
Joint work with Hanyang Li (UC Berkeley) and Jake Roth (University of Minnesota)

Nonsmooth Optimization:
Stable Descent and Sparsity Preservation

Ying Cui
Department of Industrial Engineering and Operations Research

University of California, Berkeley

Nonsmooth functions

• A locally Lipschitz continuous function is differentiable almost everywhere

• Nonsmooth functions:

• gradients not continuously vary (at the kinks)

• second derivatives grow unboundedly

• ``Smoothing functions’’ may still suffer from unstable gradients when the
smoothing parameter is very small

Nonsmooth optimization

``…Unfortunately, there is no clear-cut between functions
that are smooth (whence the field application such
algorithms) and functions that are not (whence requiring
methods from nonsmooth optimization)…

…A sound algorithm for convex minimization should
therefore not ignore its parents…’’

 from the monograph Convex Analysis and Minimization Algorithms

Nonsmooth optimization

Part 1: Stable Descent Directions
 when the function is also nonconvex

Part 2: Benefit from Nonsmoothness
 if the (sparsity) structure is properly preserved

Stable descent directions

gx := argmin
∥d∥2=1

f′ (x; d) = {−
v

∥v∥2
: v = argmin

v∈∂ f(x)
∥v∥}

• When is smooth,
f gx = − ∇f(x)/∥∇f(x)∥2

If is convex, steepest descent direction at f x

Stable descent directions

gx := argmin
∥d∥2=1

f′ (x; d) = {−
v

∥v∥2
: v = argmin

v∈∂ f(x)
∥v∥}

• When is smooth,

• When is nonsmooth at , is discontinuous

 Think about near

f gx = − ∇f(x)/∥∇f(x)∥2

f x gx

f(x) = max{f1(x), f2(x)} f1(x) = f2(x)

If is convex, steepest descent direction at :f x

Stable descent directions

• When is smooth,

• When is nonsmooth at , is discontinuous

 Think about near

— unstable (zigzag phenomenon)

— may converge to non-stationary points (even with exact line search)

f gx = − ∇f(x)/∥∇f(x)∥2

f x gx

f(x) = max{f1(x), f2(x)} f1(x) = f2(x)

If is convex, steepest descent direction at :f x

gx := argmin
∥d∥2=1

f′ (x; d) = {−
v

∥v∥2
: v = argmin

v∈∂ f(x)
∥v∥}

Stable descent directions

• When is smooth,

• When is nonsmooth at , is discontinuous

 Think about near

— unstable (zigzag phenomenon)

— may converge to non-stationary points (even with exact line search)

f gx = − ∇f(x)/∥∇f(x)∥2

f x gx

f(x) = max{f1(x), f2(x)} f1(x) = f2(x)

If is convex, steepest descent direction at :f x

• Improvement: gx ⟶ ??stablize in x

gx := argmin
∥d∥2=1

f′ (x; d) = {−
v

∥v∥2
: v = argmin

v∈∂ f(x)
∥v∥}

Goldstein -subdifferential ϵ ∂G
ϵ f(x) := conv{ ⋃

∥z−x∥≤ϵ

∂ f(z)}

1. Goldstein-type methods

Stable descent directions

Idea: -neighborhood of stabilizes the directionϵ xk

Goldstein -subdifferential
ϵ ∂G
ϵ f(x) := conv{ ⋃

∥z−x∥≤ϵ

∂ f(z)}
xk+1 = xk−ϵ

gk

∥gk∥
with gk := argmin

v∈∂G
ϵ f(xk)

∥v∥

1. Goldstein-type methods

Stable descent directions

Idea: -neighborhood of stabilizes the directionϵ xk

Goldstein -subdifferential
ϵ ∂G
ϵ f(x) := conv{ ⋃

∥z−x∥≤ϵ

∂ f(z)}
xk+1 = xk−ϵ

gk

∥gk∥
with gk := argmin

v∈∂G
ϵ f(xk)

∥v∥

1. Goldstein-type methods

Practical issue: computation of gk

Stable descent directions

 Gradient Sampling [Burke, Lewis, Overton ’02], [Burke, Lewis, Overton ’05],
[Kiwiel ’07], [Curtis and Que ’13],] [Burke et.al.2020]

 INGD [Zhang, Lin, Jegelka, Sra, Jadbabaie ’20],
 NTD [Davis, Jiang ’23], …

⟶approx.

