \subset G\left[\left[z^{-1}\right]\right]$ defined by

$$
1 \longrightarrow G_{1}\left[\left[z^{-1}\right]\right] \longrightarrow G\left[\left[z^{-1}\right]\right] \xrightarrow{z^{-1} \mapsto 0} G \longrightarrow 1
$$

Affine Grassmannian slices

Affine Grassmannian slices

- Coweight λ defines $z^{\lambda} \in G\left(\left(z^{-1}\right)\right)$

$$
G=\mathrm{GL}_{n}: \quad \lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \quad \longmapsto \quad z^{\lambda}=\left(\begin{array}{ccc}
z^{\lambda_{1}} & & \\
& \ddots & \\
& & z^{\lambda_{n}}
\end{array}\right)
$$

Affine Grassmannian slices

- Coweight λ defines $z^{\lambda} \in G\left(\left(z^{-1}\right)\right)$

$$
G=\mathrm{GL}_{n}: \quad \lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \quad \longmapsto \quad z^{\lambda}=\left(\begin{array}{ccc}
z^{\lambda_{1}} & & \\
& \ddots & \\
& & z^{\lambda_{n}}
\end{array}\right)
$$

Definition: (Braverman-Finkelberg-Nakajima)

Let λ be a dominant coweight, and μ a coweight with $\mu \leq \lambda$.

Affine Grassmannian slices

- Coweight λ defines $z^{\lambda} \in G\left(\left(z^{-1}\right)\right)$

$$
G=\mathrm{GL}_{n}: \quad \lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \quad \longmapsto \quad z^{\lambda}=\left(\begin{array}{ccc}
z^{\lambda_{1}} & & \\
& \ddots & \\
& & z^{\lambda_{n}}
\end{array}\right)
$$

Definition: (Braverman-Finkelberg-Nakajima)

Let λ be a dominant coweight, and μ a coweight with $\mu \leq \lambda$.
The generalized affine Grassmannian slice $\overline{\mathcal{W}}_{\mu}^{\lambda}$ is defined to be

$$
\overline{\mathcal{W}}_{\mu}^{\lambda}=U_{1}^{+}\left[\left[z^{-1}\right]\right] T_{1}\left[\left[z^{-1}\right]\right] z^{\mu} U_{1}^{-}\left[\left[z^{-1}\right]\right] \cap \overline{G[z] z^{\lambda} G[z]}
$$

Affine Grassmannian slices

- Coweight λ defines $z^{\lambda} \in G\left(\left(z^{-1}\right)\right)$

$$
G=\mathrm{GL}_{n}: \quad \lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \quad \longmapsto \quad z^{\lambda}=\left(\begin{array}{ccc}
z^{\lambda_{1}} & & \\
& \ddots & \\
& & z^{\lambda_{n}}
\end{array}\right)
$$

Definition: (Braverman-Finkelberg-Nakajima)

Let λ be a dominant coweight, and μ a coweight with $\mu \leq \lambda$.
The generalized affine Grassmannian slice $\overline{\mathcal{W}}_{\mu}^{\lambda}$ is defined to be

$$
\overline{\mathcal{W}}_{\mu}^{\lambda}=U_{1}^{+}\left[\left[z^{-1}\right]\right] T_{1}\left[\left[z^{-1}\right]\right] z^{\mu} U_{1}^{-}\left[\left[z^{-1}\right]\right] \cap \overline{G[z] z^{\lambda} G[z]}
$$

Call affine Grassmannian slice if μ is dominant.

Some examples

Some examples

- Consider the nilpotent cone:

$$
\mathcal{N}_{\mathfrak{S l}_{n}}=\left\{X \in M_{n \times n}(\mathbb{C}): X \text { is nilpotent }\right\}
$$

Some examples

- Consider the nilpotent cone:

$$
\mathcal{N}_{\mathfrak{S l}_{n}}=\left\{X \in M_{n \times n}(\mathbb{C}): X \text { is nilpotent }\right\}
$$

Lusztig defined isomorphism to slice for $G=S L_{n}$:

$$
\mathcal{N}_{\mathfrak{s l}_{n}} \xrightarrow{\sim} \overline{\mathcal{W}}_{0}^{(n-1,-1, \ldots,-1)}, \quad X \longmapsto I+z^{-1} X
$$

Some examples

- Consider the nilpotent cone:

$$
\mathcal{N}_{\mathfrak{S l}_{n}}=\left\{X \in M_{n \times n}(\mathbb{C}): X \text { is nilpotent }\right\}
$$

