

A Normal Map-Based Proximal Stochastic Gradient Method

Workshop: Optimization and LearningTheory and Applications, CRMMay 29th

Andre Milzarek

SDS / CUHK-SZ

Acknowledgements

- ▶ Joint work with Junwen Qiu (NUS) and Li Jiang (CUHK-SZ).
- ▶ Preprint: arXiv:2305.05828v2 (May '25; recently updated).

Main Contents

- ► Background and Problem Formulation.
- ▶ The Proximal Stochastic Gradient Method.
- ▶ The Proposed Method: norm-SGD.
- ► Complexity, Iterate Convergence, and Identification.
- ► Numerical Illustrations.

Background and Problem Formulation

Problem Formulation

We consider the composite optimization problem:

$$\min_{oldsymbol{x}\in\mathbb{R}^d} \psi(oldsymbol{x}) := f(oldsymbol{x}) + arphi(oldsymbol{x})$$

Basic Assumptions:

- ▶ $\varphi : \mathbb{R}^d \to (-\infty, \infty]$ is a lower semicontinuous, proper, and convex function (can be nonsmooth).
- ▶ $f : \mathbb{R}^d \to \mathbb{R}$ is smooth (can be nonconvex and large-scale).

Typical Situation:

- ▶ *f* measures the error between an iterate and given data.
- $\blacktriangleright \ \varphi$ is a regularization term that promotes special structure.
- Evaluation of $f / \nabla f$ is too expensive \rightsquigarrow use stochastic techniques.

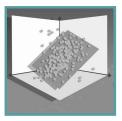
Examples and Applications

Examples:

- ▶ Sparse / Low-rank optimization: $\varphi(\mathbf{x}) = \mu \|\mathbf{x}\|_1$, $\varphi(\mathbf{X}) = \mu \|\mathbf{X}\|_*$.
- Constrained optimization problems: $\varphi(\mathbf{x}) = \iota_{\mathcal{C}}(\mathbf{x})$.
- Expected / Empirical risk: $f(\mathbf{x}) = \mathbb{E}[F(\mathbf{x}, \boldsymbol{\xi})], f(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}; i).$
- → Stochastic optimization techniques, nonsmoothness, and nonconvexity are prevalent in many large-scale and learning applications.

Neural Networks

Supervised Learning



Matrix Optimization

The Proximal Stochastic Gradient Method

Proximal Stochastic Gradient Descent

To solve $\min_{\boldsymbol{x} \in \mathbb{R}^d} \psi(\boldsymbol{x}) := f(\boldsymbol{x}) + \varphi(\boldsymbol{x})$, we (can) consider:

Proximal Stochastic Gradient Descent (prox-SGD):

$$\mathbf{x}^{k+1} = \operatorname{prox}_{\alpha_k \varphi} (\mathbf{x}^k - \alpha_k \ \mathbf{g}^k)$$

- $\mathbf{g}^k \approx \nabla f(\mathbf{x}^k)$ is a stochastic approximation of $\nabla f(\mathbf{x}^k)$.
- $\{\alpha_k\}_k$ are suitable step sizes.
- ▶ $\operatorname{prox}_{\alpha\varphi}(\boldsymbol{x}) := \arg\min_{\boldsymbol{y} \in \mathbb{R}^d} \varphi(\boldsymbol{y}) + \frac{1}{2\alpha} \|\boldsymbol{x} \boldsymbol{y}\|^2$ is the well-known proximity operator of φ .

Literature:

Duchi and Singer '11, Xiao and Zhang '14, Nitanda '14, Ghadimi et al. '16, Atchadé et al. '17, Davis and Drusvyatskiy '19, ...

Discussion:

- \rightsquigarrow Theory and convergence guarantees seem well-developed.
- If f (or ψ) is convex or strongly convex: analysis is close to SGD and the deterministic case.
 Ghadimi and Lan '13, Rosasco et al. '20, Khaled et al. '20, Patrascu and Irofti '21, Garrigos and Gower '24, ...
- ▶ Understanding convergence of **prox-SGD** if *f* is nonconvex was a long open problem.
- ► Finally addressed by Davis and Drusvyatskiy:

Complexity Bound for **prox-SGD:** (Davis and Drusvyatskiy '19) $\min_{k \in \{0,1,...,T-1\}} \mathbb{E}[||F_{nat}^{\lambda}(\boldsymbol{x}^{k})||^{2}] = \mathcal{O}(T^{-1/2})$

Discussion:

- \rightsquigarrow Theory and convergence guarantees seem well-developed.
 - If f (or ψ) is convex or strongly convex: analysis is close to SGD and the deterministic case.
 Ghadimi and Lan '13, Rosasco et al. '20, Khaled et al. '20, Patrascu and Irofti '21, Garrigos and Gower '24, ...
- ▶ Understanding convergence of **prox-SGD** if *f* is nonconvex was a long open problem.
- ► Finally addressed by Davis and Drusvyatskiy:

Complexity Bound for **prox-SGD:** (Davis and Drusvyatskiy '19) $\min_{k \in \{0,1,...,T-1\}} \mathbb{E}[\|F_{nat}^{\lambda}(\mathbf{x}^{k})\|^{2}] = \mathcal{O}(T^{-1/2})$

Discussion:

- \rightsquigarrow Theory and convergence guarantees seem well-developed.
 - If f (or ψ) is convex or strongly convex: analysis is close to SGD and the deterministic case.
 Ghadimi and Lan '13, Rosasco et al. '20, Khaled et al. '20, Patrascu and Irofti '21, Garrigos and Gower '24, ...
 - ► Understanding convergence of **prox-SGD** if *f* is nonconvex was a long open problem.
 - ► Finally addressed by Davis and Drusvyatskiy:

Complexity Bound for **prox-SGD:** (Davis and Drusvyatskiy '19) $\min_{k \in \{0,1,...,T-1\}} \mathbb{E}[\|F_{nat}^{\lambda}(\mathbf{x}^{k})\|^{2}] = \mathcal{O}(T^{-1/2})$

Natural Residual:

$$F_{\mathrm{nat}}^{\lambda}(\mathbf{x}) := rac{1}{\lambda} (\mathbf{x} - \mathrm{prox}_{\lambda arphi}(\mathbf{x} - \lambda
abla f(\mathbf{x}))), \quad \lambda > 0,$$

is a popular stationarity measure for proximal methods:

$$\mathbf{0}\in\partial\psi(\mathbf{x})=\nabla f(\mathbf{x})+\partial\varphi(\mathbf{x})\quad\iff\quad F_{\mathrm{nat}}^{\lambda}(\mathbf{x})=\mathbf{0}.$$

Stochastic Conditions:

▶ Complexity and convergence is based on the standard assumptions:

$$\mathbb{E}[\boldsymbol{g}^{k} \mid \mathcal{F}_{k}] = \nabla f(\boldsymbol{x}^{k}) \qquad (\text{unbiased})$$
$$\mathbb{E}[\|\boldsymbol{g}^{k} - \nabla f(\boldsymbol{x}^{k})\|^{2} \mid \mathcal{F}_{k}] \leq \sigma^{2} \qquad (\text{bounded variance})$$

(on some suitable underlying probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_k\}_k, \mathbb{P}))$.

► Earlier results under variance reduction σ → 0, (Ghadimi et al. '16, Xiao and Zhang '14, Reddi et al. '16).

Natural Residual:

$$F_{\mathrm{nat}}^{\lambda}(\mathbf{x}) := rac{1}{\lambda} (\mathbf{x} - \mathrm{prox}_{\lambda arphi}(\mathbf{x} - \lambda
abla f(\mathbf{x}))), \quad \lambda > 0,$$

is a popular stationarity measure for proximal methods:

$$\mathbf{0} \in \partial \psi(\mathbf{x}) = \nabla f(\mathbf{x}) + \partial \varphi(\mathbf{x}) \quad \Longleftrightarrow \quad F_{\mathrm{nat}}^{\lambda}(\mathbf{x}) = \mathbf{0}.$$

Stochastic Conditions:

► Complexity and convergence is based on the standard assumptions:

$$\mathbb{E}[\boldsymbol{g}^{k} \mid \mathcal{F}_{k}] = \nabla f(\boldsymbol{x}^{k}) \qquad (\text{unbiased})$$
$$\mathbb{E}[\|\boldsymbol{g}^{k} - \nabla f(\boldsymbol{x}^{k})\|^{2} \mid \mathcal{F}_{k}] \leq \sigma^{2} \qquad (\text{bounded variance})$$

(on some suitable underlying probability space $(\Omega, \mathcal{F}, \{\mathcal{F}_k\}_k, \mathbb{P}))$.

► Earlier results under variance reduction σ → 0, (Ghadimi et al. '16, Xiao and Zhang '14, Reddi et al. '16).

Asymptotic Convergence of prox-SGD: (Li and Milzarek '22)

 $\lim_{k\to\infty} \|F_{\mathrm{nat}}^{\lambda}(\boldsymbol{x}^k)\| = 0$ almost surely

- ▶ Requires diminishing step sizes $\sum_{k=0}^{\infty} \alpha_k = \infty$, $\sum_{k=0}^{\infty} \alpha_k^2 < \infty$.
- φ needs to be Lipschitz on dom(φ).
- ▶ Stronger asymptotic guarantees in the convex case (~→ folklore).
 - ... seems pretty comprehensive
 - ... anything open / missing?
 - ... any major drawbacks of prox-SGD?

 $(\dots$ which might require / motivate some new research $\odot)$

Asymptotic Convergence of prox-SGD: (Li and Milzarek '22)

 $\lim_{k\to\infty} \|F_{\mathrm{nat}}^{\lambda}(\boldsymbol{x}^k)\| = 0$ almost surely

- ▶ Requires diminishing step sizes $\sum_{k=0}^{\infty} \alpha_k = \infty$, $\sum_{k=0}^{\infty} \alpha_k^2 < \infty$.
- φ needs to be Lipschitz on dom(φ).
- ▶ Stronger asymptotic guarantees in the convex case (~→ folklore).
 - ... seems pretty comprehensive
 - ... anything open / missing?
 - ... any major drawbacks of prox-SGD?

(... which might require / motivate some new research \odot)

Research Questions

The following questions have not been (re-)solved for prox-SGD:

Can we guarantee asymptotic convergence without requiring global Lipschitz continuity of φ?

- Is a full theory "SGD → prox-SGD" possible?

(a bit boring)

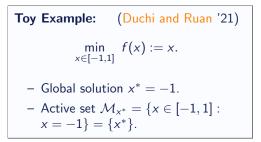
• Can we show $dist(\mathbf{0}, \partial \psi(\mathbf{x}^k)) \rightarrow 0$ (a.s.)?

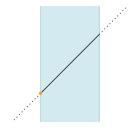
(open)

- ► Can we say more? Can we ensure x^k → x^{*} in the stochastic, nonconvex, nonsmooth case? (open)
- ▶ prox-SGD is known to not have a manifold identification property. (*limitation*)

Manifold Identification

Failure of Identification: Illustration





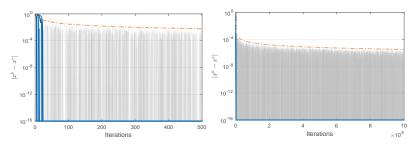
▶ We run prox-SGD,

$$x^{k+1} = \operatorname{proj}_{[-1,1]}(x^k - \alpha_k g^k),$$

with $g^{k} = f'(x^{k}) + e^{k}$, $e^{k} \sim \mathcal{N}(0, 1)$, $\alpha_{k} = \frac{1}{k}$, and $x^{0} = 100$.

• Comparison with **prox-GD** ($e^k = 0$, $\alpha_k \equiv \alpha = 1$).

Failure of Identification: Toy Example



▶ Fig.: prox-GD (■), prox-SGD (■), $k \mapsto \frac{3}{k} (\blacksquare \blacksquare)$

Fact: The iterates $\{x^k\}_k$ generated by prox-SGD satisfy $\mathbb{P}(x^k \notin \mathcal{M}_{x^*}) \ge \eta$ for some $\eta > 0$.

Active Manifold Identification

• (Active) manifolds \mathcal{M}_{x^*} can capture the smooth local sub-structure of the objective function ψ at a point x^* .

Manifold Identification: There is $K \in \mathbb{N}$ such that $\mathbf{x}^k \in \mathcal{M}_{\mathbf{x}^*} \quad \forall \ k \geq K \quad (almost surely).$

Low-rank. Let $\varphi(\mathbf{X}) = \|\mathbf{X}\|_*$ and $\mathbf{X}^* \in \mathbb{R}^{m \times n}$ be given and set:

 $\mathcal{M}_{\boldsymbol{X}^*} = \{ \boldsymbol{X} \in \mathbb{R}^{m \times n} : \operatorname{rank}(\boldsymbol{X}) = \operatorname{rank}(\boldsymbol{X}^*) \}.$

The nuclear norm is smooth on \mathcal{M}_{X^*} (Vaiter et al. '17).

Remark: Once the (low-rank) sub-structure has been identified, more efficient algorithmic strategies can be used.

Active Manifold Identification

• (Active) manifolds $\mathcal{M}_{\mathbf{x}^*}$ can capture the smooth local sub-structure of the objective function ψ at a point \mathbf{x}^* .

