Nonsmooth Optimization: Stable Descent and Sparsity Preservation

Ying Cui Department of Industrial Engineering and Operations Research University of California, Berkeley

Joint work with Hanyang Li (UC Berkeley) and Jake Roth (University of Minnesota)

Nonsmooth functions

- Nonsmooth functions:
 - gradients not continuously vary (at the kinks)
 - second derivatives grow unboundedly
- "Smoothing functions" may still suffer from unstable gradients when the smoothing parameter is very small

A locally Lipschitz continuous function is differentiable almost everywhere

Nonsmooth optimization

``...Unfortunately, there is **no clear-cut** between functions that are **smooth** (whence the field application such algorithms) and functions that are **not** (whence requiring methods from nonsmooth optimization)...

... A sound algorithm for convex minimization should therefore not ignore its parents..."

from the monograph Convex Analysis and Minimization Algorithms

Grundlehren der mathematischen Wissenschaften 305 A Series of Comprehensive Studies in Mathematics

Jean-Baptiste Hiriart-Urruty Claude Lemaréchal

Convex Analysis and Minimization Algorithms I

Nonsmooth optimization

Part 1: Stable Descent Directions

when the function is also nonconvex

Part 2: Benefit from Nonsmoothness

if the (sparsity) structure is properly preserved

If *f* is convex, **steepest**

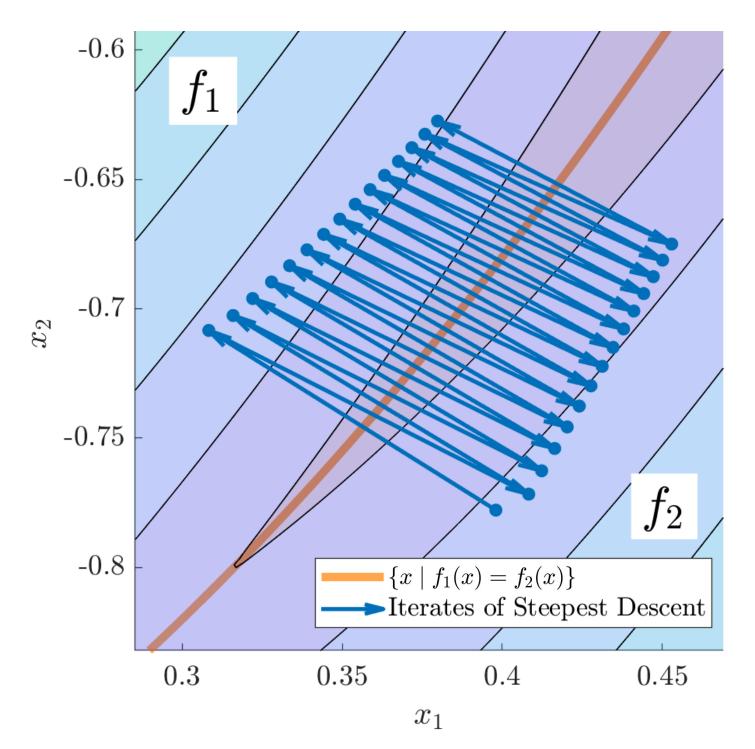
descent direction at x

$$g_x := \underset{\|d\|_2=1}{\operatorname{argmin}} f'(x; d) = \left\{ \begin{array}{l} -\frac{v}{\|v\|_2} : v = \underset{v \in \partial f(x)}{\operatorname{argmin}} \|v\| \right\}$$

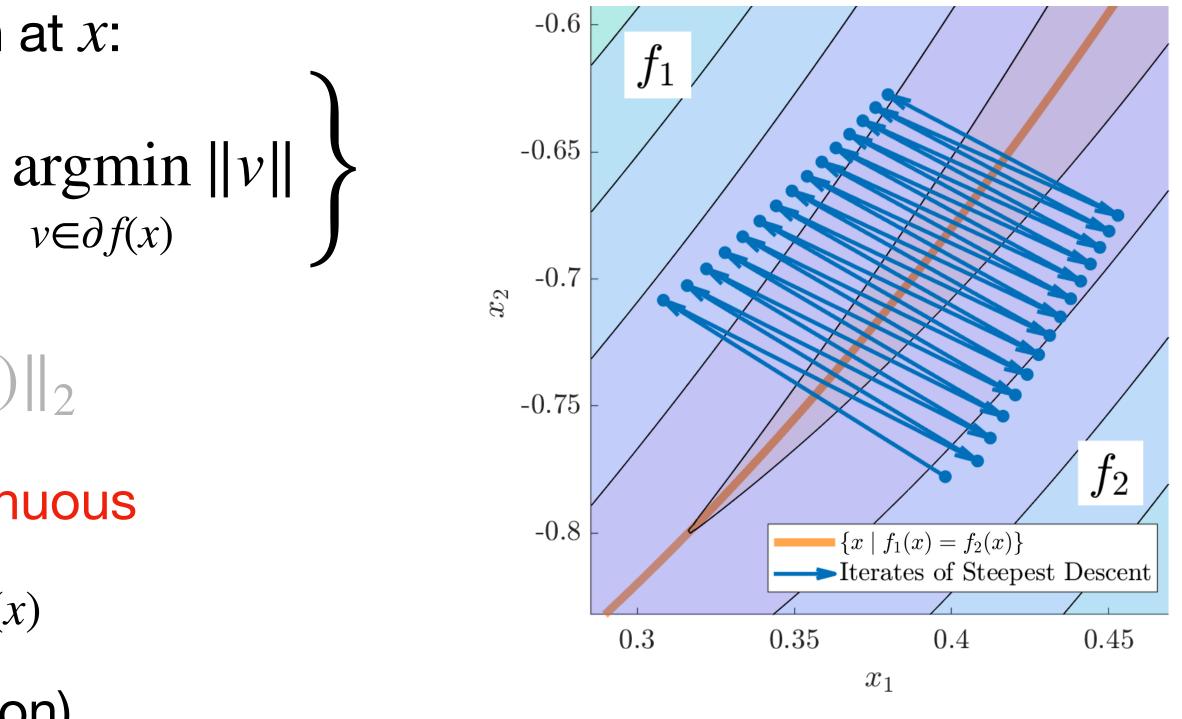
• When f is smooth, $g_x = -\nabla f(x) / \|\nabla f(x)\|_2$

- If *f* is convex, steepest descent direction at *x*: $g_x := \underset{\|d\|_2=1}{\operatorname{argmin}} f'(x; d) = \left\{ \begin{array}{l} -\frac{v}{\|v\|_2} : v = \underset{v \in \partial f(x)}{\operatorname{argmin}} \|v\| \right\}$
- When *f* is smooth, $g_x = -\nabla f(x) / \|\nabla f(x)\|_2$
- When f is nonsmooth at x, g_x is discontinuous Think about $f(x) = \max\{f_1(x), f_2(x)\}$ near $f_1(x) = f_2(x)$

at x: $rgmin_{y \in \partial f(x)} \|v\|_{2}$ $||_{2}$ The second s

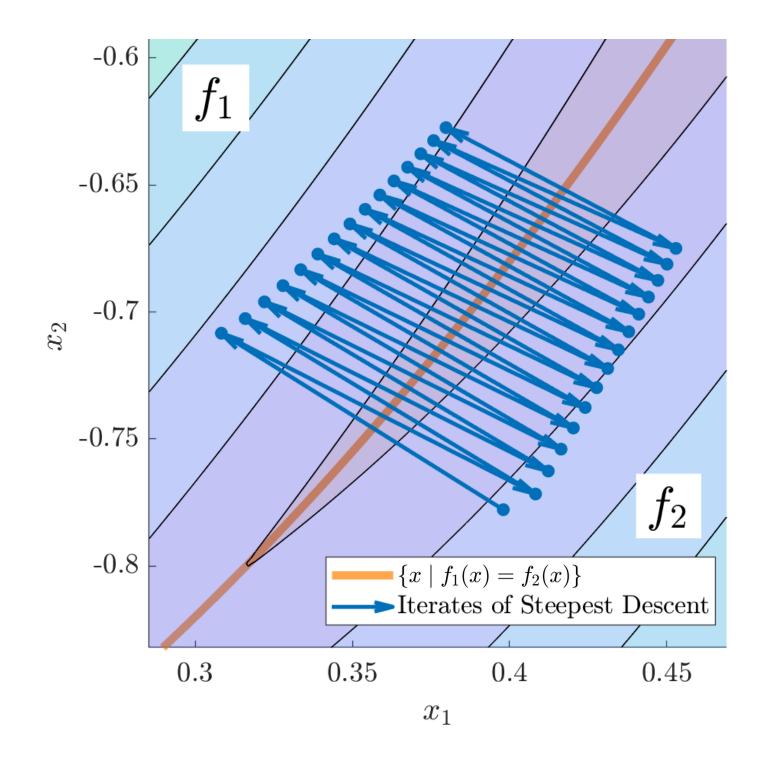


- If f is convex, steepest descent direction at x: $g_{x} := \underset{\|d\|_{2}=1}{\operatorname{argmin}} f'(x;d) = \left\{ \begin{array}{l} -\frac{v}{\|v\|_{2}} : v = \underset{v \in \partial f(x)}{\operatorname{argmin}} \|v\| \right\}$
- When f is smooth, $g_x = -\nabla f(x) / \|\nabla f(x)\|_2$
- When f is nonsmooth at x, g_x is discontinuous Think about $f(x) = \max\{f_1(x), f_2(x)\}\$ near $f_1(x) = f_2(x)$
 - unstable (zigzag phenomenon)



- may converge to non-stationary points (even with exact line search)

If f is convex, steepest descent direction at x: $g_{x} := \underset{\|d\|_{2}=1}{\operatorname{argmin}} f'(x;d) = \left\{ \begin{array}{l} -\frac{v}{\|v\|_{2}} : v = \underset{v \in \partial f(x)}{\operatorname{argmin}} \|v\| \right\}$



1. Goldstein-type methods

Idea: ϵ -neighborhood of x^k stabilizes the direction

Goldstein ϵ -subdifferential $\partial_{\epsilon}^{G} f(x) := \operatorname{conv} \left\{ \bigcup_{\|z-x\| \leq \epsilon} \partial f(z) \right\}$