Lusztig defined isomorphism to slice for $G=S L_{n}$:

$$
\mathcal{N}_{\mathfrak{s l}_{n}} \xrightarrow{\sim} \overline{\mathcal{W}}_{0}^{(n-1,-1, \ldots,-1)}, \quad X \longmapsto I+z^{-1} X
$$

- Restricts to nilpotent orbits: if $\left(\lambda_{1} \geq \ldots \leq \lambda_{n}\right) \vdash n$

$$
\overline{\mathbb{O}_{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}} \stackrel{\sim}{\longrightarrow} \overline{\mathcal{W}}_{0}^{\left(\lambda_{1}-1, \ldots, \lambda_{n}-1\right)}
$$

Some examples

- Consider the nilpotent cone:

$$
\mathcal{N}_{\mathfrak{s l}_{n}}=\left\{X \in M_{n \times n}(\mathbb{C}): X \text { is nilpotent }\right\}
$$

Lusztig defined isomorphism to slice for $G=S L_{n}$:

$$
\mathcal{N}_{\mathfrak{s l}_{n}} \xrightarrow{\sim} \overline{\mathcal{W}}_{0}^{(n-1,-1, \ldots,-1)}, \quad X \longmapsto I+z^{-1} X
$$

- Restricts to nilpotent orbits: if $\left(\lambda_{1} \geq \ldots \leq \lambda_{n}\right) \vdash n$

$$
\overline{\mathbb{O}_{\left(\lambda_{1}, \ldots, \lambda_{n}\right)}} \stackrel{\sim}{\longrightarrow} \overline{\mathcal{W}}_{0}^{\left(\lambda_{1}-1, \ldots, \lambda_{n}-1\right)}
$$

- Mirković-Vybornov: in type A , for $\lambda \geq \mu$ both dominant

$$
\overline{\mathcal{W}}_{\mu}^{\lambda} \cong \mathcal{S}_{\tilde{\mu}} \cap \overline{\mathbb{O}_{\tilde{\lambda}}}
$$

Properties of $\overline{\mathcal{W}}_{\mu}^{\lambda}$

Properties of $\overline{\mathcal{W}}_{\mu}^{\lambda}$

- $\overline{\mathcal{W}}_{\mu}^{\lambda}$ is an affine variety over \mathbb{C}, with

$$
\operatorname{dim}_{\mathbb{C}} \overline{\mathcal{W}}_{\mu}^{\lambda}=2 \sum_{i} \mathbf{v}_{i} \quad \text { if } \quad \lambda-\mu=\sum_{i} \mathbf{v}_{i}
$$

Properties of $\overline{\mathcal{W}}_{\mu}^{\lambda}$

- $\overline{\mathcal{W}}_{\mu}^{\lambda}$ is an affine variety over \mathbb{C}, with

$$
\operatorname{dim}_{\mathbb{C}} \overline{\mathcal{W}}_{\mu}^{\lambda}=2 \sum_{i} \mathbf{v}_{i} \quad \text { if } \quad \lambda-\mu=\sum_{i} \mathbf{v}_{i}
$$

- $\overline{\mathcal{W}}_{\mu}^{\lambda}$ carries a Poisson structure, and has symplectic singularities (Kamnitzer-Webster-W.-Yacobi, Braverman-Finkelberg-Nakajima, Zhou)

Properties of $\overline{\mathcal{W}}_{\mu}^{\lambda}$

- $\overline{\mathcal{W}}_{\mu}^{\lambda}$ is an affine variety over \mathbb{C}, with

$$
\operatorname{dim}_{\mathbb{C}} \overline{\mathcal{W}}_{\mu}^{\lambda}=2 \sum_{i} \mathbf{v}_{i} \quad \text { if } \quad \lambda-\mu=\sum_{i} \mathbf{v}_{i}
$$

- $\overline{\mathcal{W}}_{\mu}^{\lambda}$ carries a Poisson structure, and has symplectic singularities (Kamnitzer-Webster-W.-Yacobi, Braverman-Finkelberg-Nakajima, Zhou)
- If $\mu \leq \nu \leq \lambda$ with ν, λ dominant, then

$$
\overline{\mathcal{W}}_{\mu}^{\nu} \subseteq \overline{\mathcal{W}}_{\mu}^{\lambda}
$$

Properties of $\overline{\mathcal{W}}_{\mu}^{\lambda}$

- $\overline{\mathcal{W}}_{\mu}^{\lambda}$ is an affine variety over \mathbb{C}, with

$$
\operatorname{dim}_{\mathbb{C}} \overline{\mathcal{W}}_{\mu}^{\lambda}=2 \sum_{i} \mathbf{v}_{i} \quad \text { if } \quad \lambda-\mu=\sum_{i} \mathbf{v}_{i}
$$

