Estimation of the Customer Life Value

August 25, 2023

Insurance context

Providing Insights in a Complex Industry:

- ▶ Insurance operations involve numerous variables, from risk assessment to customer behavior.
- **Customer Lifetime Value** (or CLV) offers a comprehensive metric encompassing these factors.

Efficient Decision-Making:

- ▶ CLV consolidates diverse information, streamlining decision processes.
- Enables optimized resource allocation, customer engagement, and tailored product offerings.

Introduction	Method	Discussion
⊙●	oooo	00

Customer Life Value (CLV)

- CLV represents the total expected profit a company expects from a client throughout their entire relationship.
- ▶ Used in multiple industries in order to evaluate the financial value of a customer and better tailor the approach of the company towards customers (pricing, marketing, etc.)

$$CLV(a) = \mathbb{E}\left[\sum_{t=1}^{T} \gamma^t Profit(S_t) \mid S_0 = a\right]$$

where:

- γ is a discounting factor to account for time-value of money;
- $Profit(S_t)$ is a function that gives the expected profit from a client given their state S_t .

Introduction	Method	Discussion
00	0000	00

The model

- ▶ Problem: how to model S_t ?
- ▶ Natural to think of $\{S_t\}$ as a sequence of random variables.
- ▶ We assume the Markov property for simplification:

$$\mathbb{P}(S_{t+1} = s \mid S_t, S_{t-1}, \dots, S_0) = \mathbb{P}(S_{t+1} = s \mid S_t)$$

We used a method from Haenlein et al. (2007) that involves 3 steps:

- 1. Fit a regression tree on the data to identify groups (i.e. the states of the Markov chain) with the profit as a target variable;
- 2. Estimate the transition probabilities between each group/state;
- 3. Compute the CLV by Monte Carlo.

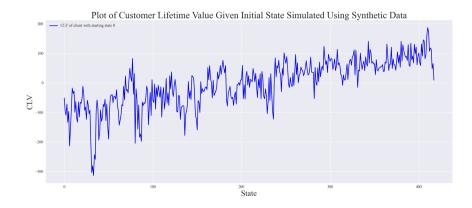
Introduction	Method	Discussion
oo	0000	00

Details

ID	F	eature	es	Profit	Time		Group
טו	X1	X2	Х3	Profit	Time		Group
Α	13	14	9	250	0	Grouping by a	1
В	18	16	4	570	0	regression tree	2
С	32	27	2	-50	0		0
А	23	16	11	50	1		0
в	43	8	2	-100	1		1
С	12	22	7	240	1		0

- Step 1: Combine data from all time steps into a single dataset (we assume time independency) and fit a regression tree;
- Result : that creates a new feature Group (there is a sense of order by profit). We can "forget" the other features from now on.

Introduction	Method	Discussion
00	0000	00


Details (continued)

- Step 2: Build the transition matrix with empirical transition probabilities (assuming time homogeneity);
- ▶ Step 3: Compute the CLV by simulating Markov chains (Monte Carlo method).

Introduction	Method	Discussion
00	0000	00

Results

▶ The method does function on synthetic data. It can categorize clients into controlable number of groups and assign a CLV for each group.

<ロト 4 回 ト 4 三 ト 4 三 ト 三 - の Q (P)</p>

Introduction Method Disc	cussion
00 0000 •0	

Other approaches

- ▶ Beta-geometric/NBD Model: in the context of marketing or online retail, this model was used to estimate the CLV using a conjunction of Pareto/NBD model and Gamma-Gamma model, in Jasek, Pavel, et al. (2018).
- ▶ Deep Learning approach: a master's thesis was written which attempted to apply deep learning to calculate CLV with a P&C insurance company. Marta Jablecka (2020)

Introduction oo	Method 0000	Discussion 0●

References

- Haenlein, Michael & Kaplan, Andreas & Beeser, Anemone. (2007). A Model to Determine Customer Lifetime Value in a Retail Banking Context. European Management Journal. 25. 221-234. 10.1016/j.emj 2007.01.004.
- Jasek, P., Vrana, L., Sperkova, L., Smutny, Z., & Kobulsky, M. (2018, January). Modeling and application of customer lifetime value in online retail. In Informatics (Vol. 5, No. 1, p. 2). MDPI.
- Jablecka, Marta (2020). Modelling CLV in the Insurance Industry Using Deep Learning Methods (Master's Thesis, KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES)