
Solution
proposal

Goal of generative model

Utility:

● Accuracy on learning task
● Global statistical properties

Privacy:

● Membership Inference Attack
● Attribute Inference Attack
● Reconstruction

TabDDPM

Usefulness of TabDDPM

Privacy

Q1 problem statement

● Training set: dataset that contains labeled real data used to train TabDPPM
and synthetic data

● Test set: real data used to train TabDPPM and synthetic data.
● Task: Binary classification -> discriminate between synthetic data generated

by TabDPPM and real data used to train TabDPPM.
● Intuition: If unable to discriminate between synthetic and real data then we

expect TabDPPM to have a high machine learning efficiency.
● Can also be used to measure privacy as the distinguishability between real

and synthetic data
● Goal: Interpret the classifier model to gain insights on potential methods that

could lead to improvements in machine learning efficiency for TabDPPM.

Classification model performance

Classification
Models

Raw Categorical
Data

Encoded
Categorical Data

Encoded
Categorical Data +
Scaled Numerical

Data

Logistic Regression N/A N/A 57%

XGBoost 86% 85% 75%

Random Forest N/A 75% N/A

Feature importance

Difficult feature to recreate

Difficult features to recreate (cont)
Features AUC

All features 86%

["euribor_3m", "jour_semaine",
"indice_consommation", "nbr_employes"]

85%

['age', 'statut_marital', 'education',
'en_defaut', 'proprietaire',
’'pret_consommation', 'contact', 'mois',
'duree', 'nbr_actuel', 'njours',
'nbr_precedent', 'resultat_precedent',
'souscription']

55%

What makes a feature hard to learn?
Important numerical features

Unimportant numerical features

NaN Values

Potential future improvement

● Different preprocessing step for numerical features -> particularly for
multimodal distributions

● Different method to encode NaNs in numerical features
● Tuning process guided by machine learning efficiency + lambda (membership

inference attack)

Q2 problem statement
Research question : Is it possible to reconstruct a real-world observation starting
from synthetic data?

The problem consisted on predicting labels for a real -incomplete- test set (%25 of
data missing). The training set was complete but synthetic.

Two ideas were considered:

● An imputation method for imputing the missing values.
● Training models with training data injected with missing values.

The baseline performance

We explored several classifiers (SVM, Logistic Regression, XGBoost, KNN,
lightGBM).

We evaluate the performance of several models on a validation partition:

We observe around a 5% reduction in
performance due to the missing data.

Model Accuracy - validation Acc. Complete Data

Majority Label 0.60082

KNN 0.73297 0.75926

SVM 0.73354 0.76235

XGBoost 0.71914 0.75720

lightGBM 0.71296 0.77058

Injecting missing data in the training set

● We analyzed the distribution of missing values in
the test set and inject missing values in the
training set following the same distribution.

● Intuition: the model will learn to classify in
scenarios with incomplete data.

● We can inject the same noise in a subset of the
train set to get a validation partition.

Train data Incomplete
train data

Null injectionseed i

Classification
model

Incomplete
test data

Test Label
predictions

● Issue: The injection of missing values is random and some configurations may be
better than others.

● This can be addressed through a ensemble of models trained using different
configurations of incomplete train data. We do this by varying the seed for the null
injection.

Train data

Incomplete
train data 1

Null injectionseed 0

Classification
model 0

Incomplete
test data

Test Set
prediction

probabilities (0)

Incomplete
train data 1

Null injectionseed 1

Classification
model 1

Incomplete
test data

Test Set
prediction

probabilities (1)

Incomplete
train data 1

Null injectionseed 2

Classification
model 2

Incomplete
test data

Test Set
prediction

probabilities (2)

Soft Voting
Mechanism

Test Set
Predictions

MICE imputation

1. Impute missing values in each feature with temporary data derived from the
non-missing values available for that variable (example, mean).

2. Remove the temporary data for a given feature and regress it using the other
features that we do have (or that we have “imputed”)

3. Use the fitted regression model to predict the missing values in that feature.
4. Repeat 2-3 iteratively for each of the variables that still have missing values.
5. Perform several 1-4 cycles.

🐭 Issue with MICE: there is some variation depending on the order the features
are imputed in the iterations. (the random seed)

We propose a Multi-MICE approach that uses several MICE-imputed versions of
the test set to be predicted by a given model, the final label predictions are
generated through a soft-voting mechanism over the predictions on the test .

Train data

Set of
prediction
probabilities

Test Set
Predictions

Incomplete
test data

Test Set
prediction

probabilities (1)

Imputed
test data

MICE-1

Incomplete
test data

Test Set
prediction

probabilities (0)

Imputed
test data

MICE-0

Incomplete
test data

Test Set
prediction

probabilities (2)

Imputed
test data

MICE-2

Classification
model

Soft Voting
Mechanism

Combining both approaches

● These two approaches can be easily combined by simply replacing the
classifiers in the Null Injection ensemble with multi-MICE blocks

Multi-MICE
classifier

Train data

Incomplete
train data 1

Null injectionseed 0

Multi-MICE
classifier 0

Incomplete
test data

Test Set
prediction

probabilities (0)

Incomplete
train data 1

Null injectionseed 1

Multi-MICE
classifier 1

Incomplete
test data

Test Set
prediction

probabilities (1)

Incomplete
train data 1

Null injectionseed 2

Multi-MICE
classifier 2

Incomplete
test data

Test Set
prediction

probabilities (2)

Soft Voting
Mechanism

Test Set
Predictions

 Experimental results on validation set

Model Method
Accuracy -
validation

%
improvement

SVM none 0.73297 0.000

SVM+XGBoost+GaussianNB+lightGBM None 0.74332 1.412

SVM null injection 0.7737 5.552

SVM multi-MICE 0.7634 4.148

SVM
null injection +
multi-MICE 0.7757 5.832

Experimental results on test set

Model Method
Accuracy -
validation

%
improvement

SVM none 0.7063 0.000

SVM+XGBoost+GaussianNB+lightGBM none 0.7222 2.248

SVM null injection 0.7460 5.619

SVM multi-MICE 0.7698 8.990

SVM
null injection +
multi-MICE 0.7619 7.866

SVM+XGBoost+KNN
null injection +
multi-MICE 0.7937 12.361

Conclusion on Q2 problem

● We observe that it is possible to reconstruct to some extent some features of
a real-world observation with only synthetic data as training.

● Through MICE and Null-Injection in the training dataset we dampen the
decrease originated to the missing features in the test set.

