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Can we design an optimization algorithm which respects the natural geometry of neural
networks?



Can we design an optimization algorithm which respects the natural geometry of neural
networks?

(in such a way that we guarantee effective learning across different model scales)



What has been done so far?



In the beginning, there was SGD

Stochastic Gradient Descent @ SGD uses a Euclidean geometry:
(SGD): 1
k+1 . k k k2
X7 = argmin{(g", x — x") 4+ ——|x — x|
xERd 27

Input: x0 € X, step sizes {7},
horizon n € N*
for k=0,1,...,n—1do

Sample &k
gk < Vf&X Ek
+ vg*
Output: x"
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Two major improvements:
@ On-the-fly adaptation: Methods that adapt during training (AdaGrad, RMSprop,
Adam, AdamW)

@ A priori adaptation: Methods designed with problem-specific geometry in mind
(Bregman methods, Riemannian optimization, uP parameterizations, etc)
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Adam: on-the-fly adaptation

Adam:

Input: x° € X, step size 7,
€ > 0, momentum fi, B2,
horizon n € N*

ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

Jimmy Lei Ba*

for k=0,1,...,n—1do . .
Diederik P. Kingma
University of Amsterdam, OpenAI University of Toronto
Sample &, dpkingmaGopenai.com jimmy@psi.utoronto.ca
g" = VF(x*, &) .
m = Bim""t + (1 B1)g .
vk = Bavk—1 4 (1—62)(g%)? @ Uses a Mahalanobis geometry:
Ak _mK
m-< =
1-pk k+1 . Ak K 1 k2
p x = argmin(m", x — x) + —||x — x"[|2.4
Pk = v eRrd 2y o
1-8% x
k+1 _ k v Ak
X =X"—=———0Om . . ~
Viokye with ||x||2,¢, := /(x, Hkx) and H ~ diag(0* + £?)
Output: x"

o Adagrad, RMSProp, Adam, AdamW, etc adapt using a Mahalanobis norm.
@ tl;dr: coordinate-wise adaptive step size using 2nd moment + momentum.



Shortcomings of ignoring architecture

@ Adam is “unaware” of the architecture, its dimensionality, matrix structure, etc.
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(Figure from Yang et al)

@ Because it's on-the-fly, Adam takes more memory when we scale our network (we
have to keep track of + store the moments).



Failure of Adam to learn features as width scales

With standard parametrization (intialization + learning rate), we get stuck in the “lazy”
regime if we scale width.

On Lazy Training in Differentiable Programming
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Figure 1: PCA of Word2Vec embeddings of top US cities and states, for NTK, width-64, and width-oo
feature learning networks (Definition 5.1). NTK embeddings are essentially random, while cities and
states get naturally separated in embedding space as width increases in the feature learning regime.

(Figure from Tensor Programs IV paper by Yang et al.)



A priori adaptation via uP

uP: a certain layerwise step size and initialization that is scaled by dimensions to ensure
@ the correct scaling behavior as the width goes to infinity (feature learning),

o (byproduct) Adam/SGD has hyperparameter transfer for the global step size.
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wP is architecture aware (different scaling depending on dimensions)

— this is a form of a priori adaptation.
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Model of a Neural Network

We consider an L-layer fully-connected neural network with input a € R” and output b € R:

WO =a AR =5 [ W, ]h“‘l) . b=ho(a)=hIHDC).

o x = [Wi,Ws,... ., W], Wi € R™P, W, ¢ R™™, W, e R™" VL e {2,... L1}
@ m is the width of the network

m
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Feature Learning Desiderata

Definition (Feature Learning)
Let Ah®) denote the feature change after one iteration of training, for the ¢th layer. We
are in the feature learning regime if the following properties hold:

O [|h9||rms = ©(1), V£ € [L] (stable forward pass),

@ [|Ah||rus = ©(1), V£ € [L] (bounded, nontrivial feature update),

8 . 1
where the RMS norm is defined as || - ||rms := ﬁ” 2
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Figure 1: PCA of Word2Vec embeddings of top US cities and states, for NTK, width-64, and width-co
feature learning networks (Definition 5.1). NTK embeddings are essentially random, while cities and
states get naturally separated in embedding space as width increases in the feature learning regime.



Spectral Conditions for Feature Learning

Definition (Spectral Feature Learning (Yang et al 2023))

Given an L-layer NN, consider applying an update AW, to the weight matrix W;. If the
spectral norms of the weights and the weight updates satisfy the following
vee{2,...,L—-1},

| Wal|rms,—rms,, = © (1) [|AWA||rus, —rMs,,, = © (1)
|Wellrms —rms,,= © (1) [[AWe||rms,—rms,,= © (1)
[Wellrmsorys; = © (1) AW, [|rms,—rvs; = © (1)

then we have feature-learning.

e This spectral condition ensures that [|A()||[rms = ©(1) and [|AAD||rms = O(1).
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Spectral Conditions for Feature Learning

Definition (Spectral Feature Learning (Yang et al 2023))

Given an L-layer NN, consider applying an update AW, to the weight matrix W,. If the
spectral norms of the weights and the weight updates satisfy the following
vee{2,...,L -1},

) P

[Wellop=© (1) AW, [lop= © (1)
HWLH"P: © ( i) ||AWL||0p: C) ( l)

m m

Willo=© (VZ) 1AW= © (/Z)

then we have feature-learning.

e This spectral condition ensures that [|A()||[rms = ©(1) and [|AAD||rms = O(1).

@ This can be extended to rectangular matrices by requiring || - |lop scales like

o (/).

— we need to control scaled operator norms layer-by-layer in the network to
ensure feature learning as we scale width.



An architecture-aware norm for neural networks

@ Cook up a noneuclidean norm based on the layerwise scaled operator norms.!

@ Build our optimization algorithm to around this norm (a priori adaptation).

1Similar idea proposed in Large et al. Modular Norm (2024) for deriving a layer-wise learning rate for SGD.
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Steepest Descent via Dual Norms

The update of Steepest Descent can be written

1
XK = argmin(g”, x — x*) + ——||x — x"||.
27k

x€ER

What if we change the norm?

This update has a closed-form solution using the dual norm || - |

*1

k+1 _ _k K K
X =x"+ g ||« Imo(g”)
where Imo is the linear minimization oracle:

Imo(g") € argmin(g”, s) = —9||g"||.
seD

and D is the unit-ball for the norm || - ||.



Linear Minimization Oracles

Given a norm || - ||, the
associated linear
minimization oracle (Imo)
gives back a direction least

aligned with its input,

Imo(g) € argmin (g,s).
{s: lIslI<1}

X

@ The output of the Imo . Imoy, (Vf(x))

is always on the o Imo,, (Vf(x))
boundary of the ball. g\’ ’

@ The Imo for the scaled
ball is the scaled Imo
for the unit ball.

Imoy, (Vf(x))
Imoy,_(Vf(x))

°

||

[ |

Il Imoy,(Vf(x))
[ |

||

Hl Vi(x)




Examples of Linear Minimization Oracles

Linear Minimization Oracles (Imo) for Norm Balls

If D is the unit-ball associated to a norm || - |

then Imop(g) = —9||g||« where || - ||« is the dual norm.

Primal Norm
%3

Linear Minimization Oracle (Imo)
- _ &
Imo(g) = — 11

Dual Norm

-1l =1+ 1l2

Steepest Descent (—|/g||« Imo(g))
~lel (~ ) = ¢

Steepest Descent in £>-norm recovers gradient descent/SGD.



Examples of Linear Minimization Oracles

Linear Minimization Oracles (Imo) for Norm Balls
If D is the unit-ball associated to a norm || - |

then Imop(g) = —9||g||« where || - ||« is the dual norm.
Primal Norm Linear Minimization Oracle (Imo)
loo Imo(g) = —sign(g)

Dual Norm Steepest Descent (—||g]|« Imo(g))
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Steepest Descent in £°°-norm recovers sign descent (up to step size).



Examples of Linear Minimization Oracles

Linear Minimization Oracles (Imo) for Norm Balls
If D is the unit-ball associated to a norm || - ||,
then Imop(g) = —0||g||« where || - ||« is the dual norm.

Primal Norm Linear Minimization Oracle (Imo)
£, — £ Operator Norm || - |lop | Imo(g) = —UVT where g = UZVT (reduced SVD)

Dual Norm Steepest Descent (—||g]|« Imo(g))
Il =11 e gl (~0VT) = (o)) (WVT)
Steepest Descent in || - ||op recovers spectral descent/Muon (up to step size)

(we can compute this without SVD, just using matrix multiplication?)

2Note: it requires more than one matrix multiplication to compute this.



