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Nonsmooth functions

• A locally Lipschitz continuous function is differentiable almost everywhere


• Nonsmooth functions: 


• gradients not continuously vary (at the kinks)


• second derivatives grow unboundedly


• ``Smoothing functions’’ may still suffer from unstable gradients when the 
smoothing parameter is very small




Nonsmooth optimization

``…Unfortunately, there is no clear-cut between functions 
that are smooth (whence the field application such 
algorithms) and functions that are not (whence requiring 
methods from nonsmooth optimization)… 

…A sound algorithm for convex minimization should 
therefore not ignore its parents…’’
          
                                               
                                                       from the monograph Convex Analysis and Minimization Algorithms



Nonsmooth optimization

Part 1: Stable Descent Directions 
                         when the function is also nonconvex 

Part 2: Benefit from Nonsmoothness 
                         if the (sparsity) structure is properly preserved



Stable descent directions

gx := argmin
∥d∥2=1

f′ (x; d) = {−
v

∥v∥2
: v = argmin

v∈∂ f(x)
∥v∥}

• When  is smooth, 
f gx = − ∇f(x)/∥∇f(x)∥2

If  is convex, steepest descent direction at f x
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— may converge to non-stationary points (even with exact line search)

f gx = − ∇f(x)/∥∇f(x)∥2

f x gx

f(x) = max{f1(x), f2(x)} f1(x) = f2(x)

If  is convex, steepest descent direction at :f x

• Improvement:  gx ⟶ ??stablize in x

gx := argmin
∥d∥2=1

f′ (x; d) = {−
v

∥v∥2
: v = argmin

v∈∂ f(x)
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Goldstein -subdifferential ϵ ∂G
ϵ f(x) := conv{ ⋃
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∂ f(z)}

1. Goldstein-type methods
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1. Goldstein-type methods

Practical issue: computation of gk

Stable descent directions

   Gradient Sampling [Burke, Lewis, Overton ’02], [Burke, Lewis, Overton ’05], 
[Kiwiel ’07], [Curtis and Que ’13],] [Burke et.al.2020] 

  INGD [Zhang, Lin, Jegelka, Sra, Jadbabaie ’20], 
  NTD [Davis, Jiang ’23], …

⟶approx.

Idea: -neighborhood of  stabilizes the directionϵ xk



Goldstein -subdifferential ϵ ∂G
ϵ f(x) := conv{ ⋃

∥z−x∥≤ϵ

∂ f(z)}

1. Goldstein-type methods

Stable descent directions

Idea: -neighborhood of  stabilizes the directionϵ xk

2. Bundle-type methods

“Bundle”: subgradients & function values over past iterations

 {v1 ∈ ∂ f(x1), v2 ∈ ∂ f(x2), ⋯, vk ∈ ∂ f(xk)}

{ f(x1), f(x2), ⋯, f(xk) }

Idea: -neighborhood of  stabilizes the directionϵ f(xk)



1. Goldstein-type methods

A unified interpretation

Idea: -neighborhood of  stabilizes the directionϵ xk

2. Bundle-type methods

Idea: -neighborhood of  stabilizes the directionϵ f(xk)

Sk = ∂ϵk
f(xk) = {v ∣ f(z) ≥ f(xk) + v⊤(z − xk)−ϵk , ∀z}

xk+1 = xk − αk ⋅ gk with gk := argmin
v∈Sk

∥v∥

Steepest descent method: Sk = ∂ f(xk)

Sk = ∂G
ϵk

f(xk) = conv{ ⋃
∥z−xk∥≤ϵk

∂ f(z)}

if  is convexf
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Stable descent directions                         combine (sub)gradients in some “neighborhood” 

 A similar story for variance reduction / momentum in stochastic optimization

need
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Abstract theory  & new construction  
for  

stable descent methods of nonsmooth optimization?



A map  is a descent-oriented -subdifferential for  if


(G1) Outer jointly limit in  stays in the Clarke subdifferential:





(G2) Separate limits yield the minimal norm subgradient:


G : ℝn × (0,∞) ⇉ ℝm ϵ f

(x, ϵ)

lim sup
ϵ↓0, x→x̄

G(x, ϵ) ⊂ ∂ f(x̄)

lim
ϵ↓0 ( lim sup

x→x̄
G(x, ϵ)) = argmin{∥v∥ ∣ v ∈ ∂ f(x̄)}

Abstract theory of stable descent

``Gradient consistency’'



A map  is a descent-oriented -subdifferential for  if


(G1) Outer joint limit in  stays in the Clarke subdifferential:





(G2) Separate limits yield the minimal norm subgradient:


G : ℝn × (0,∞) ⇉ ℝm ϵ f

(x, ϵ)

lim sup
ϵ↓0, x→x̄

G(x, ϵ) ⊂ ∂ f(x̄)

lim
ϵ↓0 ( lim sup

x→x̄
G(x, ϵ)) = argmin{∥v∥ ∣ v ∈ ∂ f(x̄)}

Abstract theory of stable descent

steepest descent direction  violates (G2)G : (x, ϵ) ↦ argmin{∥v∥ ∣ v ∈ ∂ f(x)}

stability in x

descent



A map  is a descent-oriented -subdifferential for  if


(G1) Outer joint limit in  stays in the Clarke subdifferential:





(G2) Separate limits yield the minimal norm subgradient:


G : ℝn × (0,∞) ⇉ ℝm ϵ f

(x, ϵ)

lim sup
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Abstract theory of stable descent

The framework covers:


Goldstein direction:  


Bundle direction (when  is convex):   


Gradient of Moreau envelope (when  is convex):  with    

G : (x, ϵ) ↦ argmin{∥v∥ ∣ v ∈ ∂G
ϵ f(x)}

f G : (x, ϵ) ↦ argmin{∥v∥ ∣ v ∈ ∂ϵ f(x)}
f G : (x, ϵ) ↦ ∇eϵ f(x) eϵ f(x) := inf

z
{f(z) + ∥z − x∥2/(2ϵ)}
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Abstract theory of stable descent

Asymptotic convergence: With a proper line search scheme to find  and , 

any accumulation point  of  is a stationary point, i.e., .

ϵk ηk

x̄ {xk} 0 ∈ ∂ f(x̄)

xk+1 = xk − ηkgk gk ∈ G(xk, ϵk )Iterate scheme: for some
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New construction: a toy example
For a piecewise smooth function ,
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needs to be stabilized & yields descent

Nesterov’s smoothing 


for some strongly cvx  may not yield a descent direction of 

ȳ = argmax
{y≥0∣y1+y2=1}

[ y1 f1(x) + y2 f2(x) − ϵϕ(y) ]

ϕ f
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Subgradient regularization
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2

∥y1 ∇f1(x) + y2 ∇f2(x)∥2]
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Fact:  is a descent-oriented -subdifferential, yielding a stable descent direction
G ϵ



Gradient Sampling Bundle method Subgradient Regularization

combining (sub)gradients at nearby points

New construction: a toy example
G(x, ϵ) = ȳϵ

1 ∇f1(x)+ȳϵ
2 ∇f2(x) ȳϵ ∈ argmax

{y≥0∣y1+y2=1} [y1 f1(x) + y2 f2(x) −
ϵ
2

∥y1 ∇f1(x) + y2 ∇f2(x)∥2]



Reduction to the prox-linear method
Prox-linear method to solve : 


(Fletcher, 1982, Burke and Ferris, 1995, Lewis and Wright, 2016, Drusvyatskiy and Paquette, 2019…) 




f(x) = max{f1(x), f2(x)}

xk+1 = argmin
x { max

1≤i≤2
{ fi(xk) + ∇fi(xk)⊤(x − xk) } +

1
2ϵ

∥x − xk∥2},

linearization
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ȳ ∈ argmax
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ϵ
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• A dual interpretation of the prox-linear method 

• can be extended to composite function (convex)  (smooth) by conjugate duality∘



Subgradient regularization beyond composite structure

For the marginal function:


f(x) ≜ [max
y

φ0(x, y) subject to φj(x, y) ≤ 0, j = 1,⋯, r]
• Characterize , and apply subgradient regularization


• Yield a stable descent direction


• Does not need  to be (weakly) convex


• Can be applied to the two-stage stochastic programs (  : the recourse function )

∂ f(x)

f

f



Numerical results for nonconvex cases

f(x) = min
1≤i≤m

1
2

∥Ai x − bi∥2



Nonsmooth Optimization

Part 1: Stable Descent Directions 
                         when the function is also nonconvex 

Part 2: Benefit from Nonsmoothness 
                         if the (sparsity) structure is properly preserved



Superquantile

• Superquantile / conditional value-at-risk (CVaR)

[Ben-Tal and Teboulle, Rockafellar and Uryasev, Rockafellar and Royset…] 

        = Average of the worst (1 − )100% outcomes of 


= 


• ``top-k-sum’’ in machine learning

CVaRα(ω) α ω

min
η

η +
1

1 − α
𝔼[max(ω − η,0)]

VaRα (ω)



