

Optimizing Cargo
Capacity Decisions Using
Data Science

Air Canada Cargo – Commercial Division Use Case

Data Science team, Air Canada Cargo

**2025-06-02** 



## **Agenda**

- 1 Welcome & Air Canada Cargo Connect
- Business Context & Key Challenges
- What You'll Be Predicting and Building
- 4 What Data Will You Use ?





"Imagine a world where bookings are free... until the plane leaves. No commitment, no guarantee. That's how air cargo works. So how do we plan with confidence in a world of uncertainty? That's where you come in."

## **Business Context**

The Challenge

Cargo bookings are free until flown — creating major uncertainty for the Capacity Management team.

#### The Risk

Last-minute no-shows, rebooking, or cancellations leave space unused, and revenue lost.

#### The Need

We must prioritize high-impact flights and reliable customers to minimize disruption.

#### The Opportunity

Data science can transform flight and customer data into daily decision support tools.

**Key statement from Capacity Team** 

## **Data Science**

Team

#### What I Do Every Day

- 1. Monitor flight capacity curves
- 2. Flag **critical flights** for intervention
- 3. Evaluate customer reliability
- 4. Decide when to overbook or bump
- 5. Coordinate with Sales & Ops

#### ▲ Daily Challenges

'Bookings are **free** — we earn only if customers show up" "No-shows, late cancellations, and last-minute rebookings disrupt plans" "I need fast, clear insights to avoid losses"

#### What We Need to Deliver

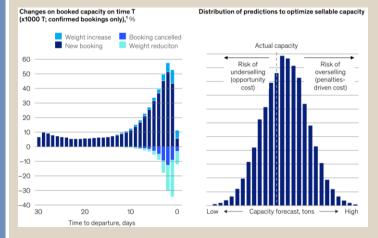
- 1. A way to **prioritize flights** based on risk and revenue impact
- 2. A method to **score customer** reliability (who's likely to show up?)
- 3. A system to flag risky bookings (no-shows, late cancellations, rebooking)

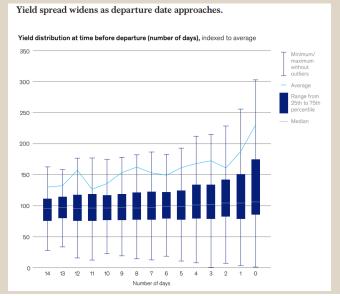
#### How We Help

Turn complex data into daily, actionable insight

Provide **early warnings** to prevent last-minute surprises

Automate **decision support** so they can act fast — not guess







## What You'll Be Predicting and Building

Your Goal is to help the Capacity Management team **prioritize flights and customers** by combining **profiling** and **prediction** at the Booking-Flight level

#### What You'll Do:



## **Flight Potential**

Classify flights based on frequency, capacity tightness, and yield potential

Which flights are "highstakes" and can't afford errors?



## **Customer Reliability**

Analyze past behavior to determine reliability

Who shows up consistently? Who often cancels or rebooks?



## **Booking-Flight Risk Prediction**

For each booking segment (booking + flight), predict:

- No-show probability
- Late cancellation risk
- Last-minute rebooking risk
- Operational bump risk

Which bookings are most likely to disrupt operations?



# What Data Will You Use?

You'll work with **5 structured tables**, covering over **29 million rows** of historical data. Each one offers a different perspective on flights, bookings, and customer behavior.

### What's Already Done?

- ✓ Data Cleaning
- ✓ Event Labeling
- ✓ Dimensional Aggregation

#### What You Need to Do?

Use this preapred dataset to:

- Profile flights & Customers
- Predict risk of disruption at Booking-Flight level
- Recommend prioritization Strategies based on insights

| Table Name                         | Description                                                            | Volume (in millions) |
|------------------------------------|------------------------------------------------------------------------|----------------------|
| Flight Curve                       | Daily evolution of available capacity per flight                       | 1.84 M               |
| Booking Flight Curve               | Daily evolution of bookings per flight segment                         | 17.82 M              |
| Flight Performance                 | Metrics on flown cargo, load factor, Show rates, No show patterns, ect | 0.16 M               |
| Booking Flight Performance         | Booking-level behavior (show up, flown weight, disruptions)            | 2.61 M               |
| Customer Station OD<br>Performance | Aggregated customer behavior per origin-destination                    | 6.56 M               |