Beyond steepest descent

Instead of Steepest Descent

1
X = argmin(g®, x — x*) + =—||x — x"|?
27k

x€ERI

which scales the update by ||g*||., we can directly use

X = argmin(g", x — x*) + 15, p(x — x¥)

x€ERI
to get

X = x* 4 4 dmop (g¥).



Conditional Gradient Algorithm

The conditional gradient algorithm
(also known as the Frank-Wolfe
algorithm) solves constrained
Vf(xi) S _
L.. ball optimization problems:

min f(x)

xeD

Conditional Gradient (CG):

Input: xp € D, step sizes {v«}
where v, € [0, 1], horizon

n e N*
for k=0,1,...,n—1do
xk+1 s¥ = Imo(Vf(x¥))
® X Vk =S —Xk
k+1 _ k
f xR = X+ kv
— ) Output: x"

B Imo(VA(xk) — xk
Imo(VF(x*)) ® Xci1




Conditional Gradient Algorithm

The conditional gradient algorithm
(also known as the Frank-Wolfe
algorithm) solves constrained
optimization problems:

min f(x)

xeD

Conditional Gradient (CG):

Input: xo € D, step sizes {4}
where 7, € [0, 1], horizon
n e N*
for k=0,1,...,n—1do
K k
s¥ = Imo(Vf(x
st = Imo(¥F(+*)
XKL = g + vk
Output: x”"

® X
N V(xi)

B Imo(VA(xk) — xk
@ Xk+1

Imo(V#(x¥))
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A Stochastic Conditional Gradient that uses Momentum

(Unconstrained) Stochastic Conditional Gradient (uSCG/SCG):

Input: x! € D, step sizes {vx}, momentum {ay}, horizon n € N
Initialize d® = 0
for k=1,2,...n—1do

Sample &,

gk = Vr(xk &)

d* = (1—ap)d" ! +axgh
sk = Imo(d¥)

ok — sk uSCG
T )] sk—xk sCG
XKL = xk vk

Output: x" selected uniformly at random among all iterates.
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@ Momentum reduces variance in stochastic setting.
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A Stochastic Conditional Gradient that uses Momentum

(Unconstrained) Stochastic Conditional Gradient (uSCG/SCG):

Input: x! € D, step sizes {vx}, momentum {ay}, horizon n € N
Initialize d® = 0
for k=1,2,...n—1do

Sample &,
gk = Vr(xk &)
d* = (1—ap)d" ! +axgh

sk = Imo(d¥)

ok — sk uSCG
7] sk —xk ScG

Xkt = xk 4y

Output: x" selected uniformly at random among all iterates.

Momentum reduces variance in stochastic setting.
@ The direction s has fixed norm of our choosing.
@ SCG is “just” uSCG with weight decay.

uSCG solves the problem min f(x) while SCG solves the problem mig f(x) where D is
x€eR x€
a norm ball.



Weight Decay and SCG

Deep learning community argues that Weight Decay should not simply be seen as
Tikhonov regularization (Hutter et al.).

GD with weight decay (decoupled): x*™™ = (1 — \)x* — 7V (x¥)
GD on Tikhonov problem (coupled): x*** = x¥ — 4(VF(x*) + Ax¥)

However, these really are equivalent up to a rescaling/renaming of constants (but
decoupled is known to work “better").
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GD with weight decay (decoupled): x**' = (1 — A\)x* — 4V F(x¥)
GD on Tikhonov problem (coupled): x*** = x¥ — 4(V£(x*) + Ax¥)

However, these really are equivalent up to a rescaling/renaming of constants (but
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In a noneuclidean setting, this point is critical because the Imo is nonlinear.
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Weight Decay and SCG

Deep learning community argues that Weight Decay should not simply be seen as
Tikhonov regularization (Hutter et al.).