Superquantile optimization




• The problem is convex if  are convex


• Financial decisions, operational plans, military strategies, engineering 
designs, machine learning, statistical models…[see the survey paper by Royset (2023)]

min
x∈X

θ(x) + CVaRα0 [ f0(x, ω) ]

s.t. CVaRαi
[ fi(x, ω) ] ≤ ri, i = 1,⋯, L

θ, {fi( ∙ , ω)}L
i=0 , X



Expectation vs Superquantile

  


• Separable: samples are equally important 




where 


• Non-separable: samples are not equally 
important —> only care about tail expectation

𝔼[ f(x, ω) ] ≈
1
S

S

∑
s=1

f(x, ωs) CVaRα [ f(x, ω) ] ≈
1

⌊1/(1 − α)⌋

⌊1/(1−α)⌋

∑
s=1

f(x, ω[s])

f(x, ω[1]) ≥ f(x, ω[2]) ≥ ⋯ ≥ f(x, ω[S])



Expectation vs Superquantile

  


• Can take an arbitrary sample to estimate the 
function value and the (sub)gradient 




where 


•  has to belong to the right-tail to 
generate a non-trivial (sub)gradient 

𝔼[ f(x, ω) ] ≈
1
S

S

∑
s=1
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1

⌊1/(1 − α)⌋

⌊1/(1−α)⌋

∑
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f(x, ω[1]) ≥ f(x, ω[2]) ≥ ⋯ ≥ f(x, ω[S])

f(x, ωs)

• Separable: samples are equally important • Non-separable: samples are not equally 
important —> only care about tail 
expectation



Expectation vs Superquantile

  
 


where 


𝔼[ f(x, ω) ] ≈
1
S

S

∑
s=1

f(x, ωs) CVaRα [ f(x, ω) ] ≈
1

⌊1/(1 − α)⌋

⌊1/(1−α)⌋

∑
s=1

f(x, ω[s])

f(x, ω[1]) ≥ f(x, ω[2]) ≥ ⋯ ≥ f(x, ω[S])

• Separable: samples are equally important


• Can take an arbitrary sample to estimate the 
function value and the (sub)gradient 

• Non-separable: samples are not equally 
important —> only care about tail expectation


•  has to belong to the right-tail to 
generate a non-trivial (sub)gradient 
f(x, ωs)

• Function evaluations can be expensive, e.g., 
recourse functions, neural networks; in fact, even 
if  is affine when the number of scenarios 
is large.

f( ∙ , ω)



Superquantile optimization

reduce the number of evaluations for function values and (sub)gradients


a second-order method?
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Superquantile optimization

reduce the number of evaluations for function values and (sub)gradients


second order method?


expensive to formulate “Hessian’’ matrices + solve linear equations!

Blessing of the tail risk: “Hessian’’ is sparse

cheap

only a small proportion of scenarios matters



Partial augmented Lagrangian

Consider a simplified problem: linear objective, one CVaR constraint, no side constraints




minimize

x
c⊤x

subject to CVaRα [ {a⊤
i x + bi}S

i=1 ] ≤ r



Partial augmented Lagrangian




                                                


minimize
x

c⊤x

subject to CVaRα [ {a⊤
i x + bi}S

i=1 ] ≤ r

minimize
x, y

c⊤x

subject to y = Ax + b, CVaRα [ y ] ≤ r



Partial augmented Lagrangian




                                                


minimize
x

c⊤x

subject to CVaRα [ {a⊤
i x + bi}S

i=1 ] ≤ r

min
x

c⊤x +
σ
2

ΠCVaRα(∙)≤r(Ax + b − λ̃ /σ) − (Ax + b − λ̃ /σ)
2

projection onto the top-k-sum level set, preserve nonsmoothness

partial augmented Lagrangian

(partial Moreau envelope of the dual)  

minimize
x, y

c⊤x

subject to y = Ax + b, CVaRα [ y ] ≤ r



Partial augmented Lagrangian




                                                


minimize
x

c⊤x

subject to CVaRα [ {a⊤
i x + bi}S

i=1 ] ≤ r

min
x

c⊤x +
σ
2

ΠCVaRα(∙)≤r(Ax + b − λ̃ /σ) − (Ax + b − λ̃ /σ)
2

continuously differentiable

Partial Augmented Lagrangian

(Partial Moreau envelope of the dual)  

minimize
x, y

c⊤x

subject to y = Ax + b, CVaRα [ y ] ≤ r

c + σ A⊤ [ Ax + b − λ̃ /σ − ΠCVaRα(∙)≤r (Ax + b − λ̃ /σ) ] = 0

optimality condition



Partial augmented Lagrangian




                                                


minimize
x

c⊤x

subject to CVaRα [ {a⊤
i x + bi}S

i=1 ] ≤ r

min
x

c⊤x +
σ
2

ΠCVaRα(∙)≤r(Ax + b − λ̃ /σ) − (Ax + b − λ̃ /σ)
2

continuously differentiable

Partial Augmented Lagrangian

(Partial Moreau envelope of the dual)  

minimize
x, y

c⊤x

subject to y = Ax + b, CVaRα [ y ] ≤ r

c + σ A⊤ [ Ax + b − λ̃ /σ − ΠCVaRα(∙)≤r (Ax + b − λ̃ /σ) ] = 0

piecewise affine equation   semismooth Newton→



Generalized Jacobian (``Hessian’’)