Manifold Identification: There is $K \in \mathbb{N}$ such that $\mathbf{x}^k \in \mathcal{M}_{\mathbf{x}^*} \quad \forall \ k \ge K \quad (almost surely).$

Low-rank. Let $\varphi(\mathbf{X}) = \|\mathbf{X}\|_*$ and $\mathbf{X}^* \in \mathbb{R}^{m \times n}$ be given and set:

$$\mathcal{M}_{\boldsymbol{X}^*} = \{ \boldsymbol{X} \in \mathbb{R}^{m \times n} : \operatorname{rank}(\boldsymbol{X}) = \operatorname{rank}(\boldsymbol{X}^*) \}.$$

The nuclear norm is smooth on \mathcal{M}_{X^*} (Vaiter et al. '17).

Remark: Once the (low-rank) sub-structure has been identified, more efficient algorithmic strategies can be used.

Active Manifold Identification

Identification typically relies on the concept of partial smoothness and on the strict complementarity condition.

Partial Smoothness (for $\psi = f + \varphi$): (Lewis '03) ψ is partly smooth at $\mathbf{x}^* \in \operatorname{dom}(\partial \varphi)$ relative to $\mathcal{M}_{\mathbf{x}^*}$ if:

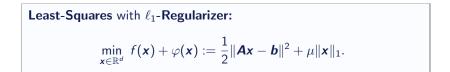
- (Smoothness) $\mathcal{M}_{\mathbf{x}^*}$ is a C^2 -manifold and $\psi|_{\mathcal{M}_{\mathbf{x}^*}}$ is C^2 near \mathbf{x}^* ;
- (Sharpness) affine span of $\partial \psi(\mathbf{x}^*)$ is parallel to $N_{\mathcal{M}_{\mathbf{x}^*}}(\mathbf{x}^*)$;
- (Continuity) $\partial \psi$ restricted to $\mathcal{M}_{\mathbf{x}^*}$ is continuous at \mathbf{x}^* .

Theorem (Informal):

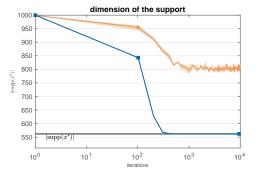
prox-GD has a manifold identification property.

References: Lewis '03, Hare and Lewis '04, Lewis and Wright '08, Lee and Wright '12, Liang et al. '17, Poon et al. '18, ...

Failure of Identification: LASSO



► Observed in (Xiao '10, Lee and Wright '12, Poon et al. '18, ...).



Solutions and Motivation

Enabling Identification of prox-SGD

Can stochastic proximal-type methods achieve identification?

Current Solutions and Limitations:

- Incorporate variance reduction or use averaging techniques: RDA, SAGA, prox-SVRG, prox-STORM.
- \rightsquigarrow Advantage: can work with fixed step size $\alpha_k \equiv \alpha$, variance vanishes.
- Most results limited to the (strongly) convex case; a.s. convergence x^k → x^{*} is often assumed as prerequisite.

References: Xiao '10, Lee and Wright '12, Poon et al. '18, Sun et al. '19, Duchi and Ruan '21, Huang and Lee '22, Dai et al. '23.

Enabling Identification of prox-SGD

Can stochastic proximal-type methods achieve identification?

Current Solutions and Limitations:

- Incorporate variance reduction or use averaging techniques: RDA, SAGA, prox-SVRG, prox-STORM.
- \rightsquigarrow Advantage: can work with fixed step size $\alpha_k \equiv \alpha$, variance vanishes.
 - ► Most results limited to the (strongly) convex case; a.s. convergence x^k → x^{*} is often assumed as prerequisite.

References: Xiao '10, Lee and Wright '12, Poon et al. '18, Sun et al. '19, Duchi and Ruan '21, Huang and Lee '22, Dai et al. '23.

Observation

Can stochastic proximal-type methods achieve identification without variance reduction techniques?

Prox-SGD:

$$oldsymbol{x}^{k+1} = ext{prox}_{oldsymbol{lpha}_k arphi} oldsymbol{(x}^k - oldsymbol{lpha}_k oldsymbol{g}^k) ext{ with } oldsymbol{g}^k pprox
abla f(oldsymbol{x}^k).$$

- ▶ Diminishing step sizes, $\alpha_k \rightarrow 0$, are required to ensure convergence.
- Small α_k can harm identification properties.

How about keeping the proximal parameter constant?

$$\mathbf{x}^{k+1} = (1 - \alpha_k)\mathbf{x}^k + \alpha_k \operatorname{prox}_{\lambda\varphi}(\mathbf{x}^k - \lambda \mathbf{g}^k).$$

▶ No, this does not work (variance scaled with " α_k ").

Observation

Can stochastic proximal-type methods achieve identification without variance reduction techniques?

Prox-SGD:

$$oldsymbol{x}^{k+1} = ext{prox}_{oldsymbol{lpha}_k arphi}(oldsymbol{x}^k - oldsymbol{lpha}_k oldsymbol{g}^k) ext{ with } oldsymbol{g}^k pprox
abla f(oldsymbol{x}^k).$$

- ▶ Diminishing step sizes, $\alpha_k \rightarrow 0$, are required to ensure convergence.
- Small α_k can harm identification properties.

How about keeping the proximal parameter constant?

$$\mathbf{x}^{k+1} = (1 - \alpha_k)\mathbf{x}^k + \alpha_k \operatorname{prox}_{\lambda \varphi}(\mathbf{x}^k - \lambda \mathbf{g}^k).$$

▶ No, this does not work (variance scaled with " α_k ").

Observation

Can stochastic proximal-type methods achieve identification without variance reduction techniques?

Prox-SGD:

$$oldsymbol{x}^{k+1} = ext{prox}_{oldsymbol{lpha}_k arphi}(oldsymbol{x}^k - oldsymbol{lpha}_k oldsymbol{g}^k) ext{ with } oldsymbol{g}^k pprox
abla f(oldsymbol{x}^k).$$

- ▶ Diminishing step sizes, $\alpha_k \rightarrow 0$, are required to ensure convergence.
- Small α_k can harm identification properties.

How about keeping the proximal parameter constant?

$$oldsymbol{x}^{k+1} = (1 - rac{lpha_k}{lpha_k})oldsymbol{x}^k + rac{lpha_k}{lpha_k} \mathrm{prox}_{oldsymbol{\lambda}arphi}(oldsymbol{x}^k - oldsymbol{\lambda}oldsymbol{g}^k).$$

▶ No, this does not work (variance scaled with " α_k ").

