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Plan

Sampling in Continuous Time via Langevin Dynamics



Sampling Problem

Goal: Sample from a probability distribution v on R? with density
v(z) oc exp(—f(z))

e Assume f: R — R is twice-differentiable

® Assume we can evaluate score function V f(z), but don't
know the normalizing constant [, exp(—f(x))dz < co.

e Useful for Bayesian inference, numerical integration,
uncertainty quantification, differential privacy, ...

€.g.: pposterior(x | y) X pprior(l') 'plikelihood(y | :E)



Optimization and Sampling

Optimization
min f(x
B i)
Sampling

v(z) oc exp(—f(x))




Dynamics and Algorithms for Optimization min,cga f(z)

Gradient Flow (GF) Xt
X, = - Vf(X)
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Dynamics and Algorithms for Sampling v o< exp(—f)

Langevin Dynamics (LD) X4,

dX, = — V(X)) dt ++/2 dW,

Unadjusted Langevin Algorithm (ULA) Proximal Sampler (PS)

Vi =X T4/
Xep1 = X — 0 V) +4/2n 7,

i ~ oxp (=05 l1¥ = il




Sampling via Langevin Dynamics
To sample from v < e~/, the Langevin dynamics is the SDE:
dX; = =V f(X;)dt + V2 dW;
where (W}):>¢ is the standard Brownian motion on R4,
® Target distribution v is stationary, and X; ~ py - vast — o
® Density p;: R? — R evolves via the Fokker-Planck equation:

Ope

o o pe
=V (V) +Dp =V (pev1082)

® Optimization meaning: In the space of probability distributions
P(R?) with Wasserstein Wy metric, this is gradient flow for
minimizing KL divergence [Jordan, Kinderlehrer, Otto '98]

pr = —gradyy, KL(p¢ || v)



KL Divergence, Fisher Information, De Bruijn's ldentity

e Kullback-Leibler (KL) Divergence between p and v on R? is:
_ P
KL(p||v) = E, |log 2]
o KL(p||v) >0, and KL(p||v) =0 iff p = v.

® The Relative Fisher Information between p and v on R? is:
o112
Fi(p||v) = E, [HVIog 4 }

® de Bruijn’s identity: If p; evolves along Langevin dynamics:

d

EKL(Pt |v) = —Fl(p: | v)



Definitions: SLC and LSI Distributions

Def: v « e~/ is a-strongly log-concave (SLC)
if f is a-strongly convex (V2f(z) = ol).

Optimization meaning: p — KL(p | v) is a-strongly convex on (P(R%), W,).

Def: v satisfies a-log-Sobolev inequality (LSI)
if for all probability distributions p < v: /\//V\\/\
Fi(p||v) > 2aKL(p | »)

o Optimization meaning: a-Polyak-tojaciewicz (PL) condition:

lgradhy, , KL(p ()] > 20 KL(p]| ).

o Lemma: o-SLC = o-LSI [Bakry-Emery '85]

o LSl is stable under bounded perturbation [Holley-Stroock], Lipschitz mapping



Mixing Time of Langevin Dynamics

dX, = =V f(X;) dt + V2 dW,

If v is a-strongly log-concave (f is a-strongly convex), then:

o Contraction in W» distance: If p;, v evolve along Langevin:

Wa(pe, 70)% < e 2 Wy (po, 70)?

o Convergence in relative Fisher information to v o< e~ /:
Fi(p: || v) < e7**Fl(po || v)

If v satisfies a-log-Sobolev inequality (LSI), then:

o Exponential convergence in KL (also Rényi) divergence:

KL(pt || v) < e KL(po || v)



Mixing Time of Langevin Dynamics: Optimization View

Langevin Dynamics: Gradient Flow:
dX; = —Vf(X;)dt + V2 dW, X; = —VF(Xy)
o v is a-strongly log-concave: o F'is a-strongly convex:
Wa(pe,70)* < €2 Walpo, 0)? 1% = Yell* < 722 | Xo — Yo|?
o v is a-strongly log-concave: o F'is a-strongly convex:
Fl(pz || v) < e ¥ Fl(po || v) IVF(X)|? < e | VF(Xo)|I?
o v satisfies a-LSI: o F satisfies a-PL (min F' = 0):
KL(p¢ || v) < e 2 KL(po || v) F(X;) < e 2 F(Xo)




Mixing Time of Langevin Dynamics: To Discrete Time?