Idea: -neighborhood of stabilizes the directionϵ xk

Goldstein -subdifferential ϵ ∂G
ϵ f(x) := conv{ ⋃

∥z−x∥≤ϵ

∂ f(z)}

1. Goldstein-type methods

Stable descent directions

Idea: -neighborhood of stabilizes the directionϵ xk

2. Bundle-type methods

“Bundle”: subgradients & function values over past iterations

 {v1 ∈ ∂ f(x1), v2 ∈ ∂ f(x2), ⋯, vk ∈ ∂ f(xk)}

{ f(x1), f(x2), ⋯, f(xk) }

Idea: -neighborhood of stabilizes the directionϵ f(xk)

1. Goldstein-type methods

A unified interpretation

Idea: -neighborhood of stabilizes the directionϵ xk

2. Bundle-type methods

Idea: -neighborhood of stabilizes the directionϵ f(xk)

Sk = ∂ϵk
f(xk) = {v ∣ f(z) ≥ f(xk) + v⊤(z − xk)−ϵk , ∀z}

xk+1 = xk − αk ⋅ gk with gk := argmin
v∈Sk

∥v∥

Steepest descent method: Sk = ∂ f(xk)

Sk = ∂G
ϵk

f(xk) = conv{ ⋃
∥z−xk∥≤ϵk

∂ f(z)}

if is convexf

1. Goldstein-type methods

A unified interpretation

Idea: -neighborhood of stabilizes the directionϵ xk

2. Bundle-type methods

Idea: -neighborhood of stabilizes the directionϵ f(xk)
Sk = ∂ϵk

f(xk) = {v ∣ f(z) ≥ f(xk) + v⊤(z − xk)−ϵk , ∀z}

xk+1 = xk − αk ⋅ gk with gk := argmin
v∈Sk

∥v∥

Steepest descent method: Sk = ∂ f(xk)

Sk = ∂G
ϵk

f(xk) = conv{ ⋃
∥z−xk∥≤ϵk

∂ f(z)}

if is convexf

Stable descent directions combine (sub)gradients in some “neighborhood”

 A similar story for variance reduction / momentum in stochastic optimization

need

1. Goldstein-type methods

Stable descent directions

Idea: -neighborhood of stabilizes the directionϵ xk

2. Bundle-type methods

Idea: -neighborhood of stabilizes the directionϵ f(xk)

Sk = ∂ϵk
f(xk) = {v ∣ f(z) ≥ f(xk) + v⊤(z − xk)−ϵk , ∀z}

xk+1 = xk − αk ⋅ gk with gk := argmin
v∈Sk

∥v∥

Sk = ∂G
ϵk

f(xk) = conv{ ⋃
∥z−xk∥≤ϵk

∂ f(z)}

if is convexf

Almost impossible to compute (deterministically)

1. Goldstein-type methods

Stable descent directions

Idea: -neighborhood of stabilizes the directionϵ xk

2. Bundle-type methods

Idea: -neighborhood of stabilizes the directionϵ f(xk)

Sk = ∂ϵk
f(xk) = {v ∣ f(z) ≥ f(xk) + v⊤(z − xk)−ϵk , ∀z}

xk+1 = xk − αk ⋅ gk with gk := argmin
v∈Sk

∥v∥

Sk = ∂G
ϵk

f(xk) = conv{ ⋃
∥z−xk∥≤ϵk

∂ f(z)}

if is convexf

Almost impossible to compute (deterministically)

Only well understood (complexity & convergence rate)
for convex optimization

1. Goldstein-type methods

Stable descent directions

Idea: -neighborhood of stabilizes the directionϵ xk

2. Bundle-type methods

Idea: -neighborhood of stabilizes the directionϵ f(xk)

Sk = ∂ϵk
f(xk) = {v ∣ f(z) ≥ f(xk) + v⊤(z − xk)−ϵk , ∀z}

xk+1 = xk − αk ⋅ gk with gk := argmin
v∈Sk

∥v∥

Sk = ∂G
ϵk

f(xk) = conv{ ⋃
∥z−xk∥≤ϵk

∂ f(z)}

if is convexf

Almost impossible to compute (deterministically)

Only well understood (complexity & convergence rate)
for weakly convex optimization

Not imply each other

1. Goldstein-type methods

Idea: -neighborhood of stabilizes the directionϵ xk

2. Bundle-type methods

Idea: -neighborhood of stabilizes the directionϵ f(xk)

Sk = ∂ϵk
f(xk) = {v ∣ f(z) ≥ f(xk) + v⊤(z − xk)−ϵk , ∀z}

Sk = ∂G
ϵk

f(xk) = conv{ ⋃
∥z−xk∥≤ϵk

∂ f(z)}

if is convexf

Almost impossible to compute (deterministically)

Only well understood (complexity & convergence rate)
for weakly convex optimization

Not imply each other

Abstract theory & new construction
for

stable descent methods of nonsmooth optimization?

A map is a descent-oriented -subdifferential for if

(G1) Outer jointly limit in stays in the Clarke subdifferential:

(G2) Separate limits yield the minimal norm subgradient:

G : ℝn × (0,∞) ⇉ ℝm ϵ f

(x, ϵ)

lim sup
ϵ↓0, x→x̄

G(x, ϵ) ⊂ ∂ f(x̄)

lim
ϵ↓0 (lim sup

x→x̄
G(x, ϵ)) = argmin{∥v∥ ∣ v ∈ ∂ f(x̄)}

Abstract theory of stable descent

``Gradient consistency’'

A map is a descent-oriented -subdifferential for if

(G1) Outer joint limit in stays in the Clarke subdifferential:

(G2) Separate limits yield the minimal norm subgradient:

G : ℝn × (0,∞) ⇉ ℝm ϵ f

(x, ϵ)

lim sup
ϵ↓0, x→x̄

G(x, ϵ) ⊂ ∂ f(x̄)

lim
ϵ↓0 (lim sup

x→x̄
G(x, ϵ)) = argmin{∥v∥ ∣ v ∈ ∂ f(x̄)}

Abstract theory of stable descent

steepest descent direction violates (G2)G : (x, ϵ) ↦ argmin{∥v∥ ∣ v ∈ ∂ f(x)}

stability in x

descent

A map is a descent-oriented -subdifferential for if

(G1) Outer joint limit in stays in the Clarke subdifferential:

(G2) Separate limits yield the minimal norm subgradient:

G : ℝn × (0,∞) ⇉ ℝm ϵ f

(x, ϵ)

lim sup
ϵ↓0, x→x̄

G(x, ϵ) ⊂ ∂ f(x̄)

lim
ϵ↓0 (lim sup

x→x̄
G(x, ϵ)) = argmin{∥v∥ ∣ v ∈ ∂ f(x̄)}

Abstract theory of stable descent

The framework covers:

Goldstein direction:

Bundle direction (when is convex):

Gradient of Moreau envelope (when is convex): with

G : (x, ϵ) ↦ argmin{∥v∥ ∣ v ∈ ∂G
ϵ f(x)}

f G : (x, ϵ) ↦ argmin{∥v∥ ∣ v ∈ ∂ϵ f(x)}
f G : (x, ϵ) ↦ ∇eϵ f(x) eϵ f(x) := inf

z
{f(z) + ∥z − x∥2/(2ϵ)}

A map is a descent-oriented -subdifferential for if

(G1) Outer joint limit in stays in the Clarke subdifferential:

(G2) Separate limits yield the minimal norm subgradient:

G : ℝn × (0,∞) ⇉ ℝm ϵ f

(x, ϵ)

lim sup
ϵ↓0, x→x̄

G(x, ϵ) ⊂ ∂ f(x̄)

lim
ϵ↓0 (lim sup

x→x̄
G(x, ϵ)) = argmin{∥v∥ ∣ v ∈ ∂ f(x̄)}

Abstract theory of stable descent

Asymptotic convergence: With a proper line search scheme to find and ,

any accumulation point of is a stationary point, i.e., .

ϵk ηk

x̄ {xk} 0 ∈ ∂ f(x̄)

xk+1 = xk − ηkgk gk ∈ G(xk, ϵk)Iterate scheme: for some

1. Goldstein-type methods

Idea: -neighborhood of stabilizes the directionϵ xk

2. Bundle-type methods

Idea: -neighborhood of stabilizes the directionϵ f(xk)

Sk = ∂ϵk
f(xk) = {v ∣ f(z) ≥ f(xk) + v⊤(z − xk)−ϵk , ∀z}

Sk = ∂G
ϵk

f(xk) = conv{ ⋃
∥z−xk∥≤ϵk

∂ f(z)}

if is convexf

Almost impossible to compute (deterministically)

Only well understood (complexity & convergence rate)
for weakly convex optimization

Not imply each other

Abstract theory & new construction
for

stable descent methods of nonsmooth optimization?

New construction: a toy example
For a piecewise smooth function ,

f(x) = max{f1(x), f2(x)}

∂ f(x) = ȳ1 ∇f1(x)+ȳ2 ∇f2(x) ȳ ∈ argmax
{y≥0∣y1+y2=1}

[y1 f1(x) + y2 f2(x)] ,

New construction: a toy example
For a piecewise smooth function ,

f(x) = max{f1(x), f2(x)}

∂ f(x) = ȳ1 ∇f1(x)+ȳ2 ∇f2(x) ȳ ∈ argmax
{y≥0∣y1+y2=1}

[y1 f1(x) + y2 f2(x)] ,

needs to be stabilized & yields descent

Nesterov’s smoothing

for some strongly cvx may not yield a descent direction of

ȳ = argmax
{y≥0∣y1+y2=1}

[y1 f1(x) + y2 f2(x) − ϵϕ(y)]

ϕ f

New construction: a toy example
For a piecewise smooth function ,

f(x) = max{f1(x), f2(x)}

∂ f(x) = ȳ1 ∇f1(x)+ȳ2 ∇f2(x) ȳ ∈ argmax
{y≥0∣y1+y2=1}

[y1 f1(x) + y2 f2(x)] ,

For any , define
ϵ > 0

G(x, ϵ) = ȳϵ
1 ∇f1(x)+ȳϵ

2 ∇f2(x) ȳϵ ∈ argmax
{y≥0∣y1+y2=1} [y1 f1(x) + y2 f2(x) −

ϵ
2

∥y1 ∇f1(x) + y2 ∇f2(x)∥2]
Subgradient regularization

New construction: a toy example
For a piecewise smooth function ,

f(x) = max{f1(x), f2(x)}

∂ f(x) = ȳ1 ∇f1(x)+ȳ2 ∇f2(x) ȳ ∈ argmax
{y≥0∣y1+y2=1}

[y1 f1(x) + y2 f2(x)] ,

For any , define
ϵ > 0

G(x, ϵ) = ȳϵ
1 ∇f1(x)+ȳϵ

2 ∇f2(x) ȳϵ ∈ argmax
{y≥0∣y1+y2=1} [y1 f1(x) + y2 f2(x) −

ϵ
2

∥y1 ∇f1(x) + y2 ∇f2(x)∥2]
Subgradient regularization

Fact: is a descent-oriented -subdifferential, yielding a stable descent direction
G ϵ

Gradient Sampling Bundle method Subgradient Regularization

combining (sub)gradients at nearby points

New construction: a toy example
G(x, ϵ) = ȳϵ

1 ∇f1(x)+ȳϵ
2 ∇f2(x) ȳϵ ∈ argmax

{y≥0∣y1+y2=1} [y1 f1(x) + y2 f2(x) −
ϵ
2

∥y1 ∇f1(x) + y2 ∇f2(x)∥2]

Reduction to the prox-linear method
Prox-linear method to solve :

(Fletcher, 1982, Burke and Ferris, 1995, Lewis and Wright, 2016, Drusvyatskiy and Paquette, 2019…)

f(x) = max{f1(x), f2(x)}

xk+1 = argmin
x { max

1≤i≤2
{ fi(xk) + ∇fi(xk)⊤(x − xk) } +

1
2ϵ

∥x − xk∥2},

linearization

Reduction to the prox-linear method
Prox-linear method to solve :

(Fletcher, 1982, Burke and Ferris, 1995, Lewis and Wright, 2016, Drusvyatskiy and Paquette, 2019…)

f(x) = max{f1(x), f2(x)}

xk+1 = argmin
x { max

1≤i≤2
{ fi(xk) + ∇fi(xk)⊤(x − xk) } +

1
2ϵ

∥x − xk∥2},

linearization

= argmin
x { max

{y≥0∣y1+y2=1}

2

∑
i=1

yi(fi(xk) + ∇fi(xk)⊤(x − xk)) +
1
2ϵ

∥x − xk∥2}

Reduction to the prox-linear method
Prox-linear method to solve :