 


• Generalized Jacobian:   


A⊤ [ Ax − ΠCVaRα(∙)≤r (Ax + b − λ̃ /σ) ] = rhs

A⊤(I − J)A

S × S



Generalized Jacobian (``Hessian’’)

 A⊤ [ Ax − ΠCVaRα(∙)≤r (Ax + b − λ̃ /σ) ] = − c/σ − A⊤(b − λ̃ /σ)



where 

Ã ⊤ Ã
Ã ∈ ℝ(|I=|+1)×n

S × S
usually  !!≪ S

Generalized Jacobian:   
A⊤(I − J)A



Comparison with OSQP & Gurobi

Compare with OSQP for low-accurate solutions (1e-3) Compare with Gurobi for high-accurate solutions (1e-6)

dim of x

# scenarios

Linear obj Quadratic obj Quadratic objLinear obj



Hanyang Li and Ying Cui. Subgradient Regularization: A Descent-Oriented Subgradient Method for 
Nonsmooth Optimization (2025).


Hanyang Li and Ying Cui. Variational Theory and Algorithms for  a Class of Asymptotically Approachable 
Nonconvex Problems. Mathematics of Operations Research (2025).  

Hanyang Li and Ying Cui. A Decomposition Algorithm for Two-Stage Stochastic Programs with Nonconvex 
Recourse Functions. SIAM Journal on Optimization (2024).


Jake Roth and Ying Cui. Optimization with superquantile constraints: a fast computational approach (2024).

Thank you! 



Algorithm

for  

for  


Generate a direction 

if 


Update  and break 
if 


Update  and 

else set  and 

k = 0,1,⋯
i = 0,1,⋯

gk,i ∈ G(xk, ϵk,0 2−i )
∃ηk ∈ {ϵk,0, ⋯, ϵk,0 2−i} with f(xk − ηkgk,i) ≤ f(xk) − αηk∥gk,i∥2

xk+1 = xk − ηkgk,i

∥gk,i∥ ≤ νk
ϵk+1,0 = ϵk,0/2 νk+1 = νk /2

ϵk+1,0 = ϵk,0 νk+1 = νk

line-search



Algorithm

• The inner-loop terminates for sufficiently large  (  descent directions at )i ∃ xk

for  

for  


Generate a direction 

if 


Update  and break 
if 


Update  and 

else set  and 

k = 0,1,⋯
i = 0,1,⋯

gk,i ∈ G(xk, ϵk,0 2−i )
∃ηk ∈ {ϵk,0, ⋯, ϵk,0 2−i} with f(xk − ηkgk,i) ≤ f(xk) − αηk∥gk,i∥2

xk+1 = xk − ηkgk,i

∥gk,i∥ ≤ νk
ϵk+1,0 = ϵk,0/2 νk+1 = νk /2

ϵk+1,0 = ϵk,0 νk+1 = νk

line-search



Algorithm

Idea:  will not converge to a non-stationary point [  is “stable” in ]:

If  close to a non-stationary point          close to  [for a fixed ]


                                                 escapes  for sufficiently small 

{xk} G(x, ϵ) x
xk x̄ ⇒ G(xk, ϵ) G(x̄, ϵ) ϵ > 0

⇒ xk x̄ ϵ

for  

for  


Generate a direction 

if 


Update  and break 
if 


Update  and 

else set  and 

k = 0,1,⋯
i = 0,1,⋯

gk,i ∈ G(xk, ϵk,0 2−i )
∃ηk ∈ {ϵk,0, ⋯, ϵk,0 2−i} with f(xk − ηkgk,i) ≤ f(xk) − αηk∥gk,i∥2

xk+1 = xk − ηkgk,i

∥gk,i∥ ≤ νk
ϵk+1,0 = ϵk,0/2 νk+1 = νk /2

ϵk+1,0 = ϵk,0 νk+1 = νk

line-search

Theorem:  Any accumulation point  of  is a stationary point, i.e., .x̄ {xk} 0 ∈ ∂ f(x̄)