Xy,

dXy = —Vf(Xy) dt + V2 dW;

Good mixing time of Langevin dynamics under SLC/LSI
o (& Convergence of Gradient flow under strong convexity/PL)

O Langevin also has good convergence in Rényi and ®-divergence

But these are in continuous time! What about in discrete time?
1. Unadjusted Langevin Algorithm, which is explicit but biased.

2. Proximal Sampler, which is implicit but unbiased.

Unadjusted Langevin Algorithm (ULA) Proximal Sampler (PS)

«_/' Pre+d
K1 Pk+1

—Vilx)

° X
Xk-1 K



Plan

Discrete-time Algorithm 1: Unadjusted Langevin Algorithm



Optimization & Sampling in

Gradient Flow:

X, = —VF(Xy)

o F satisfies a-PL (min F' = 0):

F(X;) < e 2% F(X,)

Discrete Time
Langevin Dynamics:
dXy = —Vf(Xy) dt + V2 dW;

o v satisfies a-LSl:

KL(p¢ [|v) < e >* KL(po || v)

Gradient Descent:
Tht1 = T — NV F (zg)
o Fis a-PL & L-smooth, n < i:

F(zx) < (1—an)® F(xo)




Optimization & Sampling in

Gradient Flow:

X, = —VF(Xy)

o F satisfies a-PL (min F' = 0):

F(X;) < e 2 F(Xo)

Discrete Time
Langevin Dynamics:
dXy = —Vf(Xy) dt + V2 dW;

o v satisfies a-LSl:

KL(p¢ [ v) < e > KL(po || )

Gradient Descent:
Tp1 = zk — NV F (k)
o Fis a-PL & L-smooth, n < -

F(zx) < (1 - an)® F(zo)

Unadjusted Langevin Algorithm?

X1 =X — Vi) +4/2n 5




Unadjusted Langevin Algorithm

The Unadjusted Langevin Algorithm (ULA) for v o< e~/ is:

Tpr1 = T — NV f(xg) + /21 2
where 1 > 0 is step size, and z; ~ N(0, I) is independent.
® As 1 — 0, ULA recovers the Langevin dynamics.

® For fixed n > 0, ULA is biased: xj ~ pg LinicN Uy # U

o Eg. if v =N (0,11), then v, =N (0, -2 1),

> a(l—Ena)
o = Low-accuracy iteration complexity guarantee



Example: Gaussian Target

Suppose f(z) = %||z[? so v o e=/ = N(0,a" 1) on R%.

Suppose X¢ ~ po = N (mq,021) for some mg € R%, 03 > 0.

1. Continuous-time Langevin dynamics:

1— —2at
o =N (e‘atmo, (e‘mtag + +> I)

2. Discrete-time ULA:

o =N <(1 — an)*my, <(1 — an)*a + é (%)) I)



Unadjusted Langevin Algorithm
The Unadjusted Langevin Algorithm (ULA) for v oc e/ is:

Trt1 = T — NV f(zr) + /20 2k

where 1 > 0 is step size, and z ~ N(0, I) is independent.

® For fixed n > 0, ULA is biased: xj ~ pg i Uy # U

o Eg.if v =N (0,11), then v, = N (0, -y 1).

> a(l—4na)
o = Low-accuracy iteration complexity guarantee

® Many biased convergence guarantees for f strongly convex
and smooth [Dalalyan '15, Durmus & Moulines '17, Cheng & Bartlett '18,

Durmus et al '19 “Analysis of Langevin Monte Carlo via convex optimization”]

® Can remove bias by: ULA + Metropolis filter = MALA

o High-accuracy, but analysis more complicated, weaker metrics.

o Opt meaning: TV projection to the space of reversible
Markov chains [Billera & Diaconis, 2001]



ULA: Biased Convergence Guarantee

Theorem:! Assume v is a-LS| and L-smooth (||V2f||op < L).
Along ULA zy, ~ py with step size n < 73, for all k > 0:

_ dL?
KL(p [[v) < =™ KL(po || v) +
= To get KL(px || v) <€, choose 7= de—z; , and run ULA from

po = N (z*, %I) for number of iterations::

1 2
k=0 (—log—KL(pO ””>> =0<dL2 lo gd)
an € ex

. Iteration complexity of ULA for LSI+smooth target: O(poly(1))
o cf. cts-time Langevin dynamics: t = O(1log ¢) = O(log 1)
o c.f. gradient descent: k = O(£1log ¢) = O(log 1)

1[Vempa|a, W., “Rapid Convergence of ULA: Isoperimetry Suffices”, NeurlPS 2019]



Why is ULA Biased??