- $\overline{\mathcal{W}}_{\mu}^{\lambda}$ carries a Poisson structure, and has symplectic singularities (Kamnitzer-Webster-W.-Yacobi, Braverman-Finkelberg-Nakajima, Zhou)
- If $\mu \leq \nu \leq \lambda$ with ν, λ dominant, then

$$
\overline{\mathcal{W}}_{\mu}^{\nu} \subseteq \overline{\mathcal{W}}_{\mu}^{\lambda}
$$

because $\overline{G[z] z^{\nu} G[z]} \subseteq \overline{G[z] z^{\lambda} G[z]}$ iff $\nu \leq \lambda$

Properties of $\overline{\mathcal{W}}_{\mu}^{\lambda}$

- The Affine Grassmannian for G is

$$
\operatorname{Gr}_{G}=G\left[z, z^{-1}\right] / G[z]
$$

Properties of $\overline{\mathcal{W}}_{\mu}^{\lambda}$

- The Affine Grassmannian for G is

$$
\operatorname{Gr}_{G}=G\left[z, z^{-1}\right] / G[z]
$$

Cartan decomposition into left $G[z]$-orbits:

$$
\operatorname{Gr}_{G}=\bigsqcup_{\lambda \operatorname{dom} .} G[z] z^{\lambda} G[z] / G[z]
$$

Properties of $\overline{\mathcal{W}}_{\mu}^{\lambda}$

- The Affine Grassmannian for G is

$$
\operatorname{Gr}_{G}=G\left[z, z^{-1}\right] / G[z]
$$

Cartan decomposition into left $G[z]$-orbits:

$$
\operatorname{Gr}_{G}=\bigsqcup_{\lambda \text { dom. }} G[z] z^{\lambda} G[z] / G[z]
$$

- (Spherical) Schubert varieties: $\overline{\mathrm{Gr}^{\lambda}}=\overline{G[z] z^{\lambda} G[z] / G[z]}$

Properties of $\overline{\mathcal{W}}_{\mu}^{\lambda}$

- The Affine Grassmannian for G is

$$
\operatorname{Gr}_{G}=G\left[z, z^{-1}\right] / G[z]
$$

Cartan decomposition into left $G[z]$-orbits:

$$
\operatorname{Gr}_{G}=\bigsqcup_{\lambda \text { dom. }} G[z] z^{\lambda} G[z] / G[z]
$$

- (Spherical) Schubert varieties: $\overline{G^{\lambda}}=\overline{G[z] z^{\lambda} G[z] / G[z]}$
- If $\mu \leq \lambda$ both dominant, then $\overline{\mathrm{Gr}^{\mu}} \subseteq \overline{\mathrm{Gr}^{\lambda}}$ and $\overline{\mathcal{W}}_{\mu}^{\lambda}$ provides transversal slice

Geometric Satake Correspondence

Geometric Satake Correspondence

- Subvariety $\left(\overline{\mathcal{W}}_{\mu}^{\lambda}\right)^{+}=z^{\mu} U_{1}^{-}\left[\left[z^{-1}\right]\right] \cap \overline{G[z] z^{\lambda} G[z]}$

Geometric Satake Correspondence

- Subvariety $\left(\overline{\mathcal{W}}_{\mu}^{\lambda}\right)^{+}=z^{\mu} U_{1}^{-}\left[\left[z^{-1}\right]\right] \cap \overline{G[z] z^{\lambda} G[z]}$

Geometric Satake
 (Lusztig, Ginzburg, Mirković-Vilonen, Krylov)

Geometric Satake Correspondence

- Subvariety $\left(\overline{\mathcal{W}}_{\mu}^{\lambda}\right)^{+}=z^{\mu} U_{1}^{-}\left[\left[z^{-1}\right]\right] \cap \overline{G[z] z^{\lambda} G[z]}$

Geometric Satake

(Lusztig, Ginzburg, Mirković-Vilonen, Krylov)

For any dominant coweight λ, action of Langlands dual G^{\vee} on top Borel-Moore homology

$$
\bigoplus_{\mu \leq \lambda} H_{\text {top }}^{B M}\left(\left(\overline{\mathcal{W}}_{\mu}^{\lambda}\right)^{+}\right) \cong \bigoplus_{\mu \leq \lambda} V(\lambda)_{\mu}=V(\lambda)
$$

isomorphic to irrep $V(\lambda)$ with highest (co)weight λ

Geometric Satake Correspondence?

Geometric Satake Correspondence?

- Usual (stronger) statement:

$$
\begin{aligned}
\operatorname{Perv}_{G[[z]]}\left(\mathrm{Gr}_{G}\right) & \cong \operatorname{Rep} G^{\vee} \\
\mathrm{IC}\left(\overline{\mathrm{Gr}^{\lambda}}\right) & \mapsto V(\lambda)
\end{aligned}
$$

Geometric Satake Correspondence?

