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The problem
@00

Introduction

Given time series data {t;, z;}, online learning methods predict
values at future time steps given only the very last samples as
input.
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Our goal is to develop a general method to automate the selection
of the learning rate.
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The problem
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Offline v. Online

o Offline learning: use a training dataset Dy = {x;,y; }1<i<m to
train a model fy(x).

@ To determine the hyperparameters #, solve an optimization
problem on the loss L:

0" = arg mein L(0)
using a gradient descent:
0k = ak—l - aVﬁ(@k_l)

where the learning rate « has to be tuned.

@ How to choose @ automatically while learning on-the-fly?
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The problem
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The specific problem statement
@ Train an initial model on a data set Dy of M data,
@ Keep training our model on N < M incoming data
'on-the-fly’,
© Use the updated model to predict either the following point or
use P successive predictions to predict the P next points.
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Questions raised:
@ Model? Loss function?
e Updating procedure for a?
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Theoretical Background
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Multilayer Perceptron (MLP)
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Figure: Example of a multilayer perceptron
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Theoretical Background
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Long Short Term Memory (LSTM)

@ LSTM networks are a type of recurrent neural network (RNN)
that help to carry over information over many timesteps [1][2].
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Figure: LSTM units arranged in series
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Proposed solution
.

The adaptive learning rate: Hypergradient Descent [3] and
ADAM [4]

@ Learning rate update
o = ag-1+ BVL(Ok—1)VL(Ok—2)

@ This update is a version of gradient descent for « as
ap = Qp_1 — ﬁ%. Apply the chain rule to compute
AL(O) 99,
Gt = VL(0e)

@ There is an analogous update rule for the ADAM optimizer in
which learning parameter « is updated as above.
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Jena Climate data set

Jena Climate temperature data set
Temperatures at the Max Planck Institute from 2009 to 2016.
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Figure: Splitting of the Jena Climate data set

We split this data set into a training set, a validation set to
validate the decrease of the loss, and a test set for prediction.
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Numerical results
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Jena Climate data set

One-step predictions on the Jena data set using a MLP
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Figure: Mean residual of -0.78944.

Online time-series forecasting with adaptive learning rates




Numerical results
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Jena Climate data set

Twenty-step predictions on the Jena data set using a MLP
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Figure: Predicting over 20 steps with mean residue -1.3150.
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Numerical results
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Jena Climate data set

One-step predictions on the Jena data set using a LSTM

Predictions vs Reality
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Figure: Mean residual of 0.012199.
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Numerical results
000000

Jena Climate data set

Twenty-step predictions on the Jena data set using a
LSTM

Predictions vs Reality

ar AN ™
ALY PN N M

[
5125

Temperat
=
~ o
w o
————
{
b .

v
=]

—— True at t+20
2.5 ~—~ pred att+20 |
T I
0 100 200 300 400 500
Time (index)

Figure: Predicting over 20 steps with mean residue -0.14160.
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Numerical results
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Jena Climate data set

Comparison of losses with /without HD
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Numerical results
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Coal power plant data set

A real-world data set

This data set is extracted from a coal-fired power plant, over 10
days with a measurement each minute.
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The data is pre-normalized, among the 12 features available, we
chose to focus on the main flame intensity.
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Numerical results
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Coal power plant data set

One-step predictions on the coal burner data set: MLP
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Figure: The one step predictions using a MLP
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Numerical results
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Coal power plant data set

One-step predictions on the coal burner data set: LSTM

Predictions vs Reality
045

Temperature °C

1000 1500
Time (index)

Figure: The one step predictions using a LSTM
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Numerical results
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Coal power plant data set

Comparison of losses with /without HD
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Dotted lines: with HD. Solid lines: without HD.
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Conclusion
°

Summary and directions for future work

@ We implemented a automatized method for modifying the
learning rate on-the-fly based on HyperGradient descent.

@ Our time-series LSTM could be improved so as to deal with
the erratic behaviour of the coal burner data set.
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