Revisiting prox-GD

prox-GD:

$$\boldsymbol{x}^{k+1} = \operatorname{prox}_{\lambda \varphi} (\boldsymbol{x}^k - \lambda \nabla f(\boldsymbol{x}^k)).$$

Introduce an auxiliary iterate z^k :

$$\begin{bmatrix} \mathbf{z}^{k+1} = \mathbf{x}^k - \lambda \nabla f(\mathbf{x}^k), \\ \mathbf{x}^{k+1} = \operatorname{prox}_{\lambda \varphi}(\mathbf{z}^{k+1}). \end{bmatrix}$$

We rearrange

$$\begin{bmatrix} z^{k+1} = z^k - \alpha \cdot [\nabla f(\mathbf{x}^k) + \lambda^{-1}(z^k - \mathbf{x}^k)] \\ \mathbf{x}^{k+1} = \operatorname{prox}_{\lambda\varphi}(z^{k+1}) \quad \text{with} \quad \alpha = \lambda. \end{bmatrix}$$

 \rightsquigarrow We also have $\lambda^{-1}(\boldsymbol{z}^k - \boldsymbol{x}^k) = \nabla \text{env}_{\lambda \varphi}(\boldsymbol{z}^k) \in \partial \varphi(\boldsymbol{x}^k).$

▶ Idea: Keep λ fixed and vary the parameter $\alpha \rightsquigarrow \alpha_k$.

Revisiting prox-GD

prox-GD:

$$\boldsymbol{x}^{k+1} = \operatorname{prox}_{\lambda \varphi} (\boldsymbol{x}^k - \lambda \nabla f(\boldsymbol{x}^k)).$$

Introduce an auxiliary iterate z^k :

$$\begin{bmatrix} \mathbf{z}^{k+1} = \mathbf{x}^k - \lambda \nabla f(\mathbf{x}^k), \\ \mathbf{x}^{k+1} = \operatorname{prox}_{\lambda \varphi}(\mathbf{z}^{k+1}). \end{bmatrix}$$

We rearrange

$$\begin{bmatrix} \mathbf{z}^{k+1} = \mathbf{z}^k - \mathbf{\alpha} \cdot [\nabla f(\mathbf{x}^k) + \lambda^{-1}(\mathbf{z}^k - \mathbf{x}^k)] \\ \mathbf{x}^{k+1} = \operatorname{prox}_{\lambda\varphi}(\mathbf{z}^{k+1}) \quad \text{with} \quad \mathbf{\alpha} = \lambda. \end{bmatrix}$$

 \rightsquigarrow We also have $\lambda^{-1}(\boldsymbol{z}^k - \boldsymbol{x}^k) = \nabla \text{env}_{\lambda \varphi}(\boldsymbol{z}^k) \in \partial \varphi(\boldsymbol{x}^k).$

▶ Idea: Keep λ fixed and vary the parameter $\alpha \rightsquigarrow \alpha_k$.

Revisiting prox-GD

prox-GD:

$$\boldsymbol{x}^{k+1} = \operatorname{prox}_{\lambda \varphi} (\boldsymbol{x}^k - \lambda \nabla f(\boldsymbol{x}^k)).$$

Introduce an auxiliary iterate z^k :

$$\begin{bmatrix} \mathbf{z}^{k+1} = \mathbf{x}^k - \lambda \nabla f(\mathbf{x}^k), \\ \mathbf{x}^{k+1} = \operatorname{prox}_{\lambda \varphi}(\mathbf{z}^{k+1}). \end{bmatrix}$$

We rearrange

$$\begin{bmatrix} \mathbf{z}^{k+1} = \mathbf{z}^k - \mathbf{\alpha} \cdot [\nabla f(\mathbf{x}^k) + \lambda^{-1}(\mathbf{z}^k - \mathbf{x}^k)] \\ \mathbf{x}^{k+1} = \operatorname{prox}_{\lambda\varphi}(\mathbf{z}^{k+1}) \quad \text{with} \quad \mathbf{\alpha} = \lambda. \end{bmatrix}$$

 \rightsquigarrow We also have $\lambda^{-1}(\boldsymbol{z}^k - \boldsymbol{x}^k) = \nabla \text{env}_{\lambda \varphi}(\boldsymbol{z}^k) \in \partial \varphi(\boldsymbol{x}^k).$

▶ Idea: Keep λ fixed and vary the parameter $\alpha \rightsquigarrow \alpha_k$.

The Proposed Method: norm-SGD

Proposed Method

Normal Map-based Proximal SGD (norm-SGD):

$$z^{k+1} = z^k - \alpha_k \cdot [g^k + \lambda^{-1}(z^k - x^k)]$$
 (Normal map step)

$$x^{k+1} = \operatorname{prox}_{\lambda\varphi}(z^{k+1})$$
 (Proximal step)

▶ The normal map (Robinson '92) is defined as

$$F_{\text{nor}}^{\lambda}(\boldsymbol{z}) := \nabla f(\boldsymbol{x}) + \frac{\lambda^{-1}(\boldsymbol{z} - \boldsymbol{x})}{\underbrace{\in \partial \varphi(\boldsymbol{x})}} \quad \text{where} \quad \boldsymbol{x} = \text{prox}_{\lambda\varphi}(\boldsymbol{z}).$$

Since $\psi = f + \varphi$, it holds that $F_{nor}^{\lambda}(z) \in \partial \psi(x)$.

- → The *z*-update can be seen as a special stochastic subgradient step!
- The normal map has been primarily used in variational inequalities and generalized equations (Facchinei and Pang '03).

Proposed Method

Normal Map-based Proximal SGD (norm-SGD):

►
$$\boldsymbol{z}^{k+1} = \boldsymbol{z}^k - \alpha_k \cdot [\boldsymbol{g}^k + \lambda^{-1}(\boldsymbol{z}^k - \boldsymbol{x}^k)]$$
 (Normal map step)
► $\boldsymbol{x}^{k+1} = \operatorname{prox}_{\lambda\varphi}(\boldsymbol{z}^{k+1})$ (Proximal step)

▶ The normal map (Robinson '92) is defined as

$$F_{\text{nor}}^{\lambda}(\boldsymbol{z}) := \nabla f(\boldsymbol{x}) + \frac{\lambda^{-1}(\boldsymbol{z} - \boldsymbol{x})}{\underbrace{\in \partial \varphi(\boldsymbol{x})}} \quad \text{where} \quad \boldsymbol{x} = \text{prox}_{\lambda\varphi}(\boldsymbol{z}).$$

Since $\psi = f + \varphi$, it holds that $F_{nor}^{\lambda}(\mathbf{z}) \in \partial \psi(\mathbf{x})$.