- Usual (stronger) statement:

$$
\begin{aligned}
\operatorname{Perv}_{G[[z]]}\left(\operatorname{Gr}_{G}\right) & \cong \operatorname{Rep} G^{\vee} \\
I C\left(\overline{G r^{\lambda}}\right) & \mapsto V(\lambda)
\end{aligned}
$$

- For G a Kac-Moody group, seems hard to make sense of this!

Geometric Satake Correspondence?

- Usual (stronger) statement:

$$
\begin{aligned}
\operatorname{Perv}_{G[[z]]}\left(\mathrm{Gr}_{G}\right) & \cong \operatorname{Rep} G^{\vee} \\
I C\left(\overline{G r^{\lambda}}\right) & \mapsto V(\lambda)
\end{aligned}
$$

- For G a Kac-Moody group, seems hard to make sense of this!
- Braverman-Finkelberg: for Kac-Moody types, should try to define $\overline{\mathcal{W}}_{\mu}^{\lambda}$ and aim for

Geometric Satake Correspondence?

- Usual (stronger) statement:

$$
\begin{aligned}
\operatorname{Perv}_{G[[z]]}\left(\mathrm{Gr}_{G}\right) & \cong \operatorname{Rep} G^{\vee} \\
I C\left(\overline{G r^{\lambda}}\right) & \mapsto V(\lambda)
\end{aligned}
$$

- For G a Kac-Moody group, seems hard to make sense of this!
- Braverman-Finkelberg: for Kac-Moody types, should try to define $\overline{\mathcal{W}}_{\mu}^{\lambda}$ and aim for

$$
G^{\vee} \bigcirc \bigoplus_{\mu \leq \lambda} H_{\text {top }}^{B M}\left(\left(\overline{\mathcal{W}}_{\mu}^{\lambda}\right)^{+}\right) \cong \bigoplus_{\mu \leq \lambda} V(\lambda)_{\mu}=V(\lambda)
$$

Coulomb branches

Coulomb branches

- G connected reductive over \mathbb{C}, and N a finite-dim rep of G

Coulomb branches

- G connected reductive over \mathbb{C}, and N a finite-dim rep of G
- Braverman-Finkelberg-Nakajima (BFN) construct an affine variety

$$
\mathcal{M}_{C}(G, N)
$$

called the Coulomb branch associated to (G, N)

Coulomb branches

- G connected reductive over \mathbb{C}, and N a finite-dim rep of G
- Braverman-Finkelberg-Nakajima (BFN) construct an affine variety

$$
\mathcal{M}_{C}(G, N)
$$

called the Coulomb branch associated to (G, N)

- Arises as moduli space in quantum field theory, from 3d $\mathcal{N}=4$ QFT associated to $\left(G, N \oplus N^{*}\right)$

Coulomb branches

Coulomb branches

- More precisely, BFN define:

$$
\mathcal{R}_{G, N}=\{[g, n] \in(G((z)) \times N[[z]]) / G[[z]]: g n \in N[[z]]\}
$$

Coulomb branches

- More precisely, BFN define:

$$
\begin{aligned}
& \mathcal{R}_{G, N}=\{[g, n] \in(G((z)) \times N[[z]]) / G[[z]]: g n \in N[[z]]\} \\
& \text { and } \\
& \qquad \mathcal{A}=H_{*}^{G[[z]]}\left(\mathcal{R}_{G, N}, \mathbb{C}\right)
\end{aligned}
$$

Coulomb branches

- More precisely, BFN define:

$$
\begin{aligned}
& \mathcal{R}_{G, N}=\{[g, n] \in(G((z)) \times N[[z]]) / G[[z]]: g n \in N[[z]]\} \\
& \text { and } \\
& \qquad \mathcal{A}=H_{*}^{G[[z]]}\left(\mathcal{R}_{G, N}, \mathbb{C}\right)
\end{aligned}
$$

- Endow \mathcal{A} with commutative algebra structure, and define:

$$
\mathcal{M}_{C}(G, N)=\operatorname{Spec} \mathcal{A}
$$

Coulomb branches

- More precisely, BFN define:

$$
\mathcal{R}_{G, N}=\{[g, n] \in(G((z)) \times N[[z]]) / G[[z]]: g n \in N[[z]]\}
$$

and

$$
\mathcal{A}=H_{*}^{G[[z]]}\left(\mathcal{R}_{G, N}, \mathbb{C}\right)
$$

- Endow \mathcal{A} with commutative algebra structure, and define:

$$
\mathcal{M}_{C}(G, N)=\operatorname{Spec} \mathcal{A}
$$

- They show $\mathcal{M}_{C}(G, N)$ is irreducible, normal, and Poisson

Quiver gauge theories

Quiver gauge theories

- Fix a quiver, for example:
$\bullet \longleftarrow \bullet \longrightarrow \bullet \longleftarrow \bullet$

Quiver gauge theories

- Fix a quiver, for example:
$\bullet \longleftarrow \bullet \longrightarrow \bullet \longleftarrow \bullet$
- Take two dimension vectors \mathbf{v}, \mathbf{w} :

$$
\begin{gathered}
\mathbf{w}=(1,2,0,8) \\
\mathbf{v}=(5,2,7,7)
\end{gathered}
$$

Quiver gauge theories

- Fix a quiver, for example:
$\bullet \longleftarrow \bullet \longrightarrow \bullet \longleftarrow \bullet$
- Take two dimension vectors \mathbf{v}, \mathbf{w} :

$$
\begin{gathered}
\mathbf{w}=(1,2,0,8) \\
\mathbf{v}=(5,2,7,7)
\end{gathered}
$$

- Define:

$$
\begin{aligned}
& G=\prod_{i} \mathrm{GL}\left(\mathbf{v}_{i}\right) \\
& N=\bigoplus_{i \rightarrow j} \operatorname{Hom}\left(\mathbb{C}^{\mathbf{v}_{i}}, \mathbb{C}^{\mathbf{v}_{j}}\right) \oplus \bigoplus_{i} \operatorname{Hom}\left(\mathbb{C}^{\mathbf{w}_{i}}, \mathbb{C}^{\mathbf{v}_{i}}\right)
\end{aligned}
$$

BFN Theorem

Theorem (Braverman-Finkelberg-Nakajima)

If quiver is oriented Dynkin diagram of finite ADE type, then

$$
\mathcal{M}_{C}(G, N) \cong \overline{\mathcal{W}}_{\mu}^{\lambda}
$$

is a generalized affine Grassmannian slice for $G_{A D E}$

BFN Theorem

Theorem (Braverman-Finkelberg-Nakajima)

If quiver is oriented Dynkin diagram of finite ADE type, then

$$
\mathcal{M}_{C}(G, N) \cong \overline{\mathcal{W}}_{\mu}^{\lambda}
$$

is a generalized affine Grassmannian slice for $G_{A D E}$

- Construction uses $G=\prod_{i} G L\left(\mathbf{v}_{i}\right)$, produces slice for $G_{A D E}$

BFN Theorem

Theorem (Braverman-Finkelberg-Nakajima)

If quiver is oriented Dynkin diagram of finite ADE type, then

$$
\mathcal{M}_{C}(G, N) \cong \overline{\mathcal{W}}_{\mu}^{\lambda}
$$

is a generalized affine Grassmannian slice for $G_{A D E}$

- Construction uses $G=\prod_{i} G L\left(\mathbf{v}_{i}\right)$, produces slice for $G_{A D E}$
- Dimension vectors \mathbf{w}, \mathbf{v} encode coweights λ, μ

$$
\left\langle\lambda, \alpha_{i}\right\rangle=\mathbf{w}_{i}, \quad \lambda-\mu=\sum_{i} \mathbf{v}_{i} \alpha_{i}^{\vee}
$$

BFN Theorem

Theorem (Braverman-Finkelberg-Nakajima)

If quiver is oriented Dynkin diagram of finite ADE type, then

$$
\mathcal{M}_{C}(G, N) \cong \overline{\mathcal{W}}_{\mu}^{\lambda}
$$

is a generalized affine Grassmannian slice for $G_{A D E}$

- Construction uses $G=\prod_{i} G L\left(\mathbf{v}_{i}\right)$, produces slice for $G_{A D E}$
- Dimension vectors \mathbf{w}, \mathbf{v} encode coweights λ, μ

$$
\left\langle\lambda, \alpha_{i}\right\rangle=\mathbf{w}_{i}, \quad \lambda-\mu=\sum_{i} \mathbf{v}_{i} \alpha_{i}^{\vee}
$$

- Independent of quiver orientation

Examples

Examples

- $\mathcal{N}_{\mathfrak{S l}_{n}} \cong \overline{\mathcal{W}}_{0}^{(n-1,-1, \ldots,-1)}$ corresponds to

Examples

- $\mathcal{N}_{\mathfrak{s l}_{n}} \cong \overline{\mathcal{W}}_{0}^{(n-1,-1, \ldots,-1)}$ corresponds to

- $\overline{\mathbb{O}_{(3,1,1)}} \cong \overline{\mathcal{W}}_{0}^{(2,0,0,-1,-1)}$ corresponds to

Kac-Moody slices

Kac-Moody slices

- Can work with arbitrary quiver as input!