GD with weight decay (decoupled): x**' = (1 — A\)x* — 4V F(x¥)
GD on Tikhonov problem (coupled): x*** = x¥ — 4(V£(x*) + Ax¥)

However, these really are equivalent up to a rescaling/renaming of constants (but
decoupled is known to work “better”).
In a noneuclidean setting, this point is critical because the Imo is nonlinear.

uSCG + weight decay — SCG:  x*' = (1 — A)x* — v Imo(VF(x*))
= (1= A)x* = Xmo(VF(x"))

v/A
uSCG on Tikhonov problem:  x*** = x* — v Imo(V(x*) + Ax¥)

The “correct” interpretation of Weight Decay in this context is that it transforms your
unconstrained optimizer into a constrained optimizer, with implicit radii that are dictated
by the chosen combination of step size v and Weight Decay A!
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Picking a Norm and Initializations

@ If we can specify a norm || - ||, for the input space and a norm || - |3, for the output
spaces of each layer of our network, then this induces an operator norm for each layer.
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Picking a Norm and Initializations

@ If we can specify a norm || - ||, for the input space and a norm || - |3, for the output
spaces of each layer of our network, then this induces an operator norm for each layer.

@ We can specify a norm for the whole set of parameters by taking
x| = max {||W¢|| o
el = e (1 Wello 5.}

@ Spectral feature learning suggests taking the RMS norm on the input and output
spaces of intermediary layers.

— leads to a scaled £> — ¢ operator norm || - ||o, ON weight matrices
din
[|W|rms—rMs = W/ lop-
doul

The Imo associated to the ball for this norm is given by the scaled matrix sign

Imo(g) = — ‘:;f“‘ uv’', g=uzv’.




Picking a Norm and Initializations

@ If we can specify a norm || - ||, for the input space and a norm || - |3, for the output
spaces of each layer of our network, then this induces an operator norm for each layer.

@ We can specify a norm for the whole set of parameters by taking
x| = max {||W¢|| o
el = e (1 Wello 5.}

@ Spectral feature learning suggests taking the RMS norm on the input and output
spaces of intermediary layers.

— leads to a scaled £> — ¢ operator norm || - ||o, ON weight matrices
din
[|W|rms—rMs = W/ lop-
doul

The Imo associated to the ball for this norm is given by the scaled matrix sign

Imo(g) = — ‘:;f“‘ uv’', g=uzv’.

The first and final layers require more thought!



Norms for input layers

The operator norm chosen for the initial layer differs from the intermediary layers,
depending on the task (NLP, images, etc).

Large Language Models (LLMs), such as GPT-3 and GPT-4, util
ize a process called tokenization. Tokenization involves br
eaking down text into smaller units, known as tokens, which
the model can process and understand. These tokens can rang
e from individual characters to entire words or even larger
chunks, depending on the model. For GPT-3 and GPT-4, a Byte
Pair Encoding (BPE) tokenizer is used. BPE is a subword tok
enization technique that allows the model to dynamically bu
ild a vocabulary during training, efficiently representing
conmon words and word fragments. Although the core tokeniza
tion process remains similar across different versions of t
hese models, the specific implementation can vary based on
the model's architecture and training objectives.

For image domains, we use the RMS norm which gives the scaled operator norm for the

initial layer.



Norms for input layers

For language tasks, the input z is usually a 1-hot encoded vector so

lzllo = llzll: = llzllc = 1
identically. This means
(IWAl2—rms = [[Whl[1—rms = || WA | co—rms
on this restricted domain.
Parameter Wi (1-hot encoded input)
Norm 2—RMS | 1 — RMS | 15
LMO /o UV " coli(WA) + —/dou et fVVVV;’”Q —sign(W4)
Init. Semi-orthogonal | Column-wise normalized Gaussian | Random sign




Norms for output layers

@ We have no restriction to bound the output in RMS norm; instead we consider
bounding the maximal entry using L.
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@ We have no restriction to bound the output in RMS norm; instead we consider
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@ We can bound [|W|[rusoc < 5-||W||100 which gives us a scaled sign Imo for the
last layer.



Norms for output layers

@ We have no restriction to bound the output in RMS norm; instead we consider
bounding the maximal entry using Lo

@ We can bound | W||rms—oc <

—||W|1-c0 which gives us a scaled sign Imo for the

last layer.
Parameter W,
Norm RMS — RMS | RMS — oo | 1o
row; (W, .
LMO —\/dom/dm UVT | rowi(W,) f T (WLL))HZ —diinslgn( W)
Init. Semi-orthogonal | Row-wise normalized Gaussian | Random sign




We recommend the following norms (First layer — Intermediary layers — Last layer):
@ image domains:  Spectral — Spectral — Sign
e 1-hot input: ColNorm or Sign — Spectral — Sign



We recommend the following norms (First layer — Intermediary layers — Last layer):
@ image domains:  Spectral — Spectral — Sign
e 1-hot input: ColNorm or Sign — Spectral — Sign