- → The *z*-update can be seen as a special stochastic subgradient step!
 - The normal map has been primarily used in variational inequalities and generalized equations (Facchinei and Pang '03).

Proposed Method

Normal Map-based Proximal SGD (norm-SGD):

►
$$\boldsymbol{z}^{k+1} = \boldsymbol{z}^k - \alpha_k \cdot [\boldsymbol{g}^k + \lambda^{-1}(\boldsymbol{z}^k - \boldsymbol{x}^k)]$$
 (Normal map step)
► $\boldsymbol{x}^{k+1} = \operatorname{prox}_{\lambda\varphi}(\boldsymbol{z}^{k+1})$ (Proximal step)

▶ The normal map (Robinson '92) is defined as

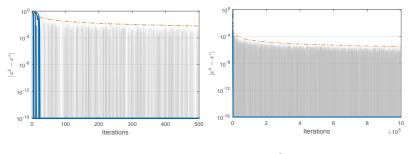
$$F_{\text{nor}}^{\lambda}(\boldsymbol{z}) := \nabla f(\boldsymbol{x}) + \frac{\lambda^{-1}(\boldsymbol{z} - \boldsymbol{x})}{\underbrace{\Box}_{\in \partial \varphi(\boldsymbol{x})}} \quad \text{where} \quad \boldsymbol{x} = \text{prox}_{\lambda \varphi}(\boldsymbol{z}).$$

Since $\psi = f + \varphi$, it holds that $F_{nor}^{\lambda}(\mathbf{z}) \in \partial \psi(\mathbf{x})$.

- → The *z*-update can be seen as a special stochastic subgradient step!
- The normal map has been primarily used in variational inequalities and generalized equations (Facchinei and Pang '03).

Does It Work?

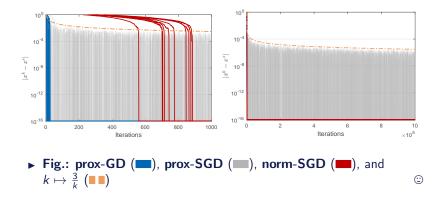
Let us revisit the earlier toy example:



▶ Fig.: prox-GD (\blacksquare), prox-SGD (\blacksquare), $k \mapsto \frac{3}{k}$ ($\blacksquare \blacksquare$)

Does It Work?

Let us revisit the earlier toy example:



Why Does It Work? (Theory)

The Normal Map as Stationarity Measure

Normal Map (Robinson '92, Pang '93, ...):

$$egin{aligned} &\mathcal{F}_{\mathrm{nor}}^{\lambda}(m{z}) =
abla f(m{x}) + \lambda^{-1}(m{z}-m{x}) & ext{where} \quad m{x} = \mathrm{prox}_{\lambda arphi}(m{z}), \quad \lambda > 0 \ &=
abla f(\mathrm{prox}_{\lambda arphi}(m{z})) + \lambda^{-1}(m{z} - \mathrm{prox}_{\lambda arphi}(m{z})). \end{aligned}$$

Comparison with F_{nat}^{λ} :

$$\begin{split} F_{\mathrm{nor}}^{\lambda}(\boldsymbol{z}) &\in \nabla f(\boldsymbol{x}) + \partial \varphi(\boldsymbol{x}) = \partial \psi(\boldsymbol{x}) \\ F_{\mathrm{nat}}^{\lambda}(\boldsymbol{x}) &\in \nabla f(\boldsymbol{x}) + \partial \varphi(\boldsymbol{x}^{+}) \neq \partial \psi(\boldsymbol{x}) \end{split}$$

where $\mathbf{x}^+ := \operatorname{prox}_{\lambda \varphi} (\mathbf{x} - \lambda \nabla f(\mathbf{x})).$

The Normal Map as Stationarity Measure

Normal Map (Robinson '92, Pang '93, ...):

$$egin{aligned} &\mathcal{F}_{\mathrm{nor}}^{\lambda}(m{z}) =
abla f(m{x}) + \lambda^{-1}(m{z}-m{x}) & ext{where} \quad m{x} = \mathrm{prox}_{\lambda arphi}(m{z}), \quad \lambda > 0 \ &=
abla f(\mathrm{prox}_{\lambda arphi}(m{z})) + \lambda^{-1}(m{z} - \mathrm{prox}_{\lambda arphi}(m{z})). \end{aligned}$$

Comparison with F_{nat}^{λ} :

 $F_{\text{nor}}^{\lambda}(\boldsymbol{z}) \in \nabla f(\boldsymbol{x}) + \partial \varphi(\boldsymbol{x}) = \partial \psi(\boldsymbol{x})$ $F_{\text{nat}}^{\lambda}(\boldsymbol{x}) \in \nabla f(\boldsymbol{x}) + \partial \varphi(\boldsymbol{x}^{+}) \neq \partial \psi(\boldsymbol{x})$

where $\mathbf{x}^+ := \operatorname{prox}_{\lambda \varphi} (\mathbf{x} - \lambda \nabla f(\mathbf{x})).$

The Normal Map as Stationarity Measure

Stationarity:

▶ If $F_{nor}^{\lambda}(\boldsymbol{z}) = \boldsymbol{0}$, then $\boldsymbol{x} := \operatorname{prox}_{\lambda\varphi}(\boldsymbol{z}) \in \operatorname{crit}(\psi) := \{\boldsymbol{x} : \boldsymbol{0} \in \partial \psi(\boldsymbol{x})\}.$

• If
$$F_{\text{nat}}^{\lambda}(\mathbf{x}) = \mathbf{0}$$
, then $\mathbf{z} := \mathbf{x} - \lambda \nabla f(\mathbf{x})$ satisfies $F_{\text{nor}}^{\lambda}(\mathbf{z}) = \mathbf{0}$.

Relationship: For all $\mathbf{x} \in \operatorname{dom}(\partial \varphi)$ and $\mathbf{z} \in \mathbb{R}^d$, we have $\|F_{\operatorname{nat}}^{\lambda}(\mathbf{x})\| \leq \operatorname{dist}(\mathbf{0}, \partial \psi(\mathbf{x})), \quad \operatorname{dist}(\mathbf{0}, \partial \psi(\operatorname{prox}_{\lambda \varphi}(\mathbf{z}))) \leq \|F_{\operatorname{nor}}^{\lambda}(\mathbf{z})\|$ (see, e.g., Drusvyatskiy and Lewis '18)

▶ Remark: In general: $\|F_{nat}^{\lambda}(\mathbf{x})\| \leq \varepsilon \implies \operatorname{dist}(\mathbf{0}, \partial \psi(\mathbf{x})) \leq \varepsilon$.