Kac-Moody slices

- Can work with arbitrary quiver as input!

Kac-Moody slices

- Can work with arbitrary quiver as input!

- For symmetric Kac-Moody types, BFN propose to define

$$
\overline{\mathcal{W}}_{\mu}^{\lambda}:=\mathcal{M}_{C}(G, N)
$$

for appropriate quiver data

Kac-Moody slices

- Can work with arbitrary quiver as input!

- For symmetric Kac-Moody types, BFN propose to define

$$
\overline{\mathcal{W}}_{\mu}^{\lambda}:=\mathcal{M}_{C}(G, N)
$$

for appropriate quiver data

Question

Does this definition satisfy expected properties?

Kac-Moody slices

Kac-Moody slices

- In particular, anticipate Geometric Satake

$$
G^{\vee} \bigcirc \bigoplus_{\mu \leq \lambda} H_{\text {top }}^{B M}\left(\left(\overline{\mathcal{W}}_{\mu}^{\lambda}\right)^{+}\right) \cong \bigoplus_{\mu \leq \lambda} V(\lambda)_{\mu}=V(\lambda)
$$

Kac-Moody slices

- In particular, anticipate Geometric Satake

$$
G^{\vee} \bigcirc \bigoplus_{\mu \leq \lambda} H_{\text {top }}^{B M}\left(\left(\overline{\mathcal{W}}_{\mu}^{\lambda}\right)^{+}\right) \cong \bigoplus_{\mu \leq \lambda} V(\lambda)_{\mu}=V(\lambda)
$$

- For affine type A, proven by Nakajima using bow varieties

Kac-Moody slices

- In particular, anticipate Geometric Satake

$$
G^{\vee} \bigcirc \bigoplus_{\mu \leq \lambda} H_{\text {top }}^{B M}\left(\left(\overline{\mathcal{W}}_{\mu}^{\lambda}\right)^{+}\right) \cong \bigoplus_{\mu \leq \lambda} V(\lambda)_{\mu}=V(\lambda)
$$

- For affine type A, proven by Nakajima using bow varieties
- In general, no concrete geometric model for $\overline{\mathcal{W}}_{\mu}^{\lambda}=\mathcal{M}_{C}(G, N)$

Closed embeddings

Main Theorem

Theorem (Muthiah-W.)

Main Theorem

Theorem (Muthiah-W.)

For any symmetric Kac-Moody type, there are closed Poisson embeddings

$$
\overline{\mathcal{W}}_{\mu}^{\nu} \subseteq \overline{\mathcal{W}}_{\mu}^{\lambda}
$$

whenever the following conditions hold:

Main Theorem

Theorem (Muthiah-W.)

For any symmetric Kac-Moody type, there are closed Poisson embeddings

$$
\overline{\mathcal{W}}_{\mu}^{\nu} \subseteq \overline{\mathcal{W}}_{\mu}^{\lambda}
$$

whenever the following conditions hold:
(i) $\mu \leq \nu \leq \lambda$ with ν, λ dominant,
(ii) the "slice" $\overline{\mathcal{W}}_{\nu}^{\lambda}$ is good (conical)

Main Theorem

Theorem (Muthiah-W.)

For any symmetric Kac-Moody type, there are closed Poisson embeddings

$$
\overline{\mathcal{W}}_{\mu}^{\nu} \subseteq \overline{\mathcal{W}}_{\mu}^{\lambda}
$$

whenever the following conditions hold:
(i) $\mu \leq \nu \leq \lambda$ with ν, λ dominant,
(ii) the "slice" $\overline{\mathcal{W}}_{\nu}^{\lambda}$ is good (conical)

This agrees with usual embedding in finite ADE types

Main Theorem

Theorem (Muthiah-W.)

For any symmetric Kac-Moody type, there are closed Poisson embeddings

$$
\overline{\mathcal{W}}_{\mu}^{\nu} \subseteq \overline{\mathcal{W}}_{\mu}^{\lambda}
$$

whenever the following conditions hold:
(i) $\mu \leq \nu \leq \lambda$ with ν, λ dominant,
(ii) the "slice" $\overline{\mathcal{W}}_{\nu}^{\lambda}$ is good (conical)

This agrees with usual embedding in finite ADE types

- Explanation: Expect $\overline{\mathcal{W}}_{\nu}^{\lambda}$ transversal slice to $\overline{\mathcal{W}}_{\mu}^{\nu} \subseteq \overline{\mathcal{W}}_{\mu}^{\lambda}$, which should be conical by Kaledin

Main Theorem

- Construct $H_{*}^{G[[z]]}\left(\mathcal{R}_{G, N}\right) \rightarrow H_{*}^{G^{\prime}[[z]]}\left(\mathcal{R}_{G^{\prime}, N^{\prime}}\right)$ algebraically

Main Theorem

- Construct $H_{*}^{G[[z]]}\left(\mathcal{R}_{G, N}\right) \rightarrow H_{*}^{G^{\prime}[[z]]}\left(\mathcal{R}_{G^{\prime}, N^{\prime}}\right)$ algebraically
- Effect on quiver data:

Main Theorem

- Construct $H_{*}^{G[[z]]}\left(\mathcal{R}_{G, N}\right) \rightarrow H_{*}^{G^{\prime}[[z]]}\left(\mathcal{R}_{G^{\prime}, N^{\prime}}\right)$ algebraically
- Effect on quiver data:

Fundamental monopole operators

Fundamental monopole operators

- Monopole operators studied in physics: certain equivariant classes in $H_{*}^{G[[z]]}\left(\mathcal{R}_{G, N}, \mathbb{C}\right)$

Fundamental monopole operators

- Monopole operators studied in physics: certain equivariant classes in $H_{*}^{G[[z]]}\left(\mathcal{R}_{G, N}, \mathbb{C}\right)$
- Simplest cases give functions we call fundamental monopole operators (FMOs)

Fundamental monopole operators

- Monopole operators studied in physics: certain equivariant classes in $H_{*}^{G[[z]]}\left(\mathcal{R}_{G, N}, \mathbb{C}\right)$
- Simplest cases give functions we call fundamental monopole operators (FMOs)

Theorem (W.)

FMOs generate coordinate ring of $\overline{\mathcal{W}}_{\mu}^{\lambda}=\mathcal{M}_{C}(G, N)$, for any quiver

Fundamental monopole operators

- Monopole operators studied in physics: certain equivariant classes in $H_{*}^{G[[z]]}\left(\mathcal{R}_{G, N}, \mathbb{C}\right)$
- Simplest cases give functions we call fundamental monopole operators (FMOs)

Theorem (W.)

FMOs generate coordinate ring of $\overline{\mathcal{W}}_{\mu}^{\lambda}=\mathcal{M}_{C}(G, N)$, for any quiver

- FMOs are explicit rational functions, in certain birational coordinates:

$$
\sum_{\Gamma=\left(\Gamma_{i}\right)_{i \in 1}} \frac{\prod_{i \rightarrow j} \prod_{r \in \Gamma_{i}, s \notin \Gamma_{j}}\left(w_{j, s}-w_{i, r}\right)}{\prod_{r \in \Gamma_{i}, s \notin \Gamma_{i}}\left(w_{i, r}-w_{i, s}\right)} \prod_{r \in \Gamma_{i}} \mathrm{u}_{i, r}
$$

Proof of the theorem

- We show that in finite type, FMOs restrict to FMOs under

$$
\begin{gathered}
\overline{\mathcal{W}}_{\mu}^{\nu} \longleftrightarrow \overline{\mathcal{W}}_{\mu}^{\lambda} \\
\downarrow_{\sim}^{\sim} \\
\mathcal{M}_{C}\left(G^{\prime}, N^{\prime}\right) \cdots \\
\mathcal{M}_{C}(G, N)
\end{gathered}
$$

Proof of the theorem

- We show that in finite type, FMOs restrict to FMOs under

- In all types, we show that this ansatz defines a closed embedding (under the assumptions of the theorem)

Aside: Quantization

Aside: Quantization

- Coulomb branches admit deformation quantization:

$$
\mathcal{A}_{\hbar}=H_{*}^{G[[z]] \times \mathbb{C}^{\times}}\left(\mathcal{R}_{G, N}\right)
$$

Algebra over $H_{\mathbb{C}^{\times}}^{*}(p t)=\mathbb{C}[\hbar]$, with $\mathcal{A}_{\hbar} / \hbar \mathcal{A}_{\hbar} \cong \mathcal{A}$

Aside: Quantization

- Coulomb branches admit deformation quantization:

$$
\mathcal{A}_{\hbar}=H_{*}^{G[[z]] \times \mathbb{C}^{\times}}\left(\mathcal{R}_{G, N}\right)
$$

Algebra over $H_{\mathbb{C}^{\times}}^{*}(p t)=\mathbb{C}[\hbar]$, with $\mathcal{A}_{\hbar} / \hbar \mathcal{A}_{\hbar} \cong \mathcal{A}$

- For quivers: truncated shifted Yangians (Braverman-Finkelberg-Kamnitzer-Kodera-Nakajima-Webster-W.)