We refer to the instantiation of uSCG and SCG using operator norms as UNCONSTRAINED
SCION and SCION respectively, which stands for

Stochastic Conditional gradlent with Operator Norms
Scion
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Empirical Results

3B NanoGPT Training

4.0
—*— Adam

—»— Muon
381 —— Scion
Unconstrained Scion

w w
S o

Validation Loss

w
N

3.04

2.8 T T T T T
0 1000 2000 3000 4000 5000

Steps

Table 5. Validation loss on a 3B parameter GPT model.
Adam | Muon | UNCONSTRAINED SCION | SCION
3.024 | 2.909 2.882 2.890

(Sign—Spectral—Sign)



Illustration of norm control: GPT Training

Let p be the radius of the set D that is used to define Imo. Both uSCG and SCG provide
control over the norm of the output X":

@ SCG Guarantees [|X"|| < p

n—1
@ uSCG Guarantees [|X"|| < p >
k=0

Unconstrained Scion Scion
25 25
— Layer1 — layer1
— Layer2 — layer2
— Layer3 —— Layer3
209 — Layer4a 20 —— Layerd
—— Layer5 — Layer5
Layer 6 Layer 6
Eis E1s
2 2
B K
@ @
& 10 &10
5 5
0 0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Steps Steps



Hyperparameter Transfer: GPT Training

Adam Muon
4.0 4.0
38 38
36 36
9 °
S3a4 3.4 4
g
D32 32
K
3.07 width (Model Size) 3.0 Width (Model Size)
512 (64M) 512 (64M)
S8l — 768 (124M) 28 —— 768 (124M)
—— 1280 (300M) —— 1280 (300M)
—— 2560 (1B) —— 2560 (1B)
2.6 26
50 o o 20 2t 26 2716 o P 20 2%
Learning Rate Learning Rate
Unconstrained Scion Scion

Width (Model Size) -0 1 Width (Model Size)
512 (64M) 512 (64M)

284 — 768 (124M) 284 — 768(124M)

—— 1280 (300M) —— 1280 (300M)

—— 2560 (1B) —— 2560 (1B)
26 26

216 218 212 2710 28 2716 214 212 2710 276
Learning Rate Learning Rate



Different Norm Choices on First/Last Layer

Shallow (3 layers) GPT on Shakespeare dataset.

Scion (Sign - Spectral - Sign) Scion (Spectral - Spectral - Sign) Scion (ColNorm — Spectral - Sign)

Learning rate Learning rate Learning rate

All 3 admit hyperparameter transfer.



Hyperparamet ransfer

Scion on CIFAR10
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Optimal step size transfer across width in a convolutional NN trained to classify with
CIFAR10.



Motivation
Feature Learning

Noneuclidean Optimization

(unconstrained) Stochastic Conditional Gradient

A natural geometry for neural networks

Empirical Results

Theoretical Results



Template Optimization Problem

To analyze the algorithm, we consider the class of problems
in f(x) := E¢[f
min f(x) == Ee[f(x, )]
where
@ X is either R? (unconstrained) or D (constrained), with
D= {x: x| < p}-

o E[f(-,&)] is Lipschitz-smooth with respect to some norm.

@ We have access to a stochastic first-order oracle V£(+, ) which is unbiased
Ee[VF(-, )] = V()
and has bounded variance

Ec[||VF(-, &) — V() |B] < o



Convergence Results for fixed «

Let p be the radius of the set D used in the lmo.

Theorem (Convergence rate for uSCG with constant «)

Let n € N* and let X" be the output of uSCG with o € (0,1) and constant step size
_ 1

qG = W Then,

X" i(r
MWﬂ)MSO<wﬁ)

Theorem (Convergence rate for SCG with constant «)
Let n € N* and let X" be the output of SCG with oo € (0,1) and constant step size

N = \% Then, for all u € D,

"), x"—u L—p2 o
E[(VF(Z"), nsoﬁm+)

—= convergence to a noise-dominated region induced by o.



Convergence Results for vanishing o

Let p be the radius of the set D used in the Imo.

