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Introduction
Given time series data {ti, xi}, online learning methods predict
values at future time steps given only the very last samples as
input.

Our goal is to develop a general method to automate the selection
of the learning rate.
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Offline v. Online

Offline learning: use a training dataset D0 = {xi, yi}1≤i≤M to
train a model fθ(x).
To determine the hyperparameters θ, solve an optimization
problem on the loss L:

θ∗ = arg min
θ

L(θ)

using a gradient descent:

θk = θk−1 − α∇L(θk−1)

where the learning rate α has to be tuned.
How to choose α automatically while learning on-the-fly?
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The specific problem statement
1 Train an initial model on a data set D0 of M data,
2 Keep training our model on N ≪ M incoming data

’on-the-fly’,
3 Use the updated model to predict either the following point or

use P successive predictions to predict the P next points.

Questions raised:
Model? Loss function?
Updating procedure for α?
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Multilayer Perceptron (MLP)

Figure: Example of a multilayer perceptron
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Long Short Term Memory (LSTM)

LSTM networks are a type of recurrent neural network (RNN)
that help to carry over information over many timesteps [1][2].

Figure: LSTM units arranged in series
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The adaptive learning rate: Hypergradient Descent [3] and
ADAM [4]

Learning rate update

αk = αk−1 + β∇L(θk−1)∇L(θk−2)

This update is a version of gradient descent for α as
αk = αk−1 − β

∂L(θk−1)
∂α . Apply the chain rule to compute

∂L(θk−1)
∂α = ∇L(θk−1)

∂θk−1

∂α .
There is an analogous update rule for the ADAM optimizer in
which learning parameter α is updated as above.
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Jena Climate data set

Jena Climate temperature data set
Temperatures at the Max Planck Institute from 2009 to 2016.

Figure: Splitting of the Jena Climate data set

We split this data set into a training set, a validation set to
validate the decrease of the loss, and a test set for prediction.
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Jena Climate data set

One-step predictions on the Jena data set using a MLP

Figure: Mean residual of -0.78944.
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Jena Climate data set

Twenty-step predictions on the Jena data set using a MLP

Figure: Predicting over 20 steps with mean residue -1.3150.
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Jena Climate data set

One-step predictions on the Jena data set using a LSTM

Figure: Mean residual of 0.012199.
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Jena Climate data set

Twenty-step predictions on the Jena data set using a
LSTM

Figure: Predicting over 20 steps with mean residue -0.14160.

Online time-series forecasting with adaptive learning rates 13/20



The problem Theoretical Background Proposed solution Numerical results Conclusion Acknowledgement References

Jena Climate data set

Comparison of losses with/without HD
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Coal power plant data set

A real-world data set
This data set is extracted from a coal-fired power plant, over 10
days with a measurement each minute.

The data is pre-normalized, among the 12 features available, we
chose to focus on the main flame intensity.
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Coal power plant data set

One-step predictions on the coal burner data set: MLP

Figure: The one step predictions using a MLP
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Coal power plant data set

One-step predictions on the coal burner data set: LSTM

Figure: The one step predictions using a LSTM
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Coal power plant data set

Comparison of losses with/without HD

Dotted lines: with HD. Solid lines: without HD.
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Summary and directions for future work

We implemented a automatized method for modifying the
learning rate on-the-fly based on HyperGradient descent.
Our time-series LSTM could be improved so as to deal with
the erratic behaviour of the coal burner data set.
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Thank you!
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