

- 1. Customer Lifetime Value
- 2. Insurance Context & Problem Statement
- 3. Contacts
- 4. Appendix (Experiment Details, Example & References)

Customer Lifetime Value

What is Customer Lifetime Value?

- Customer lifetime value (CLV or LTV) represents the **total expected profit** a company expects from a client throughout their entire relationship
- Used in multiple industries in order to evaluate the **financial value of a customer** and better tailor the approach of the company towards customers (pricing, marketing, etc.)
- Customer lifetime value is separated in three core items:
 - 1. Acquisition of a new client
 - 2. **Retention** of an existing client/product
 - 3. **Expansion** of the products of the client (cross-selling)

Show me the math!

- S_t is the state of a client at time t
 - S_t^P represents what **product** is bought by the client at time t
 - S_t^C is the **characteristics** of the client/products at time t
 - $S_t = (S_t^P, S_t^C)$
- **Cost**(**S**_t) is the cost at time t
- $Price(S_t)$ is the price proposed at time t

• $\mathbb{P}(S_{t+1} = s' | S_t = s)$ is the transition probability of changing from state s to state s'

Show me the math!

- **Profit**(S_t) = Price(S_t) Cost(S_t)
- γ is a discounting factor to account for time-value of money
- $CLV(S_0 = s)$
 - = $\mathbb{E}(\sum_{t=1}^{\infty} \gamma^t \cdot \operatorname{Profit}(S_t) \mid S_0 = s)$
 - = $\sum_{\forall s' \in \mathbb{S}} \mathbb{P}(S_1 = s' | S_0 = s) \cdot \gamma^1 \cdot (\operatorname{Profit}(S_1 = s') + CLV(S_1 = s'))$

* It assumes that states and time are discrete. It excludes the current state profit but could be included.

Insurance Context & Problem Statements

Insured State

- *S*^{*P*} : The state of an insured would represent what insurance product the client has and which is insured with the company
- *S*^{*C*}: The **insured and the product's characteristics** would also be represented in the state of the insured
- Note that the above definition defined the states for a multi-product setting
- However, if the focus is on the acquisition/retention problem alone, the state can be defined for a single product

Insured Cost & Price

- The **cost** of insuring a product is the sum of the **claim losses** during a period and the **expenses** generated
- Claims losses:
 - Stochastic by nature
 - For the sake of this workshop, **expected claims losses** will be given
- Expenses:
 - Partially stochastic and deterministic
 - Expected expenses will be given as well
 - Expenses will be assumed to be a **percentage of the price**
- The **price** comes from a pricing algorithm set by the insurance company to consider **business objectives**

Insured State Transition

• The state transition probability can be simplified to:

$$\mathbb{P}(S_{t+1} = s' | S_t = s) \approx \mathbb{P}\left(S_{t+1}^P = s'^P | S_t = s\right) \cdot \mathbb{P}\left(S_{t+1}^C = s'^C | S_t^C = s^C\right)$$

- $\mathbb{P}(S_{t+1}^{P} = s'^{P} | S_{t} = s)$ is the probability of acquiring a product or keeping an existing product
- $\mathbb{P}(S_{t+1}^{C} = s'^{C} | S_{t}^{C} = s^{C})$ is the characteristics transition probability
- A model that calculates $\mathbb{P}(S_{t+1}^{P} = s'^{P} | S_{t} = s)$ will be provided but we need your help on how we can calculate $\mathbb{P}(S_{t+1}^{C} = s'^{C} | S_{t}^{C} = s^{C})!$

Insured Customer Lifetime Value

- Assuming Problem #1 is solved, **how can we calculate** efficiently the CLV (acquisition/retention) of a client?
 - $CLV(S_0 = s) = \mathbb{E}(\sum_{t=1}^{\infty} \gamma^t \cdot \operatorname{Profit}(S_t) \mid S_0 = s)$
 - Should we use Monte-Carlo estimation, recursive approaches, etc.?

• So far, the expansion (cross-selling) component was excluded from the CLV calculation, **how can we adapt the previous formulation to integrate the expansion value?**

Contacts

Appendix

Experiment Details - Problem #1

How can we calculate $\mathbb{P}(S_{t+1}^{C} = s'^{C} | S_{t}^{C} = s^{C})$?

- A single product is defined by the key of:
 - POLICY_NUMBER × VEHICLE_NUMBER
- A year is defined by:
 - INFORCE_YEAR
- The state characteristics is all the features listed in the dataframe (excluding POLICY_NUMBER, VEHICLE_NUMBER & INFORCE_YEAR)

Experiment Details - Problem #2

How can we calculate efficiently the CLV (acquisition/retention)?

- A python script (models.py) defines the different profit calculation and the retention/acquisition probability
- You can create your own script starting from this to try to calculate CLV
- In model.py, an empty function called aging can be created to generate trajectories

Experiment Details - Problem #3

How can we integrate the expansion value in CLV calculation?

- For this workshop, a new car within a policy would be considered an expansion
- The client in the dataset is defined by the POLICY_NUMBER
- The number of vehicles can be assess by looking at the evolution of VEHICLE_NUMBER for a single POLICY_NUMBER
 - Who will likely change car or get a new one?
 - What is the new car that is more likely to be generated?

CLV Calculation - Example

References

- 1. Haenlein, Michael & Kaplan, Andreas & Beeser, Anemone. (2007). A Model to Determine Customer Lifetime Value in a Retail Banking Context. European Management Journal. 25. 221-234. 10.1016/j.emj.2007.01.004.
- 2. Chang, Wen & Chang, Chen & Li, Qianpin. (2012). Customer Lifetime Value: A Review. Social Behavior and Personality: an international journal. 40. 10.2224/sbp.2012.40.7.1057.
- Gupta, Sunil & Hanssens, Dominique & Hardie, Bruce & Kahn, Wiliam & Kumar, V. & Lin, Nathaniel & Ravishanker, Nalini & Sriram, S.. (2006). Modeling Customer Lifetime Value. Journal of Service Research - J SERV RES. 9. 139-155.10.1177/1094670506293810.
- 4. Donkers, Bas & Verhoef, Peter & Jong, Martijn. (2007). Modeling CLV: A test of competing models in the insurance industry. Quantitative Marketing and Economics. 5. 163-190. 10.1007/s11129-006-9016-y.

Thank you!