Online time-series forecasting with adaptive learning rates Proposed by Ericsson

Team Ericsson

August 25, 2023

Online time-series forecasting with adaptive learning rates

Contents

- 2 Theoretical Background
- O Proposed solution
- 4 Numerical results
 - Jena Climate data set
 - Coal power plant data set

5 Conclusion

The problem ●00			

Introduction

Given time series data $\{t_i, x_i\}$, online learning methods predict values at future time steps given only the very last samples as input.

Our goal is to develop a general method to automate the selection of the learning rate.

The problem ○●○			

Offline v. Online

- Offline learning: use a training dataset $D_0 = \{x_i, y_i\}_{1 \le i \le M}$ to train a model $f_{\theta}(x)$.
- To determine the hyperparameters θ, solve an optimization problem on the loss L:

$$\theta^* = \arg\min_{\theta} \mathcal{L}(\theta)$$

using a gradient descent:

$$\theta_k = \theta_{k-1} - \alpha \nabla \mathcal{L}(\theta_{k-1})$$

where the learning rate α has to be tuned.

• How to choose α automatically while learning on-the-fly?

The specific problem statement

- **(**) Train an initial model on a data set D_0 of M data,
- Use the updated model to predict either the following point or use P successive predictions to predict the P next points.

Questions raised:

- Model? Loss function?
- Updating procedure for α?

Online time-series forecasting with adaptive learning rates

Theoretical Background			
•0			

Multilayer Perceptron (MLP)

Figure: Example of a multilayer perceptron

Long Short Term Memory (LSTM)

• LSTM networks are a type of recurrent neural network (RNN) that help to carry over information over many timesteps [1][2].

Figure: LSTM units arranged in series

	Proposed solution		
	•		

The adaptive learning rate: Hypergradient Descent [3] and ADAM [4]

• Learning rate update

$$\alpha_k = \alpha_{k-1} + \beta \nabla \mathcal{L}(\theta_{k-1}) \nabla \mathcal{L}(\theta_{k-2})$$

- This update is a version of gradient descent for α as $\alpha_k = \alpha_{k-1} - \beta \frac{\partial \mathcal{L}(\theta_{k-1})}{\partial \alpha}$. Apply the chain rule to compute $\frac{\partial \mathcal{L}(\theta_{k-1})}{\partial \alpha} = \nabla \mathcal{L}(\theta_{k-1}) \frac{\partial \theta_{k-1}}{\partial \alpha}$.
- There is an analogous update rule for the ADAM optimizer in which learning parameter α is updated as above.

		Numerical results ●00000 ○000		
Jena Climate d	ata set			

Jena Climate temperature data set

Temperatures at the Max Planck Institute from 2009 to 2016.

Figure: Splitting of the Jena Climate data set

We split this data set into a training set, a validation set to validate the decrease of the loss, and a test set for prediction.

	Numerical results		
	00000		

One-step predictions on the Jena data set using a MLP

Figure: Mean residual of -0.78944.

		Numerical results		
lena Climate d	ata set			

Twenty-step predictions on the Jena data set using a MLP

Figure: Predicting over 20 steps with mean residue -1.3150.

	Numerical results 000000 0000		

One-step predictions on the Jena data set using a LSTM

	Numerical results 000000 0000		

Twenty-step predictions on the Jena data set using a LSTM

Figure: Predicting over 20 steps with mean residue -0.14160.

			Numerical results 00000● 0000			

Comparison of losses with/without HD

	Numerical results 000000 ●000		

A real-world data set

This data set is extracted from a coal-fired power plant, over 10 days with a measurement each minute.

The data is pre-normalized, among the 12 features available, we chose to focus on the main flame intensity.

Online time-series forecasting with adaptive learning rates

	Numerical results 000000 0●00		

One-step predictions on the coal burner data set: MLP

Figure: The one step predictions using a MLP

	Numerical results		
nt data set			

One-step predictions on the coal burner data set: LSTM

Figure: The one step predictions using a LSTM

	Numerical results ○○○○○○ ○○○●		

Coal power plant data set

Comparison of losses with/without HD

Dotted lines: with HD. Solid lines: without HD.

Summary and directions for future work

- We implemented a automatized method for modifying the learning rate on-the-fly based on HyperGradient descent.
- Our time-series LSTM could be improved so as to deal with the erratic behaviour of the coal burner data set.

		Acknowledgement •	

Thank you!

			References

References

- S. Hochreiter and J. Schmidhuber, "Long short-term memory," *Neural computation*, vol. 9, pp. 1735–80, Dec. 1997.
- B. Lindemann, T. Müller, H. Vietz, N. Jazdi, and M. Weyrich, "A survey on long short-term memory networks for time series prediction," *Procedia CIRP*, vol. 99, pp. 650–655, 2021, ISSN: 2212-8271.
- [3] A. G. Baydin, R. Cornish, D. M. Rubio, M. Schmidt, and F. Wood, "Online learning rate adaptation with hypergradient descent," in *International Conference on Learning Representations*, 2018.
- [4] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017. arXiv: 1412.6980 [cs.LG].