(Fletcher, 1982, Burke and Ferris, 1995, Lewis and Wright, 2016, Drusvyatskiy and Paquette, 2019…)

f(x) = max{f1(x), f2(x)}

xk+1 = argmin
x { max

1≤i≤2
{ fi(xk) + ∇fi(xk)⊤(x − xk) } +

1
2ϵ

∥x − xk∥2},

linearization

= argmin
x { max

{y≥0∣y1+y2=1}

2

∑
i=1

yi(fi(xk) + ∇fi(xk)⊤(x − xk)) +
1
2ϵ

∥x − xk∥2}
= xk − ϵ[ȳ1 ∇f1(xk) + ȳ2 ∇f2(xk)]

ȳ ∈ argmax
y∈Δ2 {y1 f1(x) + y2 f2(x) −

ϵ
2

∥y1 ∇f1(x) + y2 ∇f2(x)∥2}where

Reduction to the prox-linear method
Prox-linear method to solve :

(Fletcher, 1982, Burke and Ferris, 1995, Lewis and Wright, 2016, Drusvyatskiy and Paquette, 2019…)

f(x) = max{f1(x), f2(x)}

xk+1 = argmin
x { max

1≤i≤2
{ fi(xk) + ∇fi(xk)⊤(x − xk) } +

1
2ϵ

∥x − xk∥2},

linearization

= argmin
x { max

{y≥0∣y1+y2=1}

2

∑
i=1

yi(fi(xk) + ∇fi(xk)⊤(x − xk)) +
1
2ϵ

∥x − xk∥2}
= xk − ϵ[ȳ1 ∇f1(xk) + ȳ2 ∇f2(xk)]

ȳ ∈ argmax
y∈Δ2 {y1 f1(x) + y2 f2(x) −

ϵ
2

∥y1 ∇f1(x) + y2 ∇f2(x)∥2}where

 = Subgradient regularization

Reduction to the prox-linear method
Prox-linear method to solve :

(Fletcher, 1982, Burke and Ferris, 1995, Lewis and Wright, 2016, Drusvyatskiy and Paquette, 2019…)

f(x) = max{f1(x), f2(x)}

xk+1 = argmin
x { max

1≤i≤2
{ fi(xk) + ∇fi(xk)⊤(x − xk) } +

1
2ϵ

∥x − xk∥2},

linearization

= argmin
x { max

{y≥0∣y1+y2=1}

2

∑
i=1

yi(fi(xk) + ∇fi(xk)⊤(x − xk)) +
1
2ϵ

∥x − xk∥2}
= xk − ϵ[ȳ1 ∇f1(xk) + ȳ2 ∇f2(xk)]

ȳ ∈ argmax
y∈Δ2 {y1 f1(x) + y2 f2(x) −

ϵ
2

∥y1 ∇f1(x) + y2 ∇f2(x)∥2}where

 = Subgradient regularization

• A dual interpretation of the prox-linear method

• can be extended to composite function (convex) (smooth) by conjugate duality∘

Subgradient regularization beyond composite structure

For the marginal function:

f(x) ≜ [max
y

φ0(x, y) subject to φj(x, y) ≤ 0, j = 1,⋯, r]
• Characterize , and apply subgradient regularization

• Yield a stable descent direction

• Does not need to be (weakly) convex

• Can be applied to the two-stage stochastic programs (: the recourse function)

∂ f(x)

f

f

Numerical results for nonconvex cases

f(x) = min
1≤i≤m

1
2

∥Ai x − bi∥2

Nonsmooth Optimization

Part 1: Stable Descent Directions
 when the function is also nonconvex

Part 2: Benefit from Nonsmoothness
 if the (sparsity) structure is properly preserved

Superquantile

• Superquantile / conditional value-at-risk (CVaR)

[Ben-Tal and Teboulle, Rockafellar and Uryasev, Rockafellar and Royset…]

 = Average of the worst (1 −)100% outcomes of

=

• ``top-k-sum’’ in machine learning

CVaRα(ω) α ω

min
η

η +
1

1 − α
𝔼[max(ω − η,0)]

VaRα (ω)

Superquantile optimization

• The problem is convex if are convex

• Financial decisions, operational plans, military strategies, engineering
designs, machine learning, statistical models…[see the survey paper by Royset (2023)]

min
x∈X

θ(x) + CVaRα0 [f0(x, ω)]

s.t. CVaRαi
[fi(x, ω)] ≤ ri, i = 1,⋯, L

θ, {fi(∙ , ω)}L
i=0 , X

Expectation vs Superquantile

• Separable: samples are equally important 

where

• Non-separable: samples are not equally
important —> only care about tail expectation