Theorem (Convergence rate for uSCG with vanishing o)

Let n € N* and let X" be the output of uSCG with a, = 1/\/F and constant step size
= —2_. Then
Y= A en,

B[V < 0 (7 + -2

nl/4 n3/4

Theorem (Convergence rate for SCG with vanishing au)

Let n € N* and let X" be the output of SCG with ax = 1/\/; and constant step size
N = m;%' Then, for all u € D,

IR e 1 Lp2
E[(VF(x"),x"—u)] <O (’11/4 + n3/4>

= “convergence to a first-order critical point” for either the unconstrained (uSCG) or
the constrained (SCG) problem.



Relationship to other Algorithms

Algorithm @ Norm Imo(d) Formula
Normalized SGD 1 Euclidean || - |2 — H:Hz
Normalized SGD
with ]o,1] Euclidean || - || 7”5“2
momentum
SignSGD 1 Max-norm || - ||co —sign(d)
Signum
(SignSGD with 10,1] Max-norm || - ||co —sign(d)
momentum)
Muon* 10,1] | 2 — £2 operator-norm || - |lop | —UVT, d = UZVT

Our framework generalizes these algorithms through norm selection and momentum parameter.



Related Work

@ Muon blogpost: Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista,
Laker Newhouse, and Jeremy Bernstein (Dec. 2024)

e Kimi Moonshot Al: many (Feb. 2025)
@ PSGD: Omead Pooladzandi and Xi-Lin Li (Feb. 2024)
Also MARS (related via STORM estimator of gradient) that will be talked about.



Paper

arXiv:2502.07529, also at ICML 2025 (Spotlight)

daT <1V > cs > arXiv:2502.07529

Computer Science > Machine Learning

[Submitted on 11 Feb 2025]

Training Deep Learning Models with Norm-Constrained LMOs

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, Volkan Cevher
In this work, we study optimization methods that leverage the linear minimization oracle (LMO) over a norm-ball. We propose a new stochastic family of algorithms that uses the
LMO to adapt to the geometry of the problem and, perhaps surprisingly, show that they can be applied to unconstrained problems. The resulting update rule unifies several
existing optimization methods under a single framework. Furthermore, we propose an explicit choice of norm for deep architectures, which, as a side benefit, leads to the

transferability of hyperparameters across model sizes. Experimentally, we demonstrate significant speedups on nanoGPT training without any reliance on Adam. The proposed
method is memory-efficient, requiring only one set of model weights and one set of gradients, which can be stored in half-precision.

Subjects: Machine Learning (cs.LG); Optimization and Control (math.0C)
Citeas:  arXiv:2502.07529 [cs.LG]

(or arXiv:2502.07529v1 [cs.LG] for this version)
https://doi.org/10.48550/arXiv.2502.07529 @

github: https://github.com/LIONS-EPFL /scion

Extension to (Lo, L1) smoothness with clipping to appear this week; we are working on
more extensions.



Effect of batch size

Batchsize sensitivity on NanoGPT (124M).

4.2 Method *
=% Adam
=p= Muon
= Scion o

401 Unconstrained Scion /

3.8

Minimum Validation Loss

>
3.6 1 /
>

3.41

1000 2000 3000 4000 5000 6000
Batch Size

Scion is less sensitive to batch increases (for a fixed token budget).



Unconstrained Scion (epochs=8)
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Tuning the momentum on CIFAR10

Unconstrained Scion (epochs=16)
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Unconstrained Scion (epochs=32)
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ALMOND for dessert

Averaged LMO directionNal Descent (ALMOND):

Input: x° € D, step sizes {7, }, momentum {a,}, horizon n € N
Initialize d® = 0
for k=0,1,2,...n—1do
gk = Vf(Xk,ﬁk)
d* = (1 — ay)d* =1 + axlmo(gk)
XKL = xk 45, gk
Output: X" selected uniformly at random among all iterates.

Not competitive empirically. Theoretically, can only show convergence to a noise
dominated region.



Imo for product sets

In the case where x = [W, ..., W.] and we want to assign a norm || - ||{} to each W, for
£ € [L], we can take the max-norm,

[Ix[1 == max {[Will g1y, - Wallgy
so that Imo(g) with respect to this norm is separable across the parameters gi:

Imo(g) = Imo([g1,...,8]) = [lgf(gl), e Igg?(gL)]

with each Imoy,; corresponding to the Imo over the ball induced by the norm || - || (/3.



Image Transformers (DeiT-Base)

Test Accuracy

P

Accuracy
g
]

—e— AdamW
407 Scion
==- Accuracy=71.5%
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Epoch

Much more sample-efficient!