Tpr1 = Tk —nVf(xg) + V21 2y,

® Sampling is solving a composite optimization problem:
minyepen (KL V) = Bplfl  —H(p) |
® Langevin dynamics is running the composite gradient flow:
dX; = —Vf(Xpdt + V2dW;
® ULA is the “Forward-Flow" discretization:

1. Run gradient descent for minimizing ~ E,[f]

2. Run gradient flow for minimizing  —H(p)

Issue: Forward-Flow is biased for general optimization...

From Opt: Should run “Forward-Backward” — unbiased

o But backward method for entropy is not implementable...

2[W., “Sampling as Optimization in the Space of Measures: Langevin Dynamics as a
Composite Optimization Problem”, COLT 2018]



Unbiased Discretizations of Langevin Dynamics

® The backward (proximal) method for KL divergence
“JKO scheme” [Jordan, Kinderlehrer, Otto, 1998]

1
=arg min << KL(p|v)+ =—Wh(p, 2}
s =argmin, {KLI2) + 5-Walo. )

® The Forward-Backward algorithm for KL divergence
[Salim, Korba, Louise, NeurlPS 2020]

Tl = Tk — nv f(zk) ~ Pr+1

1
Pk41 = arg pergiﬁd){ () o 20, Pry 1) }

Issues: The above are not implementable as an algorithm (that
maintains only a sample zj ~ py), except e.g. for Gaussian target.
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Discrete-time Algorithm 2: Proximal Sampler



Optimization & Sampling in
Gradient Flow:
.XE ::‘—‘7l?LXi)

o F satisfies a-PL (min F' = 0):

F(X;) < e 2™ F(Xo)

Discrete Time
Langevin Dynamics:

dX; = =V f(X;)dt + V2 dW;

o v satisfies a-LSl:

KL(pt || v) < e KL(po || v)

Proximal Gradient:

|l — @)

Tpy1 = arg min f(z) + o

z€R?
o F satisfies a-PL (min F = 0):

F(xo)

F(xk)ﬁm




Optimization & Sampling in Discrete Time

Gradient Flow:
Xt = —VF(Xt)

o F satisfies a-PL (min F' = 0):

F(X;) < e 2% P(Xo)

Langevin Dynamics:
dX; = =V f(X;)dt + V2 dW;

o v satisfies a-LSl:

KL(pt || v) < e KL(po || v)

Proximal Gradient:

i1 = arg min f(z) + o
o F satisfies a-PL (min F' = 0):

F(xo)

P = 05 ane

= — k|

Proximal Sampler:

Pk o

«_/’ Prcr§
Pk+1

)’k=xk+\/ﬁzk

Sir ~ exp (=f0=llx = )



Proximal Sampler

To sample from v¥ (z) o e~ 1) on R?, consider joint distribution
XY 1 2
P (@) exp (=10 = o-llo— ol

® Note the z-marginal is ¥, so it suffices to sample from XY

Algorithm: Run Gibbs sampling on XV

Proximal Sampler: [Titsias, Papaspiliopoulos (2018); Lee, Shen, Tian (2021)]

Loyy | oy, ~ vV IX=% = N (g, )

2. gy | yn ~ XY=V (1) oc exp (—f(:n) — ﬁ”w - yk\|2>
* Jointly vXY-reversible = z-marginal is v* (unbiased!)
® Second step is called the Restricted Gaussian Oracle (RGO):

XIY=¥(z) oc exp (—f(:c) -l - y|2)



Implementing the RGO

AY=Y(z) oy exp (—f@:) - 5l - y||2)

® Assume f is L-smooth: —LI < V2f(x) < LI for all x € R%

e If <1, then gy(z)= f(z)+ ﬁ“x —y|I*> s strongly

14+nL

convex and smooth with condition number k= =y

® Then we can implement RGO via rejection sampling (with

Gaussian proposal) with  E[# queries to f] < k%

1+2
=

d
° If n= 75, then k¥ = ( > < O(1) is a constant.

® Therefore, can implement the Proximal Sampler with n = ﬁ.



Example: Gaussian Target
Suppose f(z) = %||z[? so v o e=/ = N(0,a71I) on R%.

Suppose Xg ~ po = N (myg,d2I) for some mg € RY, 02 > 0.

1. Continuous-time Langevin dynamics:

1— —2at
pr =N (e_atmo, (e‘gatag o ) I)
a

2. Discrete-time ULA:

pr =N ((1 — am)*m, ((1 — an)®of + é <1 — (- an)%)> I>

(1—3anm)

3. Discrete-time Proximal Sampler:

ox :N<<1 j_”;,?)k, ((1 jjn)% *é (1 - m» I)




Proximal Sampler: Unbiased Convergence Guarantees

Theorem:3 If vX « e~/ satisfies a-Log Sobolev Inequality (LSI),
then along the Proximal Sampler x ~ pr with step size n > 0:

KL(po || ¥)
KL Xy <
(pk || v ) = (1 +a77)2k

® |f fis L-smooth, with RGO via rejection sampling with n = ﬁ:
To get KL(py || v™) < &, run Proximal Sampler for # of iterations:

X
k=0 (d—Llog—KL(pO Iv )> =0 <%logc—l>
(6 g (0%

€

o c.f. continuous-time Langevin: ¢t = O(2 log g)

o c.f. proximal gradient for optimization: k = O(g log g)

3[Chen, Chewi, Salim, W., “Improved Analysis for a Proximal Algorithm for Sampling”,
COLT 2022]



Optimization & Sampling in Discrete Time

Gradient Flow:
Xt = —VF(Xt)

o F satisfies a-PL (min F' = 0):

F(X;) < e 2% P(Xo)

Langevin Dynamics:
dX, = —Vf(X;) dt + V2 dW,

o v satisfies a-LSl:

KL(pt || v) < e KL(po || v)

Proximal Gradient:

T+1 = arg min () + o
o F satisfies a-PL (min F = 0):

F(xo)

F(xk)ﬁm

|l — @)

Proximal Sampler:

T — T + 2k |2
Thy1 ~ €Xp (—f(x) _ L =ep el
2n
o v satisfies a-LSI: [CCSW. '22]

KL(po || )
KL(pw 1) < =y gmar



Review: Mixing Time of Proximal Sampler

1. v strongly log-concave = exponential contraction in W, distance

[Lee, Shen, Tian, “Structured Logconcave Sampling with a Restricted Gaussian
Oracle”, COLT 2021]

2. Log-Sobolev inequality = exp. convergence in KL, Rényi divergence
Poincaré inequality = exp. convergence in x2-divergence

[Chen, Chewi, Salim, W., “Improved Analysis for a Proximal Algorithm for
Sampling”, COLT 2022]

3. ®-Sobolev inequality = exponential convergence in ®-divergence

[Mitra, W., “Fast Convergence of ®-Divergence along the Unadjusted Langevin
Algorithm and Proximal Sampler”, ALT 2025]

4. Strongly log-concave = exp. decay of mutual information (zg, zx)

[Liang, Mitra, W., “Characterizing Dependence of Samples along the Langevin
Dynamics & Algorithms via Contraction of ®-Mutual Information”, COLT 2025]

5. Strongly log-concave = exp. convergence in Fisher information

[W., “Mixing Time of Proximal Sampler in Relative Fisher Information via
Strong Data Processing Inequality”, COLT 2025]



Relative Fisher Information

Recall the Relative Fisher Information of p with respect to v is:

Filp 1) = B || 71052

This is the “non-parametric” relative Fisher information
(gradient V is in the state variable z, not in the parameter)

e Optimization meaning: In (P(R%), W»):

lgradyy, KL(p | ))Il; = Fi(p || v)

v satisfies a-LSI < Fl(p||v) > 2aKL(p || v)

® vis a-Poincaré ineq. =  Fl(p|lv) > 4aTV(p| v)?

® Can construct p, v = N(0,1) s.t. KL(p||v) <€, Fl(p|v) > 1
*. guarantees in Fl is strictly stronger than KL



Optimization & Sampling in
Gradient Flow:
Xy = -VF(X;)

o F'is a-strongly convex:

IVE(X0)II? < e72 | VF(Xo)|”

Discrete Time

Langevin Dynamics:
dX; = =V f(X;)dt + V2 dW;

ovis a-SLC:

Fi(pe | v) < e Fl(po || v)

Proximal Gradient:

2
. B = &
Tht1 :arg;relﬁ& f(z) + H217k||

o F'is a-strongly convex:

IVEF(z0) |12

F 2«
[V E(x)]|* < (1 + an)2F

Proximal Sampler:

|z =z \/ﬁzkHZ)

S (—f(z) .

ovis a-SLC:



Mixing Time of Proximal Sampler in Fisher Information

Theorem:* Assume vX x e~/ is a-strongly log-concave. Along
the discrete-time Proximal Sampler xj, ~ v with step size n > 0:

Fl w2
P %) < 00

® If fis L-smooth, with RGO via rejection sampling with n = L%f

To get Fl(py. || vX) < e, run Proximal Sampler for # of iterations:
dL FI X dL . d
e € e €

o cf. cts-time Langevin: t = O(L log g)

o c.f. proximal gradient for optimization: k = O(g log g)

4[W., “Mixing Time of the Proximal Sampler in Relative Fisher Information via Strong
Data Processing Inequality”, COLT 2025]



Optimization & Sampling in
Gradient Flow:
Xy = -VF(X;)

o F'is a-strongly convex:

IVE(X0)II? < e72 | VF(Xo)|”

Discrete Time

Langevin Dynamics:
dX, = —Vf(X;) dt + V2 dW,

ovis a-SLC:

Fi(pe | v) < e Fl(po || v)

Proximal Gradient:

2
. B = &
Tht1 :arg;reuR% f(z) + H217k||

o F'is a-strongly convex:

IVEF(z0) |12

F 2«
[V E(x)]|* < (1 + an)2F

Proximal Sampler:

lz — zp + \/ﬁzkHQ)

Tk+1 ~~ €Xp (—f(if) - 2

ovis a-SLC: [W. '25]

Fl(po || v)

Fllpl| v) < (72
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Proof Technique via Strong Data Processing Inequality



Proximal Sampler Decomposition

Each iteration of Proximal Sampler is a composition of two steps:

1. Forward step:

Y | o ~ N (g, 0I)
® Key: Interpret as application of Gaussian channel.

2. Backward step:

1
T (—f<sc> - llo- yk||2)

® Key: Interpret as application of reverse Gaussian channel.

To prove mixing time, we show strong data processing inequality
(SDPI) for each channel.



Proximal Sampler: Forward Step

Yk | Tl ~ N (zg,nI)
® Interpretation: Gaussian channel
o Run from pX, to get p) = pX * N'(0,n]).
o Run from v¥, to get v¥ = vX x N(0,71).
e SDPI for Gaussian channel under LSI:

Lemma [ccsw.22]:  If ¥ satisfies a-LSI, then

KL(ppx || )
KL(py, | ") < 1-7-7

(SDPI also holds in Rényi divergence and in all ®-divergence.)



Proximal Sampler: Backward Step

L 1
zost lue ~ YU (2) o exp <—f<x>—%||x—yk||2)

Interpretation: The distribution »X1Y=¥ is the output of the

reverse Gaussian channel at time ¢ = n from Xy = y:
dXt =V log Vn—t(Xt) dt + th

where v, = vX x N(0,tI) and (W;)>0 is Brownian motion.
o This is the same principle as Diffusion Model (DM).

o But we run for short time 1 ~ 7 (vs. long time n — oo for DM).

We implement via rejection sampling (vs. score estimation in DM).



Proximal Sampler: Backward Step

. 1
zist Lun ~ R0 () o exp (—f<:c>—2n||x—yk||2)

¢ |nterpretation: Output of the reverse Gaussian channel

dXy = Vlog Vp—t (Xt) dt + dW;

d
o Run from Xy =y ~ pky to get X, = Tpy1 ~ ka+1.

o Also run from X ~ vY to get back X5~ vX.

® (Restricted) SDPI for reverse Gaussian channel under LSI
Lemma [ccsw.22]:  If v¥ satisfies a-LSI, then

- KL(pi 1Y)

KL (o 1) < =2

(SDPI also holds in Rényi divergence and in all ®-divergence.)



Review: Proximal Sampler in KL/Rényi/® Divergence

Theorem:® Assume v~ satisfies a-LSI. Then for each k > 0:
1. Forward step: From xj ~ pi( to Y ~ pky,

_ KL [[7Y)

KL(pY v < =2

2. Backward step: From y;, ~ p} to Tp11 ~ piyq,

KL(py ||vY)
KL(pX My e R N J
(e 7)< =
Therefore,

KL(po |l %)
KL(pp |v¥) < (14_0—&77)21«

(Same analysis for Rényi divergence and ®-divergence [Mitra, W. '25].)

5[Chen, Chewi, Salim, W., “Improved Analysis for a Proximal Algorithm for Sampling”,
COLT 2022]



Data Processing Inequality in Relative Fisher Information?
® Data Processing Inequality (DPI) along any noisy channel:
Dg(p" || V") < Da(p™ | v*)

o For any p¥ = PYIX 0 pX and v¥ = PYIX 0 X
o For any ®-divergence Dy (p || v) = E,[®(£)], > 0 convex

o Strong DPI: Strict contraction rate < 1

® Question: Do we have DPI in relative Fisher information?

?
FI(p" | 7)) < FI(p™ || v%)

o Fl(p|lv) = E,[|V1log 2||?] is not a ®-divergence

o Fl(p||v) is convex in p, but not convex in v
So proof technique via Jensen's inequality fails.



Failure of DPI in Relative Fisher Information
Gaussian channel in d = 1 dimension:  p; = po * N'(0, )
® let pg :N(O, 1)

® Can construct v so that DPI in Fl initially does not hold
(see paper® for explicit expression)

. . . . KL divergence KL(p;||vy
Density of vy Relative Fisher information FI(p;||vy) 12 & (pelv)
0.2 T 14
12 10
015 10 s
8
01 6
6
4
0.05 4
) 2
[ 0 o
5 10 5 0 5 10 15 o 05 1 15 2 25 3 o o5 1 15 2 25 3
T t t

e Note %KL(pt lve) = *%H(Pt [l ve)

So initially ¢ — KL(p; || v¢) is decreasing in a concave way, then
eventually in a convex way.

G[W., “Mixing Time of the Proximal Sampler in Relative Fisher Information via SDPI",
COLT 2025



(S)DPI in FI along Gaussian Channel under SLC

Theorem:” If p; = po * N'(0,tI) and v; = vy * N'(0,¢I), then:

(i) If g is log-concave, then we have DPI:

Fi(pt [ v1) < Fl(po [| vo)-

(ii) If vy is a-strongly log-concave (SLC), then we have SDPI:

Fl(po || v0)

Fl(pe || ve) < (I+at)?’

Also have (see paper):
® |mproved SDPI rate if po satisfies Poincaré and symmetry

® Eventual SDPI if v is a log-Lipschitz perturbation of SLC.

7[W., “Mixing Time of the Proximal Sampler in Relative Fisher Information via Strong
Data Processing Inequality”, 2025]



Proof of (S)DPI in Fl along Gaussian Channel

Analysis via time differentiation along simultaneous heat flows.
Lemma: If (p;);>0, (14)¢>0 evolve following the heat equation:
1 1
Oy = §Apt Oy = QAVt

then for any ¢t > 0:

d 2 2
TIPS e .|
dt Vt |lgs Vel (=v2log vy)

* cf. for KL divergence:  £KL(p; || 1) = —5 Fl(pe || 1)

® (S)DPI follows by evolution of SLC constant along heat flow:

If —V2logvy(x) = al, then —V?logv;(x) = Tl



Evolution of Fl along General Fokker-Planck Channel

Lemma: If (p;)i>0, (v4)i>0 evolve following Fokker-Planck equations:

Orpy = =V - (psbr) + Apta

Btut =-V- (I/t L) -+ iAyt

for any smooth vector field b, : R? — R? and ¢ > 0. Then:

Vi

d
EFI(pt |ve) = —cE,, lHVz log

2
HS‘|
c.f. for KL divergence: LKL (p; || 1) = —5 Fl(p; || 1)
Heat flow: b, =0, c =1

Ornstein-Uhlenbeck (Langevin for Gaussian): b:(z) = —vya, ¢ = 2

Reverse Gaussian channel: b, () = Vlog(v « N (0,¢1)), c=1



Application: Mixing Time of Proximal Sampler in Fl

Theorem:® Assume v~ is a-SLC. Then for each k > 0:
1. Forward step: From xy ~ piX to yx ~ py,
Fi(p [|v¥)
Fl(py | vY) < 5
(pk H )— (1'1'0”7)2
2. Backward step: From yj ~ p} to Tpy1 ~ pjy,
Fl(pag 1) < Fi(oy [|vY)

Therefore,
FI(of || vX
F|(ka || VX) < (pO || k)
(1+ an)?
® Recall for KL/Rényi, have SDPI for both forward and backward steps.
® For Fl, have SDPI in forward, and only weak DPI in backward step.

8[W., “Mixing Time of the Proximal Sampler in Relative Fisher Information via Strong

Data Processing Inequality”, 2025]



Summary

® Sampling as Optimization in the space of distributions:

o Cts. time: Langevin dynamics < Gradient flow

o Disc. time: Proximal Sampler ~ Proximal gradient method

Langevin Dynamics (LD) X

dX, = — VX)) dt ++/2 dW,

Unadjusted Langevin Algorithm (ULA) Proximal Sampler (PS)

Pk.\

—Vilx) A .(__/‘pk‘r%
o— Xt 1 Pk+1

Xic

Ve =Xt /N7
Xeg1 =X — 0 V) +1/2n 7 Vi

i ~ oxp (=0l = )




Summary

® Sampling as Optimization in the space of distributions:

o Cts. time: Langevin dynamics < Gradient flow

o Disc. time: Proximal Sampler ~ Proximal gradient method

® Proximal Sampler has unbiased convergence guarantees,
matching Langevin dynamics and Proximal gradient:

o In KL divergence/Rényi divergence under LSI
o In ®-divergence under SLC (= ®-Sobolev)
o In relative Fl under SLC

® Technique: SDPI along Fokker-Planck channels
o SDPI in KL/Rényi always holds under LSI

o DPIl in Fl does not always hold, even for Gaussian channel

o (S)DPl in FI holds under (strong) log-concavity



Questions

® SDPI in FI for other channels, under LSI or weaker conditions?
® Mixing time in relative Fl for other sampling algorithms?
® Acceleration in Sampling (< matching rates with Opt)?

o Want O(\/g) iteration complexity in discrete time

(c.f. Proximal Sampler needs O(‘%) iterations)

Thank you!
[W., “Mixing Time of Proximal Sampler in Relative Fisher Information via Strong

Data Processing Inequality”, COLT 2025]



Key: SDPI in KL along Fokker-Planck Channel under LSI

Lemma: Suppose (pt)i>0 and (v¢)¢>0 evolve following the PDE:

Oipt = =V - (ptbs) + S§Ap¢
Oy = =V - (viby) + 5A1

for any smooth vector field b;: R% — R? and constant ¢ > 0.
Then for any t > 0:

d

C
%KL(Pt | ve) = =5 Fl(pe || ve).

Therefore, if we know that v; satisfies a;-LSI for all ¢ > 0, then:
t
KL(pt || ) < exp (—c/ Qs ds) KL(po || vo0)-
0

® |dentity also holds for Rényi and all ®-divergence.
® To apply, key is to control evolution of LS| constant along PDE.



Eventual SDPI in FI along Ornstein-Uhlenbeck Channel

Theorem: Along the OU channel (Langevin to A/ (0,711)):

1—e27
X, =e "Xy + ,/TZ, Z ~ N(0,I)

If v is a-strongly log-concave, then we have (eventual) SDPI:

’YQ Fl(po || o) e 27t
(a+e 27 (y —a))?

Fl(p: [ ve) <

® Improved rate if py satisfies Poincaré and symmetry

® |f v — 0, this recovers the Gaussian channel result.



Eventual SDPI in FI along Ornstein-Uhlenbeck Channel
Example: Along the OU channel (targeting N'(0,1)):

Xi=e'Xo+V1—e22Z Z~N(0,1)
e Let po = N(0,0.01), and v = N(0,10)

FI(p: || v4) along OU Channel
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