1. Goldstein-type methods

Idea: ϵ -neighborhood of x^k stabilizes the direction

Goldstein ϵ -subdifferential $\partial_{\epsilon}^{G} f(x) := \operatorname{conv}$

$$x^{k+1} = x^k - \epsilon \frac{g_k}{\|g_k\|} \quad \text{with} \quad g_k :=$$

$$\left\{ \bigcup_{\|z-x\| \leq \epsilon} \partial f(z) \right\}$$

argmin ||v|| $v \in \partial_{\epsilon}^{G} f(x^{k})$

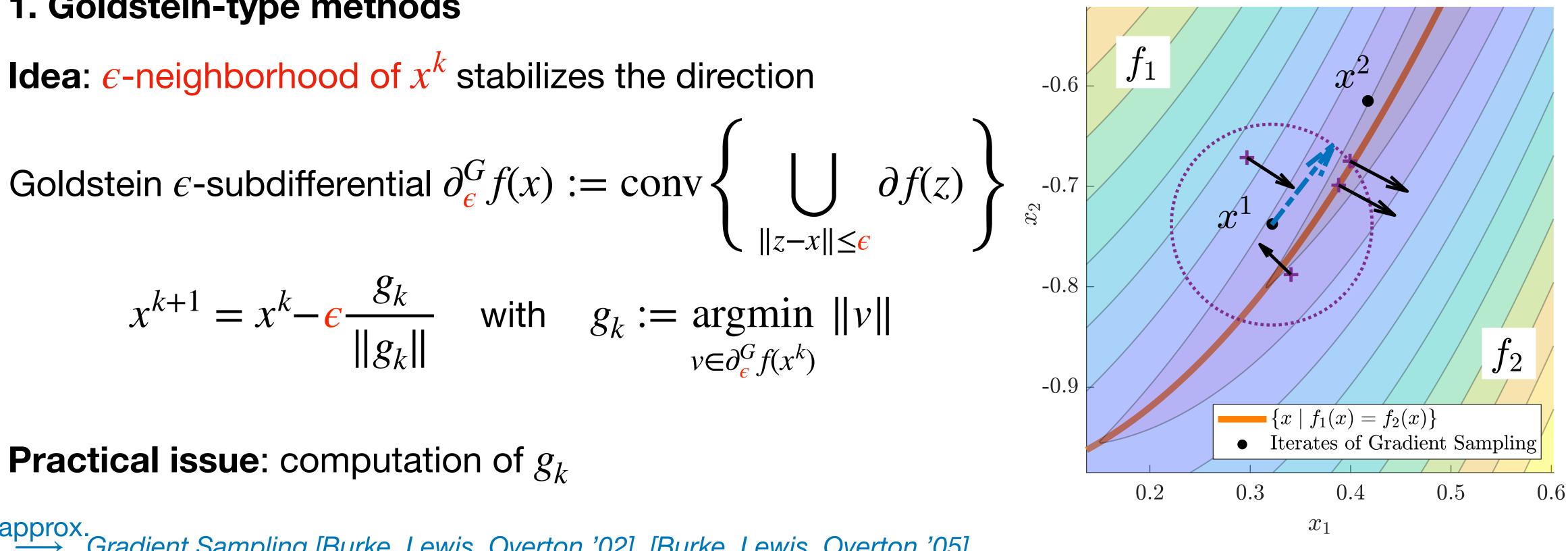
1. Goldstein-type methods

Idea: ϵ -neighborhood of x^k stabilizes the direction

$$x^{k+1} = x^k - \epsilon \frac{g_k}{\|g_k\|} \quad \text{with} \quad g_k :=$$

Practical issue: computation of g_k

 \xrightarrow{approx} . Gradient Sampling [Burke, Lewis, Overton '02], [Burke, Lewis, Overton '05], [Kiwiel '07], [Curtis and Que '13], [Burke et.al.2020] INGD [Zhang, Lin, Jegelka, Sra, Jadbabaie '20], NTD [Davis, Jiang '23], ...



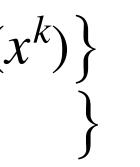
1. Goldstein-type methods

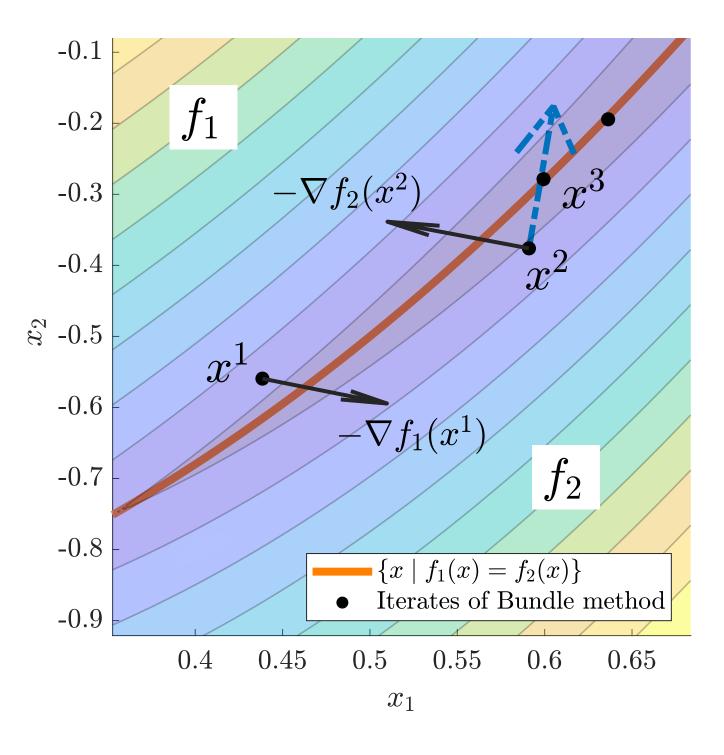
Idea: ϵ -neighborhood of x^k stabilizes the direction

2. Bundle-type methods

Idea: ϵ -neighborhood of $f(x^k)$ stabilizes the direction

"Bundle": subgradients & function values over past iterations $\begin{cases} v_1 \in \partial f(x^1), v_2 \in \partial f(x^2), \dots, v_k \in \partial f(x^k) \\ f(x^1), & f(x^2), \dots, f(x^k) \end{cases}$





A unified interpretation

$$x^{k+1} = x^k - \alpha_k \cdot g_k \quad \text{with} \quad g_k := \underset{v \in S_k}{\operatorname{argmin}} \|v\|$$

escent method: $S_k = \partial f(x^k)$
e methods $S_k = \partial_{\epsilon_k}^G f(x^k) = \operatorname{conv} \left\{ \bigcup_{\|z - x^k\| \le \epsilon_k} \partial f(z) \right\}$

1. Goldstein-type

Idea: ϵ -neighborhood of x^k stabilizes the direction

2. Bundle-type methods $S_k = \partial_{\epsilon_k} f(x^k)$ Idea: ϵ -neighborhood of $f(x^k)$ stabilizes the direction

$$= \left\{ v \mid f(z) \ge f(x^k) + v^{\mathsf{T}}(z - x^k) - \epsilon_k, \forall z \right\} \text{ if } f \text{ is converse}$$

A unified interpretation

$$x^{k+1} = x^k - \alpha_k \cdot g_k \quad \mathsf{W}$$

A similar story for variance reduction / momentum in stochastic optimization

vith $g_k := \operatorname{argmin} \|v\|$ $v \in S_k$

 $S_k = \partial_{\epsilon_k}^G f(x^k) = \operatorname{conv}\left\{ \bigcup_{\|z - x^k\| \le \epsilon} \partial f(z) \right\}$

$S_k = \partial_{\epsilon_k} f(x^k) = \left\{ v \mid f(z) \ge f(x^k) + v^{\mathsf{T}}(z - x^k) - \epsilon_k, \forall z \right\}$

combine (sub)gradients in some "neighborhood"

$$x^{k+1} = x^k - \alpha_k \cdot g_k$$
 with $g_k := \underset{v \in S_k}{\operatorname{argmin}} \|v\|$

1. Goldstein-type methods

 $S_k = \partial_{\epsilon_k} f(x^k)$

$$S_k = \partial_{\epsilon_k}^G f(x^k) = \operatorname{conv}\left\{ \bigcup_{\|z - x^k\| \le \epsilon_k} \partial f(z) \right\}$$

Almost impossible to compute (deterministically)

$$= \left\{ v \mid f(z) \ge f(x^k) + v^{\mathsf{T}}(z - x^k) - \epsilon_k, \forall z \right\}$$

$$x^{k+1} = x^k - \alpha_k \cdot g_k \quad \mathsf{W}$$

2. Bundle-type methods

vith $g_k := \operatorname{argmin} \|v\|$ $v \in S_k$

 $S_k = \partial_{\epsilon_k}^G f(x^k) = \operatorname{conv}\left\{ \bigcup_{\|z - x^k\| \le \epsilon_k} \partial f(z) \right\}$

 $S_k = \partial_{\epsilon_k} f(x^k) = \left\{ v \mid f(z) \ge f(x^k) + v^{\mathsf{T}}(z - x^k) - \epsilon_k, \forall z \right\} \text{ if } f \text{ is convex}$

Only well understood (complexity & convergence rate) for convex optimization

$$x^{k+1} = x^k - \alpha_k \cdot g_k \quad \mathsf{W}$$

Idea: ϵ -neighborhood of x^k stabilizes the direction

Not imply each other

Idea: ϵ -neighborhood of $f(x^k)$ stabilizes the direction

vith $g_k := \operatorname{argmin} \|v\|$ $v \in S_k$

 $S_{k} = \partial_{\epsilon_{k}}^{G} f(x^{k}) = \operatorname{conv}\left\{\bigcup_{\|z-x^{k}\| \leq \epsilon_{k}} \partial f(z)\right\}$

 $S_k = \partial_{\epsilon_k} f(x^k) = \left\{ v \mid f(z) \ge f(x^k) + v^{\mathsf{T}}(z - x^k) - \epsilon_k, \forall z \right\}$

Abstract theory & new construction for stable descent methods of nonsmooth optimization?

 $S_k = \partial_{\epsilon_k}^G f(x)$

Not imply each other



$$(x^k) = \operatorname{conv}\left\{ \bigcup_{\|z-x^k\| \le \epsilon_k} \partial f(z) \right\}$$

Almost impossible to compute (deterministically)

 $S_k = \partial_{\boldsymbol{\epsilon}_k} f(x^k) = \left\{ v \mid f(z) \ge f(x^k) + v^{\mathsf{T}}(z - x^k) - \boldsymbol{\epsilon}_k, \forall z \right\}$

Only well understood (complexity & convergence rate) for weakly convex optimization

A map $G: \mathbb{R}^n \times (0,\infty) \rightrightarrows \mathbb{R}^m$ is a descent-oriented ϵ -subdifferential for f if

(G1) Outer jointly limit in (x, ϵ) stays in the Clarke subdifferential:

 $\epsilon \downarrow 0, x \rightarrow \bar{x}$

(G2) Separate limits yield the minimal norm subgradient: $\lim_{\epsilon \downarrow 0} \left(\limsup_{x \to \bar{x}} G(x, \epsilon) \right) = \operatorname{argmin}\{ \|v\| \mid v \in \partial f(\bar{x}) \}$

- lim sup $G(x, \epsilon) \subset \partial f(\bar{x})$ "Gradient consistency"

- A map $G : \mathbb{R}^n \times (0,\infty) \rightrightarrows \mathbb{R}^m$ is a descent-oriented ϵ -subdifferential for f if (G1) Outer joint limit in (x, ϵ) stays in the Clarke subdifferential:
 - $\epsilon \downarrow 0, x \rightarrow \bar{x}$
- (G2) Separate limits yield the minimal norm subgradient:
 - $\lim_{\epsilon \downarrow 0} \left(\limsup_{v \to \bar{v}} G(x, \epsilon) \right) = \operatorname{argmin}\{ \|v\| \mid v \in \partial f(\bar{x}) \}$

stability in *x*

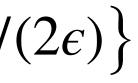
steepest descent direction $G : (x, \epsilon) \mapsto \operatorname{argmin}\{\|v\| \mid v \in \partial f(x)\}$ violates (G2)

lim sup $G(x, \epsilon) \subset \partial f(\bar{x})$

descent

The framework covers:

- Goldstein direction: $G: (x, \epsilon) \mapsto \operatorname{argmin} \{ \|v\| \mid v \in \partial_{\epsilon}^{G} f(x) \}$ **Bundle direction** (when f is convex): $G : (x, \epsilon) \mapsto \operatorname{argmin} \{ \|v\| \mid v \in \partial_{\epsilon} f(x) \}$ • Gradient of Moreau envelope (when f is convex): $G : (x, \epsilon) \mapsto \nabla e_{\epsilon} f(x)$ with $e_{\epsilon} f(x) := \inf \{f(x) + \|x - x\|^2/(2\epsilon)\}$



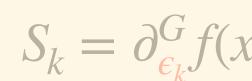
Iterate scheme: $x^{k+1} = x^k - \eta_k g^k$ for so

Asymptotic convergence: With a proper line search scheme to find ϵ_k and η_k , any accumulation point \bar{x} of $\{x^k\}$ is a stationary point, i.e., $0 \in \partial f(\bar{x})$.

ome
$$g^k \in G(x^k, \epsilon_k)$$

for

Abstract theory & new construction stable descent methods of nonsmooth optimization?



$$S_k = \partial_{\epsilon_k} f(x^k)$$

$$(x^k) = \operatorname{conv}\left\{ \bigcup_{\|z-x^k\| \le \epsilon_k} \partial f(z) \right\}$$

Almost impossible to compute (deterministically)

$$= \left\{ v \mid f(z) \ge f(x^k) + v^{\mathsf{T}}(z - x^k) - \boldsymbol{\epsilon}_k, \forall z \right\}$$

Only well understood (complexity & convergence rate) for weakly convex optimization

For a piecewise smooth function $f(x) = \max\{f_1(x), f_2(x)\},\$

$$\partial f(x) = \begin{cases} \bar{y}_1 \nabla f_1(x) + \bar{y}_2 \nabla f_2(x) \\ \end{bmatrix}$$

$\max \{ f_1(x), f_2(x) \},\$ $\frac{1}{2}(x) \quad \left| \ \bar{y} \in \underset{\{y \ge 0 | y_1 + y_2 = 1\}}{\operatorname{argmax}} \left[y_1 f_1(x) + y_2 f_2(x) \right] \right\},\$

For a piecewise smooth function $f(x) = \max\{f_1(x), f_2(x)\},\$

$$\partial f(x) = \begin{cases} \bar{\mathbf{y}}_1 \nabla f_1(x) + \bar{\mathbf{y}}_2 \nabla f_2(x) \\ \mathbf{y}_1 \nabla f_2(x) + \bar{\mathbf{y}}_2 \nabla f_2(x) \end{cases}$$

Nesterov's smooth

for some strongly cvx ϕ may not yield a descent direction of f

 $y(x) \quad \bar{y} \in \underset{\{y \ge 0 | y_1 + y_2 = 1\}}{\text{argmax}} \left[y_1 f_1(x) + y_2 f_2(x) \right] ,$

needs to be stabilized & yields descent

$$\operatorname{ning} \bar{y} = \operatorname{argmax}_{\{y \ge 0 | y_1 + y_2 = 1\}} \left[y_1 f_1(x) + y_2 f_2(x) - \frac{\epsilon \phi(y)}{\xi(y_1 - y_2)} \right]$$

For a piecewise smooth function $f(x) = \max\{f_1(x), f_2(x)\},\$ (x) $\bar{y} \in \underset{\{y \ge 0 | y_1 + y_2 = 1\}}{\text{argmax}} \left[y_1 f_1(x) + y_2 f_2(x) \right]$

$$\partial f(x) = \begin{cases} \bar{y}_1 \nabla f_1(x) + \bar{y}_2 \nabla f_2(x) \\ 0 \end{cases}$$

For any $\epsilon > 0$, define

$$G(x,\epsilon) = \left\{ \bar{y}_1^{\epsilon} \nabla f_1(x) + \bar{y}_2^{\epsilon} \nabla f_2(x) \mid \bar{y}^{\epsilon} \in \underset{\{y \ge 0 \mid y_1 + y_2 = 1\}}{\operatorname{argmax}} \left[y_1 f_1(x) + y_2 f_2(x) - \frac{\epsilon}{2} \|y_1 \nabla f_1(x) + y_2 \nabla f_2(x)\|^2 \right] \right\}$$

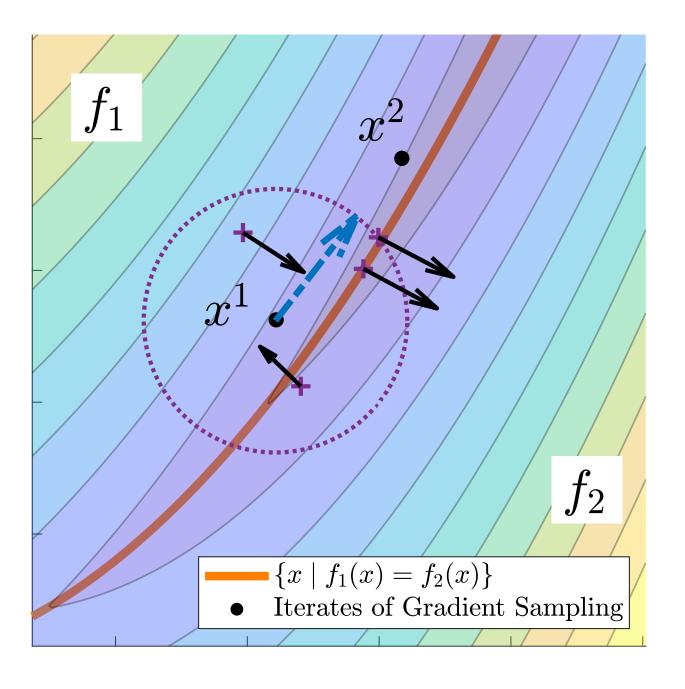
Subgradient regularization

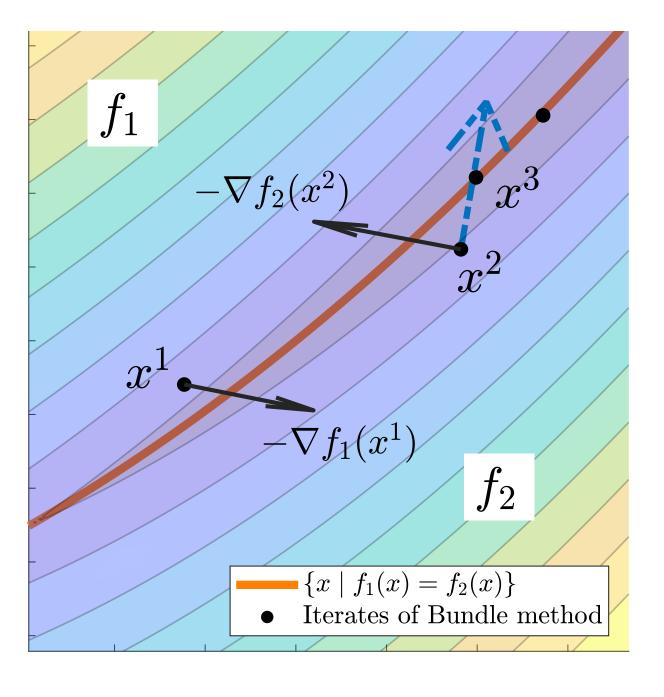
For any $\epsilon > 0$, define $G(x, \epsilon) = \begin{cases} \bar{y}_1^{\epsilon} \nabla f_1(x) + \bar{y}_2^{\epsilon} \nabla f_2(x) & | \bar{y}^{\epsilon} \in \underset{\{y \ge 0 | y_1 + y_2\}}{\text{argma}} \end{cases}$

Fact: G is a descent-oriented ϵ -subdifferential, yielding a stable descent direction

$$\sup_{y_2=1} \left[y_1 f_1(x) + y_2 f_2(x) - \frac{\epsilon}{2} \| y_1 \nabla f_1(x) + y_2 \nabla f_2(x) \|^2 \right]$$

New construction: a toy example $G(x,\epsilon) = \left\{ \left. \bar{y}_{1}^{\epsilon} \nabla f_{1}(x) + \bar{y}_{2}^{\epsilon} \nabla f_{2}(x) \right| \left. \bar{y}^{\epsilon} \in \operatorname*{argmax}_{\{y \ge 0 | y_{1} + y_{2} = 1\}} \left[y_{1}f_{1}(x) + y_{2}f_{2}(x) - \frac{\epsilon}{2} \|y_{1} \nabla f_{1}(x) + y_{2} \nabla f_{2}(x)\|^{2} \right] \right\}$

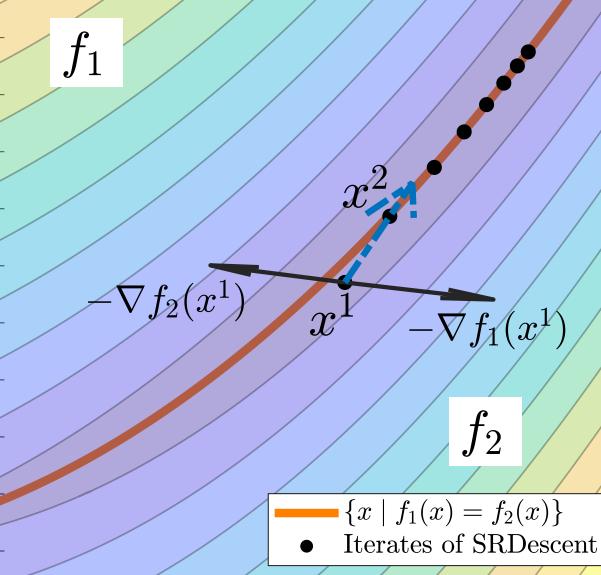




Gradient Sampling

Bundle method

combining (sub)gradients at nearby points



Subgradient Regularization

Prox-linear method to solve $f(x) = \max\{f_1(x), f_2(x)\}$:

(Fletcher, 1982, Burke and Ferris, 1995, Lewis and Wright, 2016, Drusvyatskiy and Paquette, 2019...)

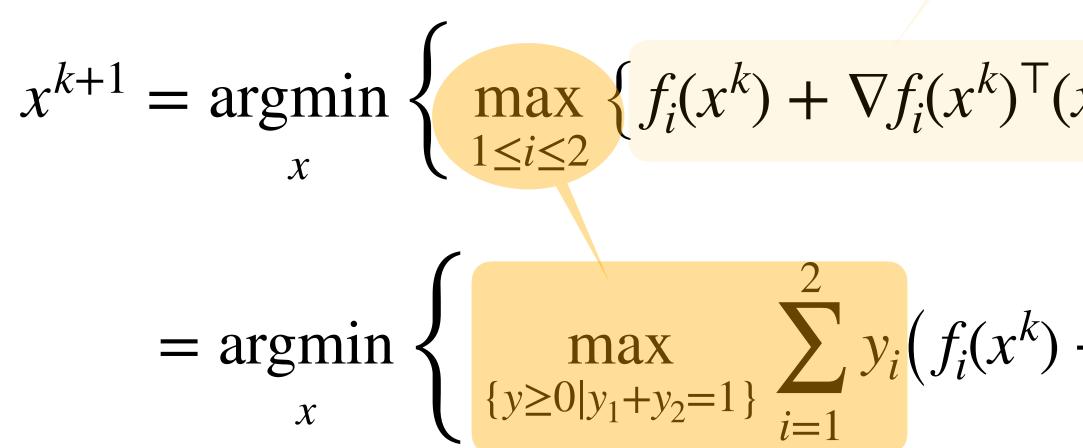
 $x^{k+1} = \underset{x}{\operatorname{argmin}} \begin{cases} \max_{1 \le i \le 2} \left\{ f_i(x^k) + \nabla f_i(x^k)^{\mathsf{T}}(x^k) \right\} \end{cases}$

linearization

$$\frac{(x-x^k)}{2\epsilon} + \frac{1}{2\epsilon} ||x-x^k||^2 \bigg\},$$

Prox-linear method to solve $f(x) = \max\{f_1(x), f_2(x)\}$:

(Fletcher, 1982, Burke and Ferris, 1995, Lewis and Wright, 2016, Drusvyatskiy and Paquette, 2019...)



linearization

$$\left(x-x^{k}\right)\left\{+\frac{1}{2\epsilon}\|x-x^{k}\|^{2}\right\},\$$

$$+ \nabla f_i(x^k)^{\mathsf{T}}(x-x^k) + \frac{1}{2\epsilon} ||x-x^k||^2$$

Prox-linear method to solve $f(x) = \max\{f_1(x), f_2(x)\}$:

(Fletcher, 1982, Burke and Ferris, 1995, Lewis and Wright, 2016, Drusvyatskiy and Paquette, 2019...)

$$x^{k+1} = \underset{x}{\operatorname{argmin}} \left\{ \max_{1 \le i \le 2} \left\{ f_i(x^k) + \nabla f_i(x^k)^{\mathsf{T}}(x - x^k) \right\} + \frac{1}{2\epsilon} ||x - x^k||^2 \right\},$$

$$= \underset{x}{\operatorname{argmin}} \left\{ \max_{\{y \ge 0 \mid y_1 + y_2 = 1\}} \sum_{i=1}^2 y_i \left(f_i(x^k) + \nabla f_i(x^k)^{\mathsf{T}}(x - x^k) \right) + \frac{1}{2\epsilon} ||x - x^k||^2 \right\}$$

$$= x^k - \epsilon \left[\bar{y}_1 \nabla f_1(x^k) + \bar{y}_2 \nabla f_2(x^k) \right]$$

where $\bar{y} \in \underset{y \in \Delta^2}{\operatorname{argmax}} \left\{ y_1 f_1(x) + y_2 f_2(x) - \frac{\epsilon}{2} ||y_1 \nabla f_1(x) + y_2 \nabla f_2(x)||^2 \right\}$

linearization

Prox-linear method to solve $f(x) = \max\{f_1(x), f_2(x)\}$:

(Fletcher, 1982, Burke and Ferris, 1995, Lewis and Wright, 2016, Drusvyatskiy and Paquette, 2019...)

$$x^{k+1} = \underset{x}{\operatorname{argmin}} \left\{ \max_{1 \le i \le 2} \left\{ f_i(x^k) + \nabla f_i(x^k)^{\mathsf{T}}(x - x^k) \right\} + \frac{1}{2\epsilon} ||x - x^k||^2 \right\},$$

$$= \underset{x}{\operatorname{argmin}} \left\{ \max_{\{y \ge 0 \mid y_1 + y_2 = 1\}} \sum_{i=1}^2 y_i (f_i(x^k) + \nabla f_i(x^k)^{\mathsf{T}}(x - x^k)) + \frac{1}{2\epsilon} ||x - x^k||^2 \right\}$$

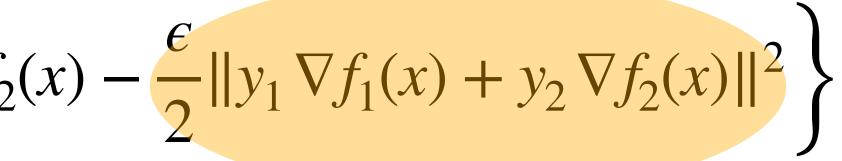
$$= x^k - \epsilon [\bar{y}_1 \nabla f_1(x^k) + \bar{y}_2 \nabla f_2(x^k)]$$

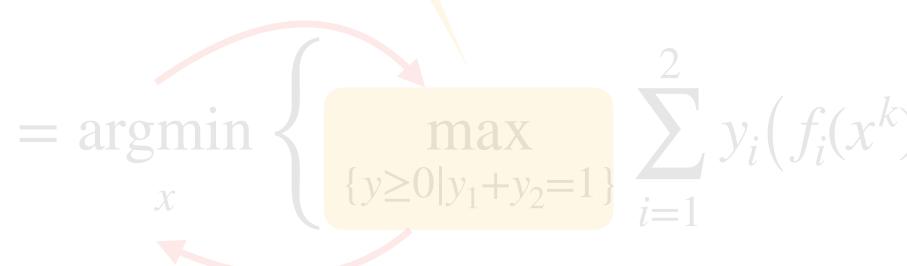
$$= \operatorname{Subgradient regularistics}$$

where $\bar{y} \in \operatorname{argmax}_{y \in \Delta^2} \left\{ y_1 f_1(x) + y_2 f_2(x) - \frac{\epsilon}{2} ||y_1 \nabla f_1(x) + y_2 \nabla f_2(x)||^2 \right\}$

linearization

ization





$$= x^k - \epsilon \left[\bar{y}_1 \nabla f_1(x^k) + \bar{y}_2 \nabla f_2(x^k) \right]$$

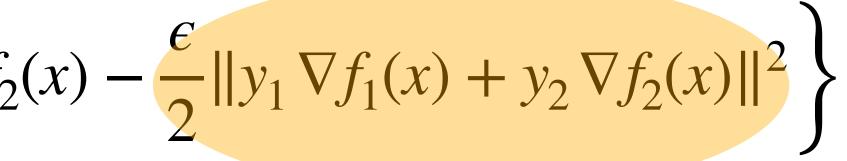
where $\bar{y} \in \underset{y \in \Delta^2}{\operatorname{argmax}} \left\{ y_1 f_1(x) + y_2 f_2(x) - \frac{\epsilon}{2} \|y_1 \nabla f_1(x) + y_2 \nabla f_2(x)\|^2 \right\}$

can be extended to composite function (convex)

 (smooth) by conjugate duality

 $\max_{\{y \ge 0 \mid y_1 + y_2 = 1\}} \sum_{i=1}^{2} y_i (f_i(x^k) + \nabla f_i(x^k)^{\mathsf{T}}(x - x^k)) + \frac{1}{2\epsilon} ||x - x^k||^2$

= Subgradient regularization



Subgradient regularization beyond composite structure

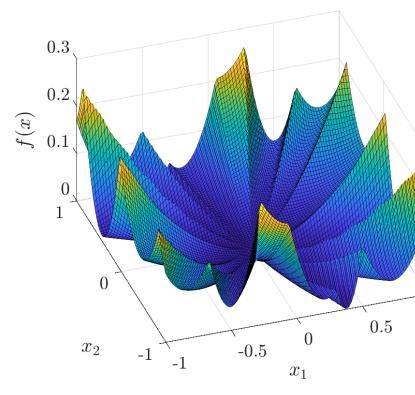
For the marginal function:

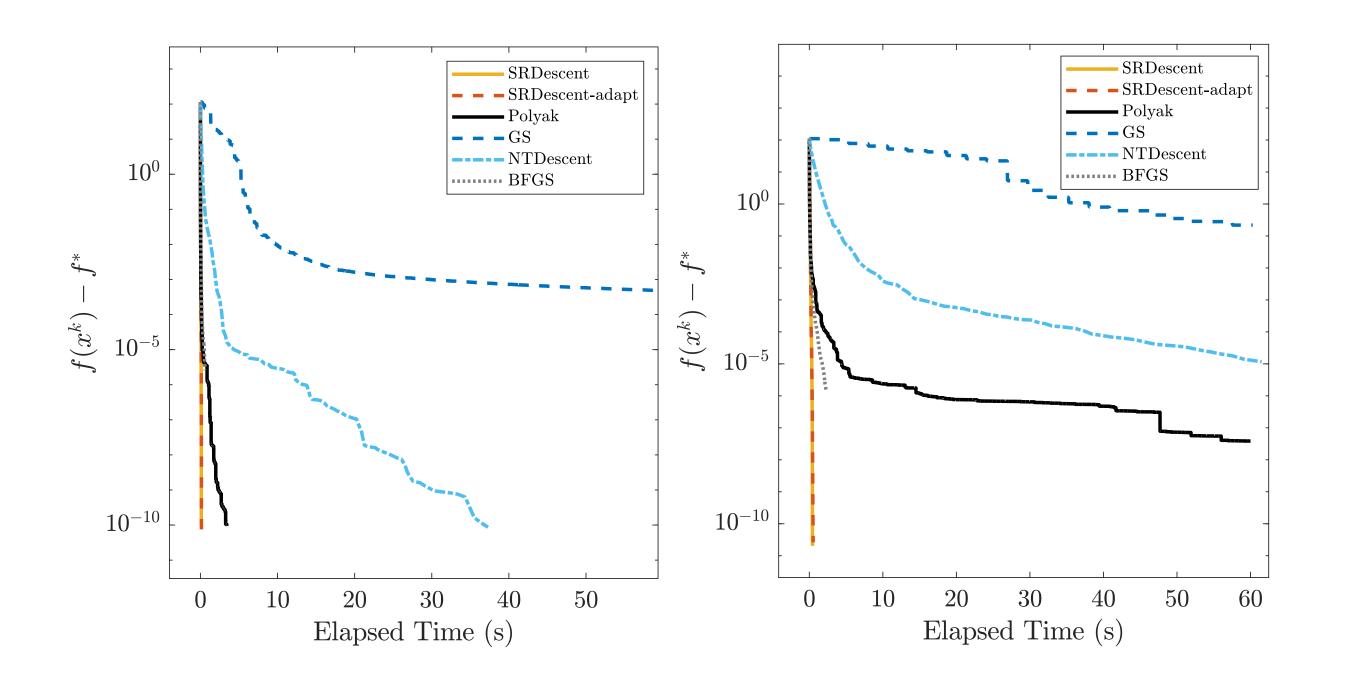
$$f(x) \triangleq \begin{bmatrix} \max_{y} \varphi_0(x, y) & \text{subject to } \varphi_j(x, y) \le 0, j = 1, \cdots, r \end{bmatrix}$$

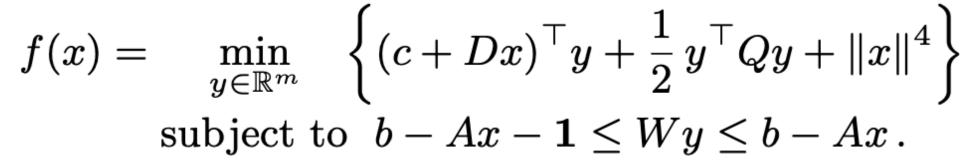
- Characterize $\partial f(x)$, and apply subgradient regularization
- Yield a stable descent direction
- Does not need f to be (weakly) convex
- Can be applied to the two-stage stochastic programs (f: the recourse function)

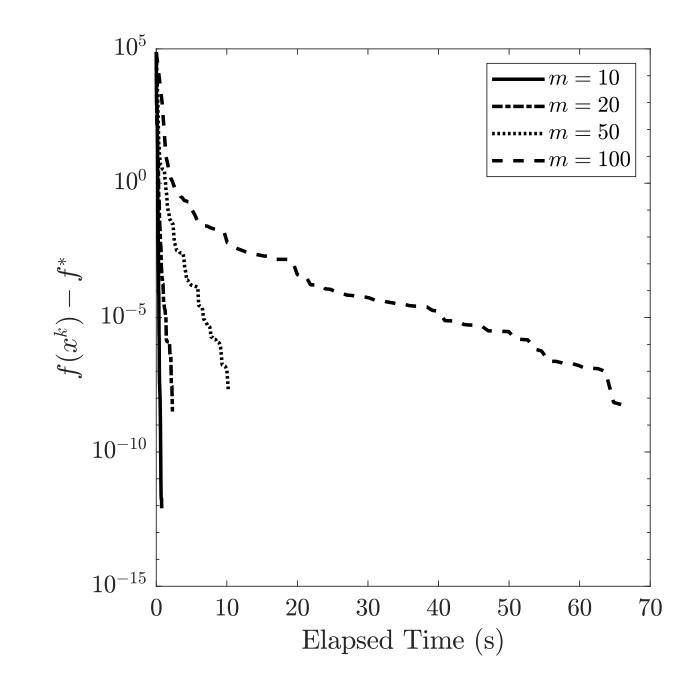
Numerical results for nonconvex cases

$$f(x) = \min_{1 \le i \le m} \frac{1}{2} ||A_i x - b_i||^2$$









Nonsmooth Optimization

Part 1: Stable Descent Directions

when the function is also nonconvex

Part 2: Benefit from Nonsmoothness

if the (sparsity) structure is properly preserved

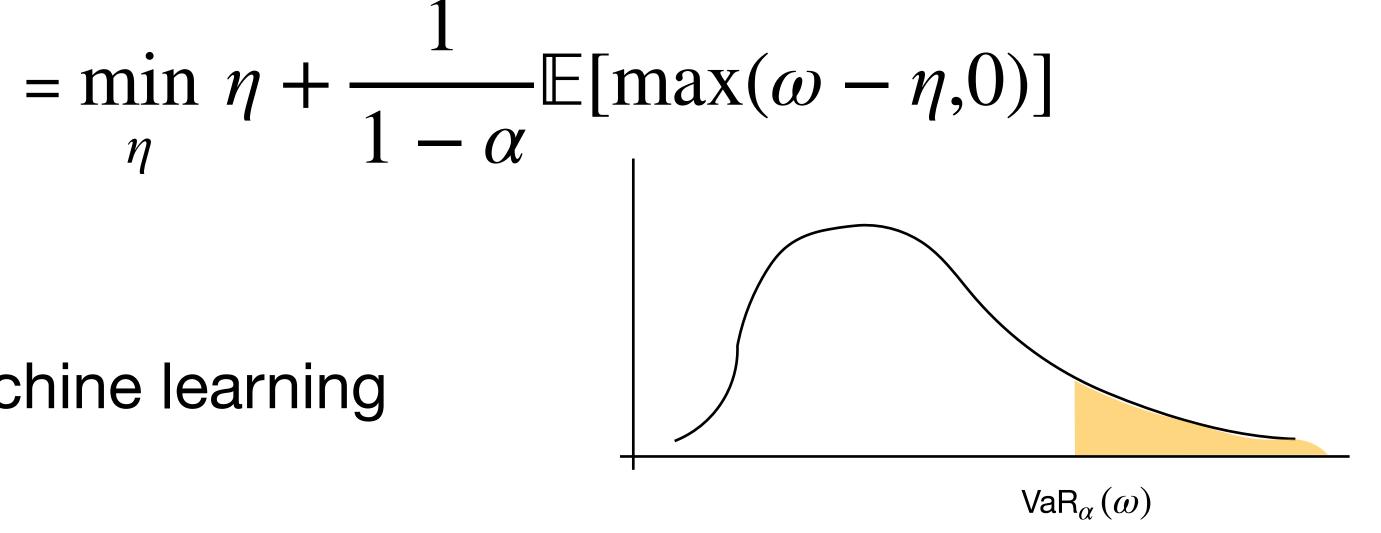
Superquantile

Superguantile / conditional value-at-risk (CVaR)

[Ben-Tal and Teboulle, Rockafellar and Uryasev, Rockafellar and Royset...]

"top-k-sum" in machine learning

 $\text{CVaR}_{\alpha}(\omega) = \text{Average of the worst } (1 - \alpha) 100\% \text{ outcomes of } \omega$



Superguantile optimization

min $\theta(x) + CVaR$ $x \in X$ s.t. $\text{CVaR}_{\alpha_i} [f_i(x_i)]$

- The problem is convex if θ , $\{f_i(\bullet, a)$
- Financial decisions, operational plans, military strategies, engineering designs, machine learning, statistical models...[see the survey paper by Royset (2023)]

$$R_{\alpha_0}[f_0(x,\omega)]$$

$$(i,\omega)] \le r_i, \quad i = 1, \cdots, L$$

$$\{v\}_{i=0}^{L}, X \text{ are convex}$$

Expectation vs Superquantile

$$\mathbb{E}[f(x,\omega)] \approx \frac{1}{S} \sum_{s=1}^{S} f(x,\omega^s)$$

Separable: samples are equally important •

$$\begin{aligned} & \operatorname{CVaR}_{\alpha}\left[f(x,\omega)\right] \approx \frac{1}{\left\lfloor 1/(1-\alpha)\right\rfloor} \sum_{s=1}^{\left\lfloor 1/(1-\alpha)\right\rfloor} f(x,\omega^{[s]}) \\ & \text{where } f(x,\omega^{[1]}) \geq f(x,\omega^{[2]}) \geq \cdots \geq f(x,\omega^{[S]}) \end{aligned}$$

• Non-separable: samples are not equally important —> only care about tail expectation

Expectation vs Superquantile

$$\mathbb{E}[f(x,\omega)] \approx \frac{1}{S} \sum_{s=1}^{S} f(x,\omega^{s})$$

• Can take an arbitrary sample to estimate the function value and the (sub)gradient

$$\begin{aligned} \operatorname{CVaR}_{\alpha}\left[f(x,\omega)\right] &\approx \frac{1}{\left\lfloor 1/(1-\alpha)\right\rfloor} \sum_{s=1}^{\left\lfloor 1/(1-\alpha)\right\rfloor} f(x,\omega^{[s]}) \\ \end{aligned}$$
where $f(x,\omega^{[1]}) \geq f(x,\omega^{[2]}) \geq \cdots \geq f(x,\omega^{[S]}) \end{aligned}$

• $f(x, \omega^s)$ has to belong to the right-tail to generate a non-trivial (sub)gradient

)

Expectation vs Superquantile

$$\mathbb{E}[f(x,\omega)] \approx \frac{1}{S} \sum_{s=1}^{S} f(x,\omega^s)$$

$$CVaR_{\alpha}[f(x,\omega)] \approx \frac{1}{\lfloor 1/(1-\alpha) \rfloor} \sum_{s=1}^{\lfloor 1/(1-\alpha) \rfloor} f(x,\omega^{[s]})$$

where $f(x,\omega^{[1]}) \ge f(x,\omega^{[2]}) \ge \cdots \ge f(x,\omega^{[S]})$

• Function evaluations can be expensive, e.g., recourse functions, neural networks; in fact, even if $f(\bullet, \omega)$ is affine when the number of scenarios is large.

Superquantile optimization

reduce the number of evaluations for function values and (sub)gradients

a second-order method?

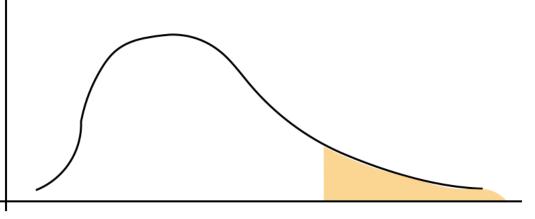
Superguantile optimization

- reduce the number of evaluations for function values and (sub)gradients
 - a second-order method?

expensive to formulate "Hessian" matrices + solve linear equations?

Superguantile optimization

- reduce the number of evaluations for function values and (sub)gradients second order method?
 - cheap
 - expensive to formulate "Hessian" matrices + solve linear equations!
 - Blessing of the tail risk: "Hessian" is sparse



 $VaR_{\alpha}(\omega)$

only a small proportion of scenarios matters

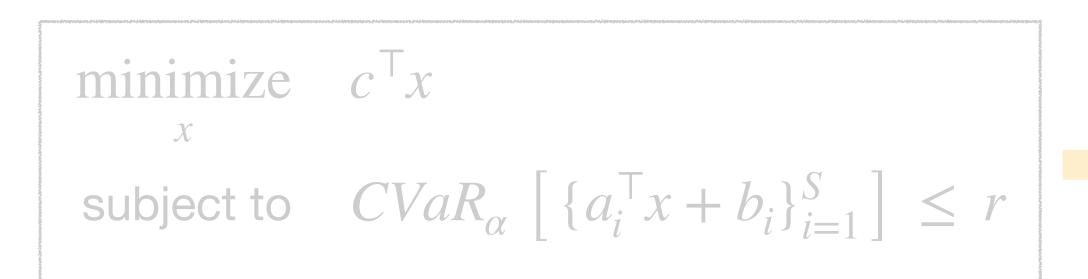
minimize $c^{\mathsf{T}}x$ ${\mathcal X}$ subject to **CVaR**

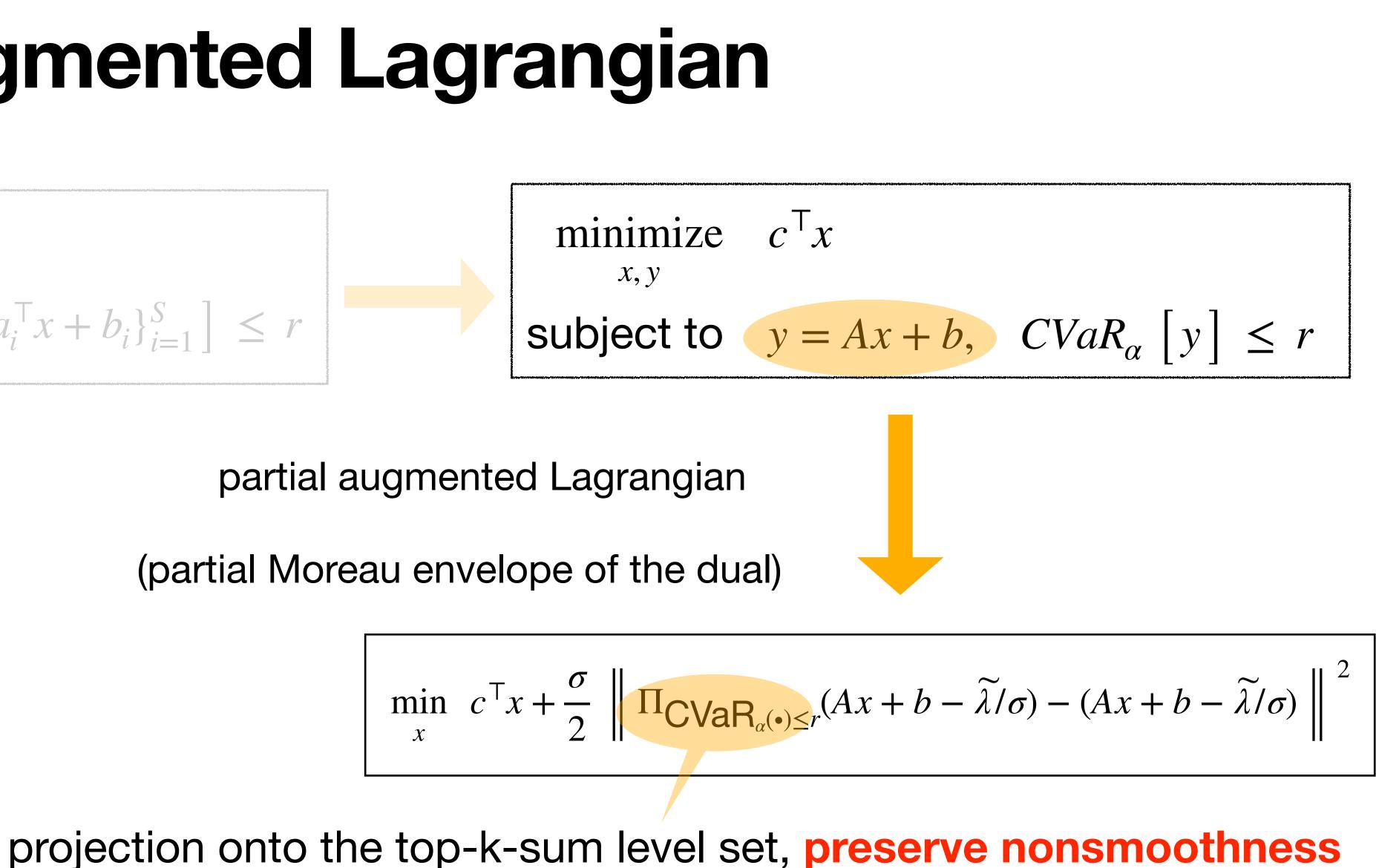
Consider a simplified problem: linear objective, one CVaR constraint, no side constraints

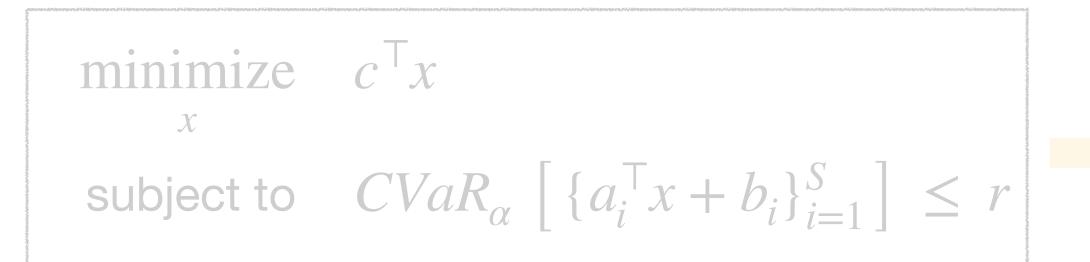
$$P_{\alpha}\left[\left\{a_{i}^{\mathsf{T}}x+b_{i}\right\}_{i=1}^{S}\right] \leq r$$

 $\begin{array}{ll} \underset{x}{\text{minimize}} & c^{\top}x\\ \text{subject to} & CVaR_{\alpha} \left[\left\{ a_{i}^{\top}x + b_{i} \right\}_{i=1}^{S} \right] \leq r \end{array}$

$\begin{array}{lll} \text{minimize} & c^{\mathsf{T}}x\\ x,y & \\ \text{subject to} & y = Ax + b, \quad CVaR_{\alpha} \begin{bmatrix} y \end{bmatrix} \leq r \end{array}$

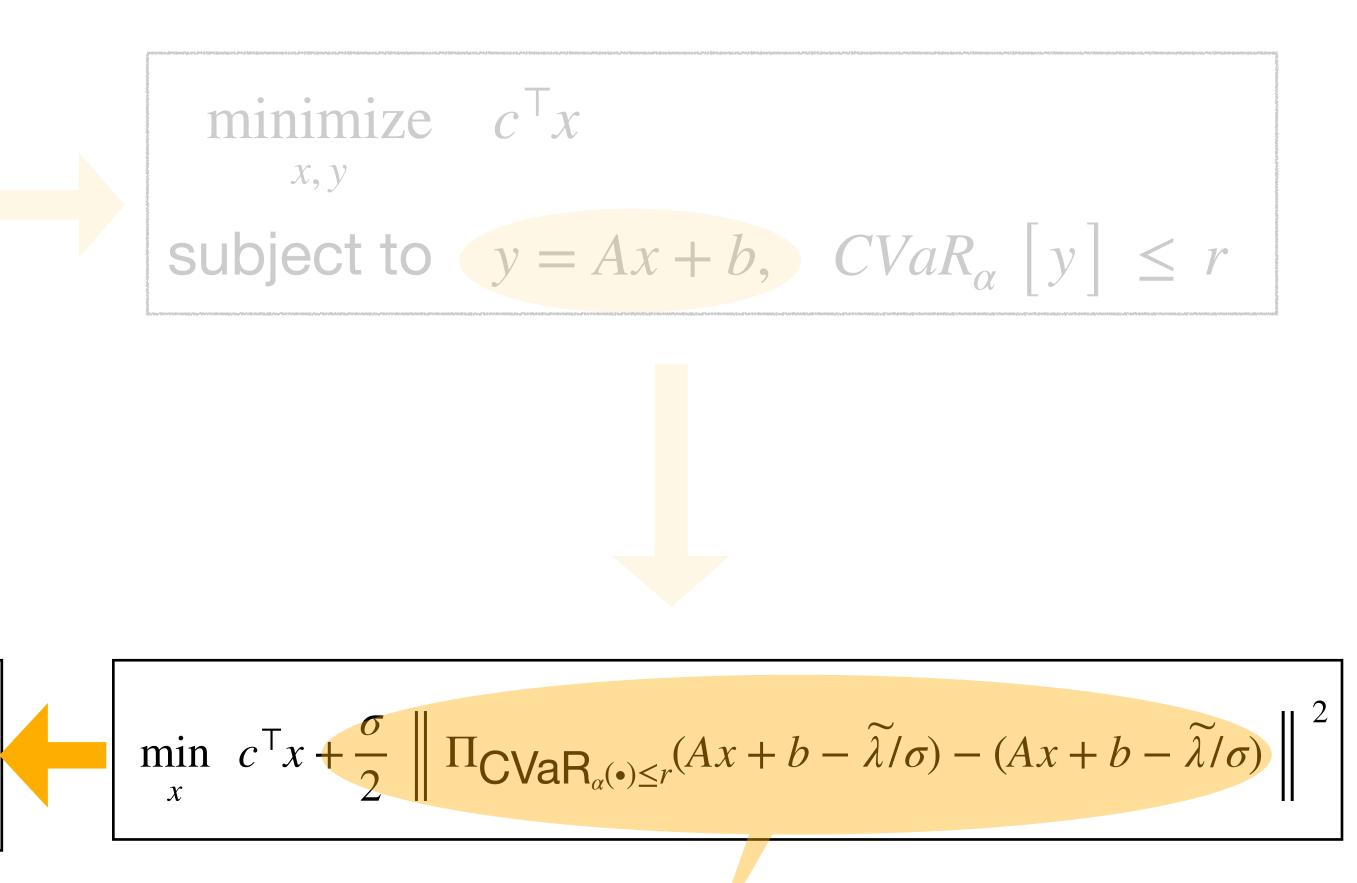




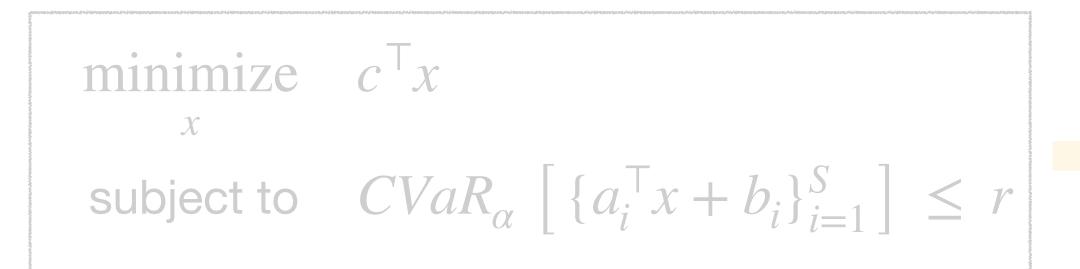


$$c + \sigma A^{\top} \left[Ax + b - \widetilde{\lambda} / \sigma - \Pi_{\mathsf{CVaR}_{\alpha}(\bullet) \leq r} (Ax + b - \widetilde{\lambda} / \sigma) \right] = 0$$

optimality condition

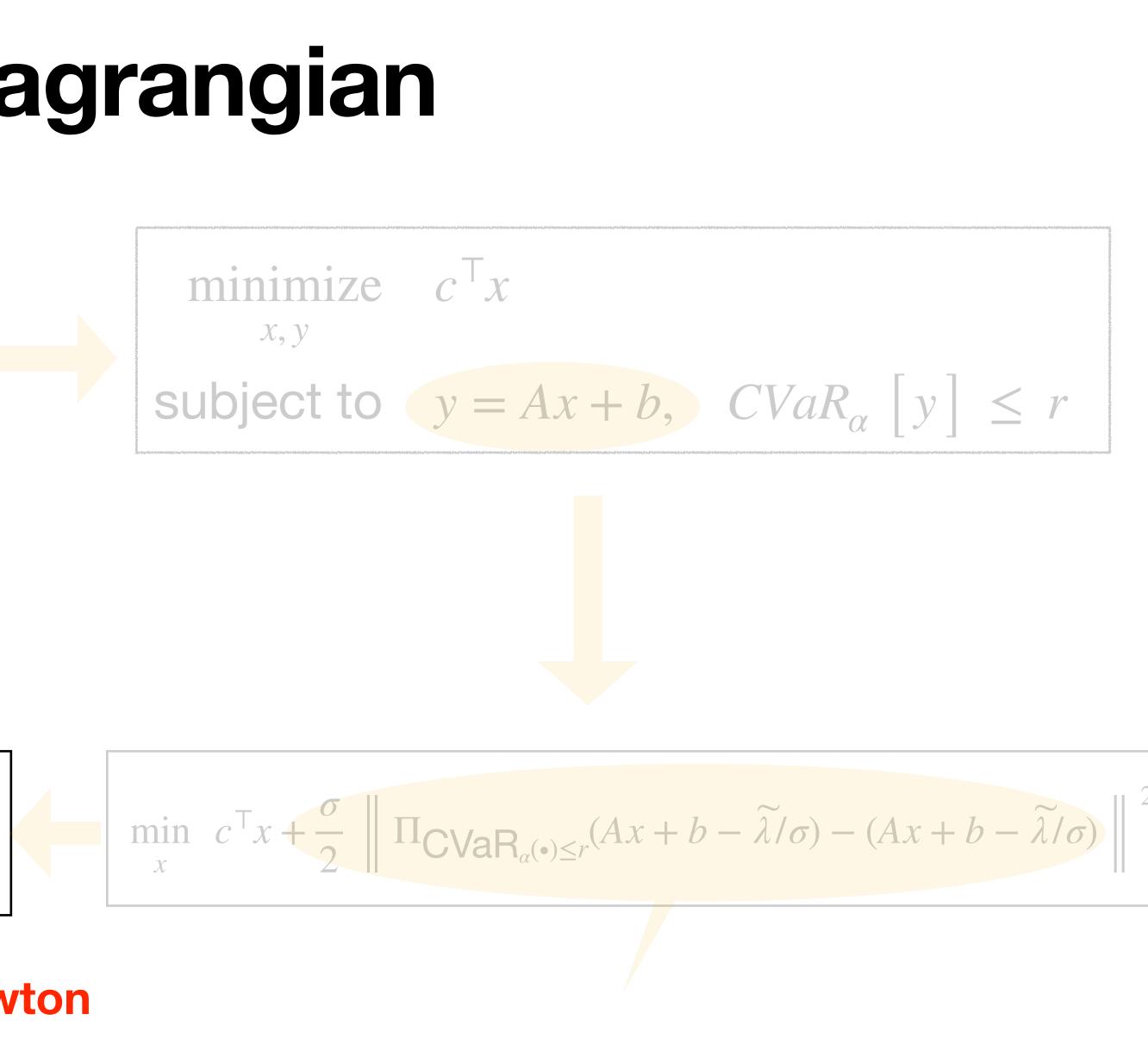


continuously differentiable

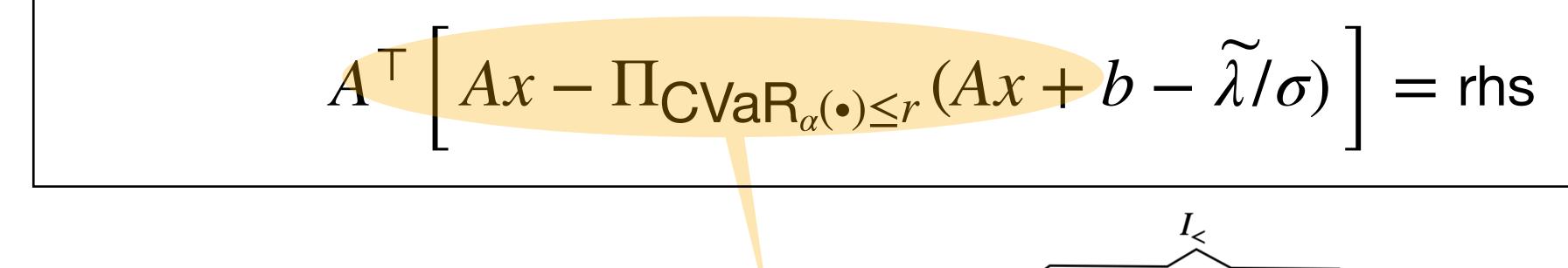


$$c + \sigma A^{\top} \left[Ax + b - \widetilde{\lambda} / \sigma - \Pi_{\mathsf{CVaR}_{\alpha}(\bullet) \leq r} (Ax + b - \widetilde{\lambda} / \sigma) \right] = 0$$

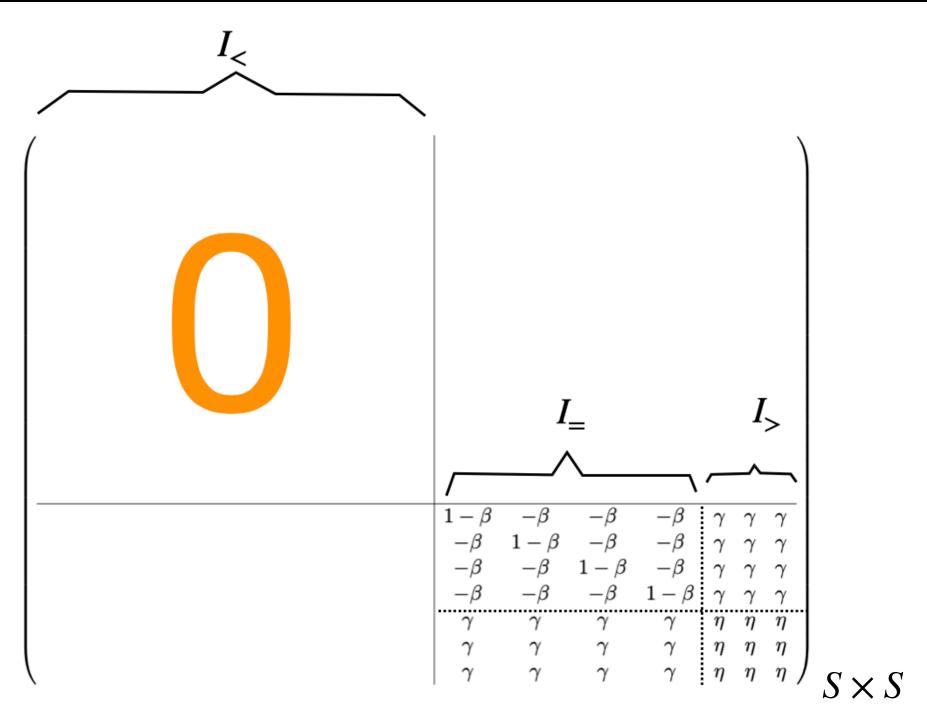
piecewise affine equation \rightarrow semismooth Newton



Generalized Jacobian (`Hessian")

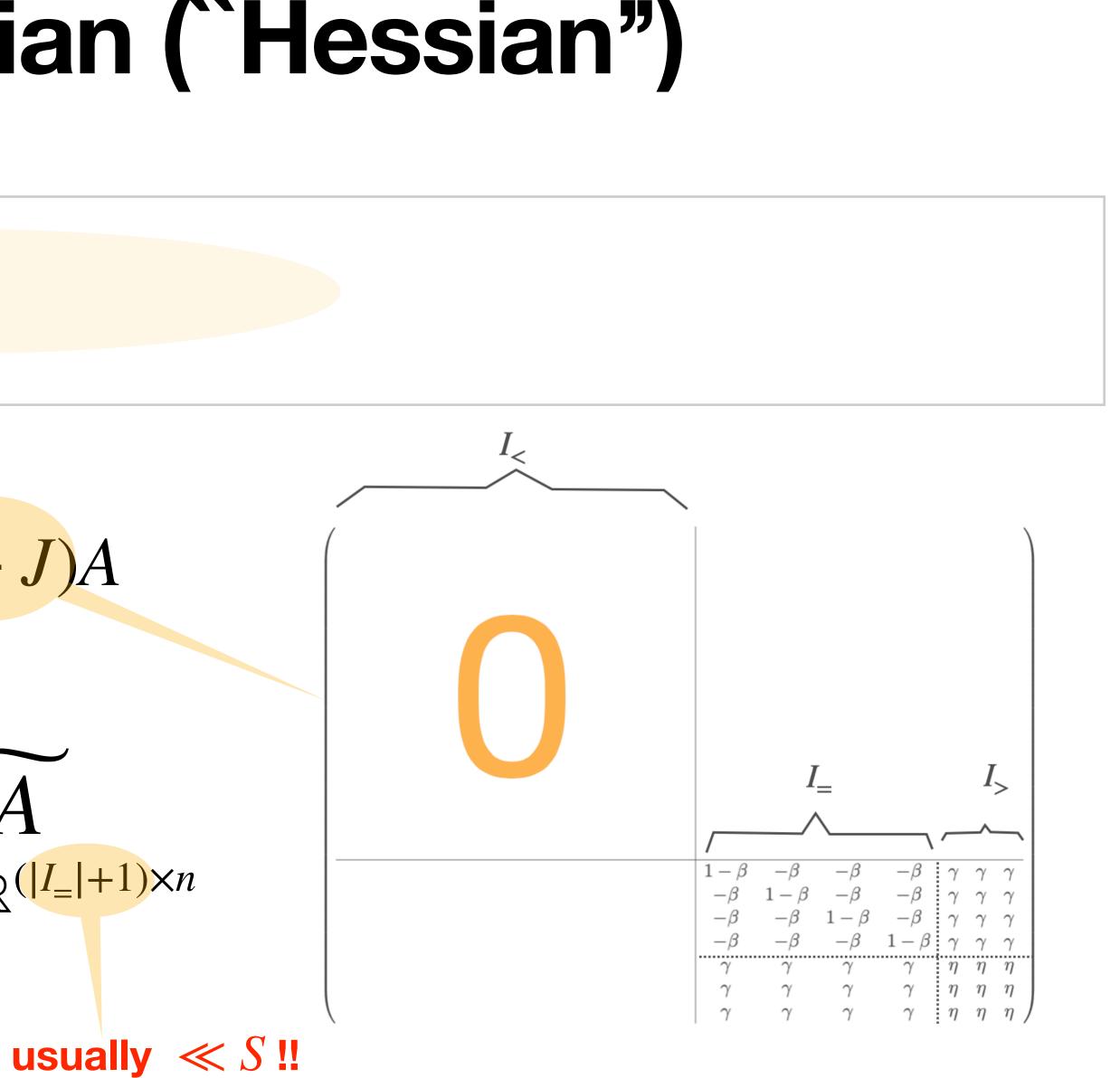


• Generalized Jacobian: $A^{\top}(I - J)A$

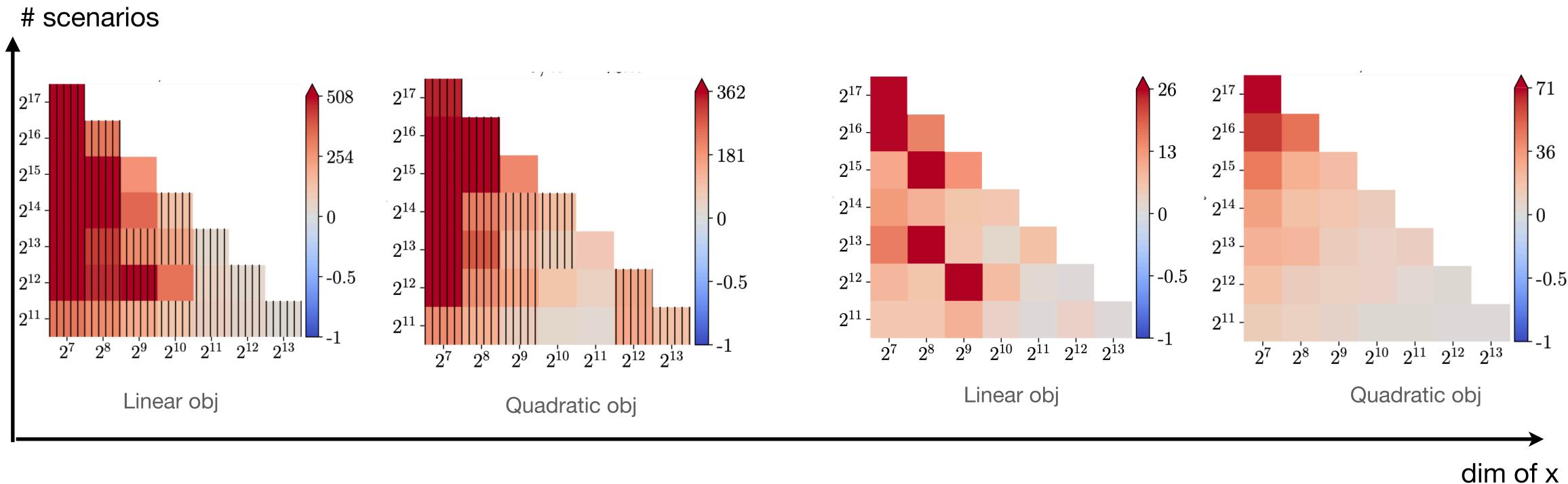


Generalized Jacobian (`Hessian")

Generalized Jacobian: $A^{\top}(I - J)A$ where $\widetilde{A} \in \mathbb{R}^{(|I_{=}|+1) \times n}$



Comparison with OSQP & Gurobi



Compare with OSQP for low-accurate solutions (1e-3)

Compare with Gurobi for high-accurate solutions (1e-6)

Thank you!

Hanyang Li and Ying Cui. Subgradient Regularization: A Descent-Oriented Subgradient Method for Nonsmooth Optimization (2025).

Hanyang Li and Ying Cui. Variational Theory and Algorithms for a Class of Asymptotically Approachable Nonconvex Problems. Mathematics of Operations Research (2025).

Hanyang Li and Ying Cui. A Decomposition Algorithm for Two-Stage Stochastic Programs with Nonconvex Recourse Functions. SIAM Journal on Optimization (2024).

Jake Roth and Ying Cui. Optimization with superquantile constraints: a fast computational approach (2024).

Algorithm

$$\begin{aligned} & \text{for } k = 0, 1, \cdots \\ & \text{for } i = 0, 1, \cdots \\ & \text{Generate a direction } g^{k,i} \in G(x^k, \epsilon_{k,0} 2^{-i}) \\ & \text{if } \exists \eta_k \in \left\{ e_{k,0}, \cdots, e_{k,0} 2^{-i} \right\} \text{ with } f\left(x^k - \eta_k g^{k,i}\right) \leq f(x^k) - \alpha \eta_k ||g^{k,i}||^2 \\ & \text{Update } x^{k+1} = x^k - \eta_k g^{k,i} \text{ and } \mathbf{break} \\ & \text{if } ||g^{k,i}|| \leq \nu_k \end{aligned} \end{aligned}$$

$$\begin{aligned} & \text{Update } \epsilon_{k+1,0} = \epsilon_{k,0}/2 \text{ and } \nu_{k+1} = \nu_k/2 \\ & \text{else set } \epsilon_{k+1,0} = \epsilon_{k,0} \text{ and } \nu_{k+1} = \nu_k \end{aligned}$$

Algorithm

$$\begin{aligned} & \text{for } k = 0, 1, \cdots \\ & \text{for } i = 0, 1, \cdots \\ & \text{Generate a direction } g^{k,i} \in G(x^k, e_{k,0} 2^{-i}) \\ & \text{if } \exists \eta_k \in \left\{ e_{k,0}, \cdots, e_{k,0} 2^{-i} \right\} \text{ with } f\left(x^k - \eta_k g^{k,i}\right) \leq f(x^k) - \alpha \eta_k ||g^{k,i}||^2 \\ & \text{Update } x^{k+1} = x^k - \eta_k g^{k,i} \text{ and } \text{break} \\ & \text{if } ||g^{k,i}|| \leq \nu_k \end{aligned} \end{aligned}$$

$$\begin{aligned} & \text{Ine-search} \\ & \text{Update } e_{k+1,0} = e_{k,0}/2 \text{ and } \nu_{k+1} = \nu_k/2 \\ & \text{else set } e_{k+1,0} = e_{k,0} \text{ and } \nu_{k+1} = \nu_k \end{aligned}$$

The inner-loop terminates for sufficiently large i (\exists descent directions at x^k)

Algorithm

$$\begin{aligned} & \text{for } k = 0, 1, \cdots \\ & \text{for } i = 0, 1, \cdots \\ & \text{Generate a direction } g^{k,i} \in G(x^k, e_{k,0} 2^{-i}) \\ & \text{if } \exists \eta_k \in \left\{ e_{k,0}, \cdots, e_{k,0} 2^{-i} \right\} \text{ with } f(x^k - \eta_k g^{k,i}) \leq f(x^k) - \alpha \eta_k ||g^{k,i}||^2 \\ & \text{Update } x^{k+1} = x^k - \eta_k g^{k,i} \text{ and } \mathbf{break} \\ & \text{if } ||g^{k,i}|| \leq \nu_k \end{aligned} \end{aligned} \right\} line-search \\ & \text{Update } e_{k+1,0} = e_{k,0}/2 \text{ and } \nu_{k+1} = \nu_k/2 \\ & \text{else set } e_{k+1,0} = e_{k,0} \text{ and } \nu_{k+1} = \nu_k \end{aligned}$$

Theorem: Any accumulation point \bar{x} of $\{x\}$

Idea: { x^k } will not converge to a non-stationary point [$G(x, \epsilon)$ is "stable" in x]:

$$\{x^k\}$$
 is a stationary point, i.e., $0 \in \partial f(\bar{x})$.

- If x^k close to a non-stationary point $\bar{x} \Rightarrow G(x^k, \epsilon)$ close to $G(\bar{x}, \epsilon)$ [for a fixed $\epsilon > 0$]
 - \Rightarrow x^k escapes \bar{x} for sufficiently small ϵ