𝔼[f(x, ω)] ≈
1
S

S

∑
s=1

f(x, ωs) CVaRα [f(x, ω)] ≈
1

⌊1/(1 − α)⌋

⌊1/(1−α)⌋

∑
s=1

f(x, ω[s])

f(x, ω[1]) ≥ f(x, ω[2]) ≥ ⋯ ≥ f(x, ω[S])

Expectation vs Superquantile

• Can take an arbitrary sample to estimate the
function value and the (sub)gradient 

where

• has to belong to the right-tail to
generate a non-trivial (sub)gradient

𝔼[f(x, ω)] ≈
1
S

S

∑
s=1

f(x, ωs) CVaRα [f(x, ω)] ≈
1

⌊1/(1 − α)⌋

⌊1/(1−α)⌋

∑
s=1

f(x, ω[s])

f(x, ω[1]) ≥ f(x, ω[2]) ≥ ⋯ ≥ f(x, ω[S])

f(x, ωs)

• Separable: samples are equally important • Non-separable: samples are not equally
important —> only care about tail
expectation

Expectation vs Superquantile

where

𝔼[f(x, ω)] ≈
1
S

S

∑
s=1

f(x, ωs) CVaRα [f(x, ω)] ≈
1

⌊1/(1 − α)⌋

⌊1/(1−α)⌋

∑
s=1

f(x, ω[s])

f(x, ω[1]) ≥ f(x, ω[2]) ≥ ⋯ ≥ f(x, ω[S])

• Separable: samples are equally important

• Can take an arbitrary sample to estimate the
function value and the (sub)gradient 

• Non-separable: samples are not equally
important —> only care about tail expectation

• has to belong to the right-tail to
generate a non-trivial (sub)gradient
f(x, ωs)

• Function evaluations can be expensive, e.g.,
recourse functions, neural networks; in fact, even
if is affine when the number of scenarios
is large.

f(∙ , ω)

Superquantile optimization

reduce the number of evaluations for function values and (sub)gradients

a second-order method?

Superquantile optimization

reduce the number of evaluations for function values and (sub)gradients

a second-order method?

 expensive to formulate ``Hessian’’ matrices + solve linear equations?

Superquantile optimization

reduce the number of evaluations for function values and (sub)gradients

second order method?

expensive to formulate “Hessian’’ matrices + solve linear equations!

Blessing of the tail risk: “Hessian’’ is sparse

cheap

only a small proportion of scenarios matters

Partial augmented Lagrangian

Consider a simplified problem: linear objective, one CVaR constraint, no side constraints

minimize

x
c⊤x

subject to CVaRα [{a⊤
i x + bi}S

i=1] ≤ r

Partial augmented Lagrangian

minimize
x

c⊤x

subject to CVaRα [{a⊤
i x + bi}S

i=1] ≤ r

minimize
x, y

c⊤x

subject to y = Ax + b, CVaRα [y] ≤ r

Partial augmented Lagrangian

minimize
x

c⊤x

subject to CVaRα [{a⊤
i x + bi}S

i=1] ≤ r

min
x

c⊤x +
σ
2

ΠCVaRα(∙)≤r(Ax + b − λ̃ /σ) − (Ax + b − λ̃ /σ)
2

projection onto the top-k-sum level set, preserve nonsmoothness

partial augmented Lagrangian

(partial Moreau envelope of the dual)

minimize
x, y

c⊤x

subject to y = Ax + b, CVaRα [y] ≤ r

Partial augmented Lagrangian

minimize
x

c⊤x

subject to CVaRα [{a⊤
i x + bi}S

i=1] ≤ r

min
x

c⊤x +
σ
2

ΠCVaRα(∙)≤r(Ax + b − λ̃ /σ) − (Ax + b − λ̃ /σ)
2

continuously differentiable

Partial Augmented Lagrangian

(Partial Moreau envelope of the dual)

minimize
x, y

c⊤x

subject to y = Ax + b, CVaRα [y] ≤ r

c + σ A⊤ [Ax + b − λ̃ /σ − ΠCVaRα(∙)≤r (Ax + b − λ̃ /σ)] = 0

optimality condition

Partial augmented Lagrangian

minimize
x

c⊤x

subject to CVaRα [{a⊤
i x + bi}S

i=1] ≤ r

min
x

c⊤x +
σ
2

ΠCVaRα(∙)≤r(Ax + b − λ̃ /σ) − (Ax + b − λ̃ /σ)
2

continuously differentiable

Partial Augmented Lagrangian

(Partial Moreau envelope of the dual)

minimize
x, y

c⊤x

subject to y = Ax + b, CVaRα [y] ≤ r

c + σ A⊤ [Ax + b − λ̃ /σ − ΠCVaRα(∙)≤r (Ax + b − λ̃ /σ)] = 0

piecewise affine equation semismooth Newton→

Generalized Jacobian (``Hessian’’)