Aside: Quantization

- Coulomb branches admit deformation quantization:

$$
\mathcal{A}_{\hbar}=H_{*}^{G[[z]] \times \mathbb{C}^{\times}}\left(\mathcal{R}_{G, N}\right)
$$

Algebra over $H_{\mathbb{C}^{\times}}^{*}(p t)=\mathbb{C}[\hbar]$, with $\mathcal{A}_{\hbar} / \hbar \mathcal{A}_{\hbar} \cong \mathcal{A}$

- For quivers: truncated shifted Yangians (Braverman-Finkelberg-Kamnitzer-Kodera-Nakajima-Webster-W.)
- In general the embedding $\overline{\mathcal{W}}_{\mu}^{\nu} \subseteq \overline{\mathcal{W}}_{\mu}^{\lambda}$ does not quantize, without fine tuning some parameters involved \Longrightarrow geometric $H_{*}^{G[[z]]}\left(\mathcal{R}_{G, N}\right) \rightarrow H_{*}^{G^{\prime}[[z]]}\left(\mathcal{R}_{G^{\prime}, N^{\prime}}\right)$ should be subtle

Fundamental monopole operators, revisited

- Recall: for finite ADE type $\overline{\mathcal{W}}_{\mu}^{\lambda}$ has loop group description

Fundamental monopole operators, revisited

- Recall: for finite ADE type $\overline{\mathcal{W}}_{\mu}^{\lambda}$ has loop group description

Question

Fundamental monopole operators, revisited

- Recall: for finite ADE type $\overline{\mathcal{W}}_{\mu}^{\lambda}$ has loop group description

Question

What are the FMOs as functions, in loop group terms?

Fundamental monopole operators, revisited

- Recall: for finite ADE type $\overline{\mathcal{W}}_{\mu}^{\lambda}$ has loop group description

Question

What are the FMOs as functions, in loop group terms?

- Even for $\mathcal{N}_{\mathfrak{s l}_{n}}$, we don't know what they are!

Fundamental monopole operators, revisited

- Recall: for finite ADE type $\overline{\mathcal{W}}_{\mu}^{\lambda}$ has loop group description

Question

What are the FMOs as functions, in loop group terms?

- Even for $\mathcal{N}_{\mathfrak{s l}_{n}}$, we don't know what they are! Include many natural functions:

Fundamental monopole operators, revisited

- Recall: for finite ADE type $\overline{\mathcal{W}}_{\mu}^{\lambda}$ has loop group description

Question

What are the FMOs as functions, in loop group terms?

- Even for $\mathcal{N}_{\mathfrak{s l}_{n}}$, we don't know what they are! Include many natural functions:
(a) matrix entries of $X \in \mathcal{N}_{\mathfrak{s l}_{n}}$

Fundamental monopole operators, revisited

- Recall: for finite ADE type $\overline{\mathcal{W}}_{\mu}^{\lambda}$ has loop group description

Question

What are the FMOs as functions, in loop group terms?

- Even for $\mathcal{N}_{5 l_{n}}$, we don't know what they are! Include many natural functions:
(a) matrix entries of $X \in \mathcal{N}_{\mathfrak{s l}_{n}}$
(b) Gelfand-Tsetlin integrable system

Fundamental monopole operators, revisited

- Recall: for finite ADE type $\overline{\mathcal{W}}_{\mu}^{\lambda}$ has loop group description

Question

What are the FMOs as functions, in loop group terms?

- Even for $\mathcal{N}_{\mathfrak{s l}_{n}}$, we don't know what they are! Include many natural functions:
(a) matrix entries of $X \in \mathcal{N}_{\mathfrak{s l}_{n}}$
(b) Gelfand-Tsetlin integrable system
(c) More generally, coefficients of certain minors of $I+z^{-1} X$

Fundamental monopole operators, revisited

- Recall: for finite ADE type $\overline{\mathcal{W}}_{\mu}^{\lambda}$ has loop group description

Question

What are the FMOs as functions, in loop group terms?

- Even for $\mathcal{N}_{\mathfrak{s l}_{n}}$, we don't know what they are! Include many natural functions:
(a) matrix entries of $X \in \mathcal{N}_{\mathfrak{s l}_{n}}$
(b) Gelfand-Tsetlin integrable system
(c) More generally, coefficients of certain minors of $I+z^{-1} X$
- Motto: FMOs relevant to study of $\overline{\mathcal{W}}_{\mu}^{\lambda}$, even in finite types!

Thank you for your attention!

Thank you for your attention!

I refuse to answer that question on the grounds that I don't know the answer.

- Douglas Adams