Complexity of norm-SGD

Basic Assumptions

(A.1)
$$f$$
 is C^1 ; φ is convex, lsc., proper; $\inf_{\mathbf{x} \in \mathbb{R}^d} \psi(\mathbf{x}) > -\infty$.

(A.2) The gradient mapping ∇f is L-continuous on dom(φ).

(A.3) (Variance Bound). We assume
$$\mathbb{E}[\boldsymbol{g}^k \mid \mathcal{F}_k] = \nabla f(\boldsymbol{x}^k)$$
 and $\mathbb{E}[\|\boldsymbol{g}^k - \nabla f(\boldsymbol{x}^k)\|^2 \mid \mathcal{F}_k] \le \sigma^2$ (for all k , a.s.).

Theorem: Iteration Complexity of norm-SGD (QJM '25)
Under (A.1)–(A.3), and if
$$\alpha_k \equiv \alpha \sim T^{-1/2}$$
, then:
$$\min_{k \in \{0,...,T-1\}} \mathbb{E}[\operatorname{dist}(\mathbf{0}, \partial \psi(\mathbf{x}^k))^2] = \mathcal{O}(T^{-1/2}).$$

 \rightsquigarrow prox-SGD: min $_{k\in\{0,\dots,T-1\}}$ $\mathbb{E}[\|\mathcal{F}_{\mathrm{nat}}^{\lambda}(\mathbf{x}^{k})\|^{2}] = \mathcal{O}(T^{-1/2}).$

Complexity of norm-SGD

Basic Assumptions

(A.1)
$$f$$
 is C^1 ; φ is convex, lsc., proper; $\inf_{\mathbf{x} \in \mathbb{R}^d} \psi(\mathbf{x}) > -\infty$.

(A.2) The gradient mapping ∇f is L-continuous on dom(φ).

(A.3) (Variance Bound). We assume
$$\mathbb{E}[\boldsymbol{g}^k \mid \mathcal{F}_k] = \nabla f(\boldsymbol{x}^k)$$
 and $\mathbb{E}[\|\boldsymbol{g}^k - \nabla f(\boldsymbol{x}^k)\|^2 \mid \mathcal{F}_k] \le \sigma^2$ (for all k , a.s.).

Theorem: Iteration Complexity of norm-SGD (QJM '25) Under (A.1)–(A.3), and if $\alpha_k \equiv \alpha \sim T^{-1/2}$, then: $\min_{k \in \{0,...,T-1\}} \mathbb{E}[\operatorname{dist}(\mathbf{0}, \partial \psi(\mathbf{x}^k))^2] = \mathcal{O}(T^{-1/2}).$

 \rightsquigarrow prox-SGD: min_{$k \in \{0,...,T-1\}$} $\mathbb{E}[||F_{\mathrm{nat}}^{\lambda}(\mathbf{x}^{k})||^{2}] = \mathcal{O}(T^{-1/2}).$

Asymptotic Convergence

Theorem: Asymptotic Convergence of norm-SGD (QJM '25) Under (A.1)–(A.3), and if $\sum_{k=0}^{\infty} \alpha_k = \infty$ and $\sum_{k=0}^{\infty} \alpha_k^2$, then: $\operatorname{dist}(\mathbf{0}, \partial \psi(\mathbf{x}^k)) \to 0$ and $\psi(\mathbf{x}^k) \to \psi^*$ almost surely; and we have $\mathbb{E}[\operatorname{dist}(\mathbf{0}, \partial \psi(\mathbf{x}^k))^2] \to 0$ and $\mathbb{E}[\psi(\mathbf{x}^k)] \to \mathbb{E}[\psi^*]$.

 \rightsquigarrow prox-SGD: $\|F_{\mathrm{nat}}^{\lambda}(\boldsymbol{x}^{k})\| \rightarrow 0$ and $\psi(\boldsymbol{x}^{k}) \rightarrow \psi^{*}$ almost surely.

▶ (Hare and Lewis '04): Let ψ be C^2 -partly smooth at \mathbf{x}^* rel. to $\mathcal{M}_{\mathbf{x}^*}$ with $\mathbf{0} \in \operatorname{ri}(\partial \psi(\mathbf{x}^*))$. Suppose $\mathbf{x}^k \to \mathbf{x}^*$ and $\psi(\mathbf{x}^k) \to \psi(\mathbf{x}^*)$. Then:

 $oldsymbol{x}^k \in \mathcal{M}_{oldsymbol{x}^*} \hspace{0.2cm} orall \hspace{0.1cm} k \hspace{0.1cm} ext{sufficiently large} \hspace{0.2cm} \iff \hspace{0.2cm} ext{dist}(oldsymbol{0}, \partial \psi(oldsymbol{x}^k))
ightarrow 0.$

 \rightsquigarrow Manifold Identification: We only need to show $x^k \rightarrow x^*$ (a.s.)!

Asymptotic Convergence

Theorem: Asymptotic Convergence of norm-SGD (QJM '25) Under (A.1)–(A.3), and if $\sum_{k=0}^{\infty} \alpha_k = \infty$ and $\sum_{k=0}^{\infty} \alpha_k^2$, then: $\operatorname{dist}(\mathbf{0}, \partial \psi(\mathbf{x}^k)) \to \mathbf{0}$ and $\psi(\mathbf{x}^k) \to \psi^*$ almost surely; and we have $\mathbb{E}[\operatorname{dist}(\mathbf{0}, \partial \psi(\mathbf{x}^k))^2] \to \mathbf{0}$ and $\mathbb{E}[\psi(\mathbf{x}^k)] \to \mathbb{E}[\psi^*]$.

 \rightsquigarrow prox-SGD: $\|F_{\mathrm{nat}}^{\lambda}(\boldsymbol{x}^{k})\| \rightarrow 0$ and $\psi(\boldsymbol{x}^{k}) \rightarrow \psi^{*}$ almost surely.

▶ (Hare and Lewis '04): Let ψ be C^2 -partly smooth at \mathbf{x}^* rel. to $\mathcal{M}_{\mathbf{x}^*}$ with $\mathbf{0} \in \operatorname{ri}(\partial \psi(\mathbf{x}^*))$. Suppose $\mathbf{x}^k \to \mathbf{x}^*$ and $\psi(\mathbf{x}^k) \to \psi(\mathbf{x}^*)$. Then:

 $\mathbf{x}^k \in \mathcal{M}_{\mathbf{x}^*} \quad \forall \ k \ \text{sufficiently large} \quad \Longleftrightarrow \quad \operatorname{dist}(\mathbf{0}, \partial \psi(\mathbf{x}^k)) \to \mathbf{0}.$

 \rightsquigarrow **Manifold Identification:** We only need to show $x^k \rightarrow x^*$ (a.s.)!

Asymptotic Convergence

Theorem: Asymptotic Convergence of norm-SGD (QJM '25) Under (A.1)–(A.3), and if $\sum_{k=0}^{\infty} \alpha_k = \infty$ and $\sum_{k=0}^{\infty} \alpha_k^2$, then: $\operatorname{dist}(\mathbf{0}, \partial \psi(\mathbf{x}^k)) \to \mathbf{0}$ and $\psi(\mathbf{x}^k) \to \psi^*$ almost surely; and we have $\mathbb{E}[\operatorname{dist}(\mathbf{0}, \partial \psi(\mathbf{x}^k))^2] \to \mathbf{0}$ and $\mathbb{E}[\psi(\mathbf{x}^k)] \to \mathbb{E}[\psi^*]$.

 \rightsquigarrow prox-SGD: $\|\mathcal{F}_{\mathrm{nat}}^{\lambda}(\boldsymbol{x}^{k})\| \rightarrow 0$ and $\psi(\boldsymbol{x}^{k}) \rightarrow \psi^{*}$ almost surely.

▶ (Hare and Lewis '04): Let ψ be C^2 -partly smooth at \mathbf{x}^* rel. to $\mathcal{M}_{\mathbf{x}^*}$ with $\mathbf{0} \in \operatorname{ri}(\partial \psi(\mathbf{x}^*))$. Suppose $\mathbf{x}^k \to \mathbf{x}^*$ and $\psi(\mathbf{x}^k) \to \psi(\mathbf{x}^*)$. Then:

 $\mathbf{x}^k \in \mathcal{M}_{\mathbf{x}^*} \quad \forall \ k \ ext{sufficiently large} \quad \Longleftrightarrow \quad \operatorname{dist}(\mathbf{0}, \partial \psi(\mathbf{x}^k))
ightarrow \mathbf{0}.$

 \rightsquigarrow Manifold Identification: We only need to show $x^k \rightarrow x^*$ (a.s.)!

Iterate Convergence and Identification

Iterate Convergence

- Can we guarantee $\mathbf{x}^k \to \mathbf{x}^*$ (almost surely)?
- Can we show manifold identification of norm-SGD?

Core Idea:

▶ We apply extended Kurdyka-Łojasiewicz analysis techniques.

Assumptions for Iterate Convergence (B.1) The function ψ is definable in an *o*-minimal structure. (B.2) We assume $\mathbb{P}(\{\omega : \liminf_{k\to\infty} ||\mathbf{x}^k(\omega)|| < \infty\}) = 1.$

- Semialgebraic and globally subanalytic functions and functions in log-exp structures are definable.
- ► Literature: Łojasiewicz '65, '93, Kurdyka '98, van den Dries '97, Attouch and Bolte '09, ...

(√)

Iterate Convergence

- Can we guarantee $\mathbf{x}^k \to \mathbf{x}^*$ (almost surely)?
- Can we show manifold identification of norm-SGD?

Core Idea:

▶ We apply extended Kurdyka-Łojasiewicz analysis techniques.

Assumptions for Iterate Convergence

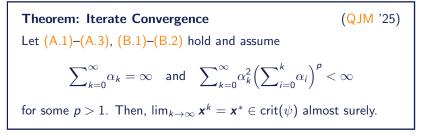
(B.1) The function ψ is definable in an *o*-minimal structure.

(B.2) We assume $\mathbb{P}(\{\omega : \liminf_{k \to \infty} \| \mathbf{x}^k(\omega) \| < \infty\}) = 1.$

- Semialgebraic and globally subanalytic functions and functions in log-exp structures are definable.
- ► Literature: Łojasiewicz '65, '93, Kurdyka '98, van den Dries '97, Attouch and Bolte '09, ...

(🗸)

Iterate Convergence and Manifold Identification



• Holds for step sizes $\alpha_k \sim k^{-\gamma}$ with $\gamma \in (\frac{2}{3}, 1]$.

Theorem: Manifold Identification(QJM '25)... in addition, if ψ is C^2 -partly smooth at \mathbf{x}^* and if $\mathbf{0} \in \operatorname{ri}(\partial \psi(\mathbf{x}^*))$ for almost every ω , then: $\mathbf{x}^k \in \mathcal{M}_{\mathbf{x}^*}$ for all \mathbf{k} large, almost surely.

Proof Snippets — I

▶ Measure descent via a merit function (Ouyang and Milzarek '21):

$$H_{\xi}(\mathbf{z}) := \psi(\operatorname{prox}_{\lambda\varphi}(\mathbf{z})) + \xi \|F_{\operatorname{nor}}^{\lambda}(\mathbf{z})\|^2, \quad \lambda, \xi > 0.$$

 \rightsquigarrow This allows us to leverage the unbiasedness in the *z*-updates!

Analysis of H_ξ along natural time scales ∑ⁿ⁻¹_{i=k} α_i. For τ > 0, we define the time indices {t_k}_k via t₀ = 0:

 $t_{k+1} := \varsigma(t_k, \tau)$ where $\varsigma(k, \tau) := \sup\{n \ge k : \sum_{i=k}^{n-1} \alpha_i \le \tau\}.$

(Ljung '77, Benveniste et al. '92, Kushner, Yin '03, Tadić '15, ...).

Proof Snippets — II

▶ Time window-based approximate descent:

$$egin{aligned} & extsf{H}_{\xi}(oldsymbol{z}^{t_{k+1}}) - extsf{H}_{\xi}(oldsymbol{z}^{t_k}) \leq & - extsf{C}_1 \|oldsymbol{F}_{ extsf{nor}}^{\lambda}(oldsymbol{z}^{t_k})\|^2 \ + & extsf{C}_2oldsymbol{s}_k^2. \end{aligned}$$

- ► Aggregated error s_k := max_{tk<j≤tk+1} || ∑_{i=tk}^{j-1} α_i [gⁱ ∇f(xⁱ)]|| are controllable via the Burkholder-Davis-Gundy inequality.
- ► Convergence behavior of iterates j ∈ (t_k, t_{k+1}) can be recovered via Gronwall's inequality.
- ► Use a specialized KL inequality to handle the additional error terms in the descent condition.

Related Work

Traditional KL-Framework:

 Absil et al. '05, Attouch and Bolte '09, Attouch et al. '10, '13, Bolte et al. '10, '14, Frankel et al. '15, ...

KL-Results for SGD and RR:

▶ Tadić '09, '15: step sizes $\{\alpha_k\}_k$ with $\alpha_k = \frac{\alpha}{(k+\beta)^{\gamma}}$, $\gamma \in (\frac{3}{4}, 1)$,

$$|f(\mathbf{x}^k) - f(\mathbf{x}^*)| = \mathcal{O}(k^{-p}), \quad ||\mathbf{x}^k - \mathbf{x}^*|| = \mathcal{O}(k^{-q}), \quad k \to \infty$$

a.s. on $\{\omega : \sup_k \| \boldsymbol{x}^k(\omega) \| < \infty\}$ where $p \in (0, 1]$, $q \in (0, \frac{1}{2}]$.