• Generalized Jacobian:

A⊤ [Ax − ΠCVaRα(∙)≤r (Ax + b − λ̃ /σ)] = rhs

A⊤(I − J)A

S × S

Generalized Jacobian (``Hessian’’)

 A⊤ [Ax − ΠCVaRα(∙)≤r (Ax + b − λ̃ /σ)] = − c/σ − A⊤(b − λ̃ /σ)

where

Ã ⊤ Ã
Ã ∈ ℝ(|I=|+1)×n

S × S
usually !!≪ S

Generalized Jacobian:
A⊤(I − J)A

Comparison with OSQP & Gurobi

Compare with OSQP for low-accurate solutions (1e-3) Compare with Gurobi for high-accurate solutions (1e-6)

dim of x

scenarios

Linear obj Quadratic obj Quadratic objLinear obj

Hanyang Li and Ying Cui. Subgradient Regularization: A Descent-Oriented Subgradient Method for
Nonsmooth Optimization (2025).

Hanyang Li and Ying Cui. Variational Theory and Algorithms for a Class of Asymptotically Approachable
Nonconvex Problems. Mathematics of Operations Research (2025).

Hanyang Li and Ying Cui. A Decomposition Algorithm for Two-Stage Stochastic Programs with Nonconvex
Recourse Functions. SIAM Journal on Optimization (2024).

Jake Roth and Ying Cui. Optimization with superquantile constraints: a fast computational approach (2024).

Thank you!

Algorithm

for

for

Generate a direction

if

Update and break
if

Update and

else set and

k = 0,1,⋯
i = 0,1,⋯

gk,i ∈ G(xk, ϵk,0 2−i)
∃ηk ∈ {ϵk,0, ⋯, ϵk,0 2−i} with f(xk − ηkgk,i) ≤ f(xk) − αηk∥gk,i∥2

xk+1 = xk − ηkgk,i

∥gk,i∥ ≤ νk
ϵk+1,0 = ϵk,0/2 νk+1 = νk /2

ϵk+1,0 = ϵk,0 νk+1 = νk

line-search

Algorithm

• The inner-loop terminates for sufficiently large (descent directions at)i ∃ xk

for

for

Generate a direction

if

Update and break
if

Update and

else set and

k = 0,1,⋯
i = 0,1,⋯

gk,i ∈ G(xk, ϵk,0 2−i)
∃ηk ∈ {ϵk,0, ⋯, ϵk,0 2−i} with f(xk − ηkgk,i) ≤ f(xk) − αηk∥gk,i∥2

xk+1 = xk − ηkgk,i

∥gk,i∥ ≤ νk
ϵk+1,0 = ϵk,0/2 νk+1 = νk /2

ϵk+1,0 = ϵk,0 νk+1 = νk

line-search

Algorithm

Idea: will not converge to a non-stationary point [is “stable” in]:

If close to a non-stationary point close to [for a fixed]

 escapes for sufficiently small

{xk} G(x, ϵ) x
xk x̄ ⇒ G(xk, ϵ) G(x̄, ϵ) ϵ > 0

⇒ xk x̄ ϵ

for

for

Generate a direction

if

Update and break
if

Update and

else set and

k = 0,1,⋯
i = 0,1,⋯

gk,i ∈ G(xk, ϵk,0 2−i)
∃ηk ∈ {ϵk,0, ⋯, ϵk,0 2−i} with f(xk − ηkgk,i) ≤ f(xk) − αηk∥gk,i∥2

xk+1 = xk − ηkgk,i

∥gk,i∥ ≤ νk
ϵk+1,0 = ϵk,0/2 νk+1 = νk /2

ϵk+1,0 = ϵk,0 νk+1 = νk

line-search

Theorem: Any accumulation point of is a stationary point, i.e., .x̄ {xk} 0 ∈ ∂ f(x̄)