Related: Benaïm '18, Dereich and Kassing '21, Chouzenoux et al. '23; RR: Li et al. '21; SGD with momentum: Qiu et al. '24.

Global KL / PL: Karimi et al. '16, Gadat, Panloup '17, Wojtowytsch '23, Fatkhullin et al. '22, ...

In Expectation: Driggs et al. '21 (Stochastic PALM with VR), ...

Related Work

Traditional KL-Framework:

 Absil et al. '05, Attouch and Bolte '09, Attouch et al. '10, '13, Bolte et al. '10, '14, Frankel et al. '15, ...

KL-Results for SGD and RR:

▶ Tadić '09, '15: step sizes $\{\alpha_k\}_k$ with $\alpha_k = \frac{\alpha}{(k+\beta)^{\gamma}}$, $\gamma \in (\frac{3}{4}, 1)$,

$$|f(\mathbf{x}^k) - f(\mathbf{x}^*)| = \mathcal{O}(k^{-p}), \quad ||\mathbf{x}^k - \mathbf{x}^*|| = \mathcal{O}(k^{-q}), \quad k \to \infty$$

a.s. on $\{\omega : \sup_k \| \boldsymbol{x}^k(\omega) \| < \infty\}$ where $p \in (0, 1], q \in (0, \frac{1}{2}]$.

▶ Related: Benaïm '18, Dereich and Kassing '21, Chouzenoux et al. '23; RR: Li et al. '21; SGD with momentum: Qiu et al. '24.

Global KL / PL: Karimi et al. '16, Gadat, Panloup '17, Wojtowytsch '23, Fatkhullin et al. '22, ...

In Expectation: Driggs et al. '21 (Stochastic PALM with VR), ...

Numerical Illustrations

We consider the application:

$$\min_{\boldsymbol{X},\boldsymbol{Y}\in\mathbb{R}^{m\times n}} \frac{1}{2} \|\boldsymbol{X}+\boldsymbol{Y}-\boldsymbol{M}\|_{F}^{2} + \nu_{1}\|\boldsymbol{X}\|_{*} + \nu_{2}\|\boldsymbol{Y}\|_{1}, \quad \nu_{1},\nu_{2} > 0.$$

Background and Remarks:

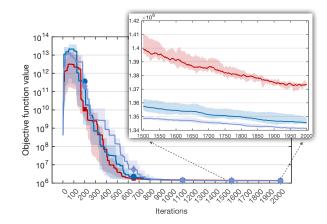
- ▶ M is a video clip; each column M_i of M is a vectorized frame.
- ► The model aims to decompose *M* into a low-rank background *X* and a sparse component *Y* (for movements).
- ▶ We test prox-SGD and norm-SGD on a video $M \in [0,1]^{230400 \times 351}$.
- ▶ We use the stochastic gradients $\boldsymbol{g}^k = \frac{1}{|S_k|} \sum_{i \in S_k} \nabla f_i(\boldsymbol{X}^k, \boldsymbol{Y}^k)$ where $f_i(\boldsymbol{X}, \boldsymbol{Y}) = \frac{n}{2} \|\boldsymbol{X}_i + \boldsymbol{Y}_i \boldsymbol{M}_i\|^2$ and $|S_k| = 8$.
- \rightsquigarrow Each stochastic gradient only accesses 8 frames of $m{M}$ each iteration.
- We use $\alpha_k \sim 1/k^{3/4}$, $\lambda \in \{1, 2\}$, and $\nu_1 = 150$, $\nu_2 = 0.25$.

We consider the application:

$$\min_{\boldsymbol{X},\boldsymbol{Y}\in\mathbb{R}^{m\times n}} \frac{1}{2} \|\boldsymbol{X}+\boldsymbol{Y}-\boldsymbol{M}\|_{F}^{2} + \nu_{1}\|\boldsymbol{X}\|_{*} + \nu_{2}\|\boldsymbol{Y}\|_{1}, \quad \nu_{1},\nu_{2} > 0.$$

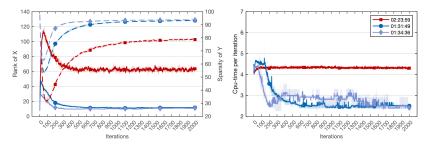
Background and Remarks:

- ▶ M is a video clip; each column M_i of M is a vectorized frame.
- ► The model aims to decompose *M* into a low-rank background *X* and a sparse component *Y* (for movements).
- ▶ We test prox-SGD and norm-SGD on a video $M \in [0, 1]^{230400 \times 351}$.
- ▶ We use the stochastic gradients $\boldsymbol{g}^{k} = \frac{1}{|S_{k}|} \sum_{i \in S_{k}} \nabla f_{i}(\boldsymbol{X}^{k}, \boldsymbol{Y}^{k})$ where $f_{i}(\boldsymbol{X}, \boldsymbol{Y}) = \frac{n}{2} \|\boldsymbol{X}_{i} + \boldsymbol{Y}_{i} \boldsymbol{M}_{i}\|^{2}$ and $|S_{k}| = 8$.
- \rightsquigarrow Each stochastic gradient only accesses 8 frames of \pmb{M} each iteration.
- We use $\alpha_k \sim 1/k^{3/4}$, $\lambda \in \{1, 2\}$, and $\nu_1 = 150$, $\nu_2 = 0.25$.



► Fig.: Plot of objective function values.

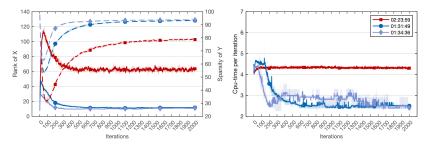
norm-SGD, $\lambda = 1$ (\blacksquare), norm-SGD, $\lambda = 2$ (\blacksquare), prox-SGD (\blacksquare).



- Fig.: Left: rank (solid line) & sparsity (dashed line); Right: cputime per iteration.
- ▶ prox-SGD spent 57% more time than norm-SGD.

norm-SGD, $\lambda = 1$ (\blacksquare), norm-SGD, $\lambda = 2$ (\blacksquare), prox-SGD (\blacksquare).

→ More results and experiments in the paper.



- Fig.: Left: rank (solid line) & sparsity (dashed line); Right: cputime per iteration.
- ▶ prox-SGD spent 57% more time than norm-SGD.

norm-SGD, $\lambda = 1$ (\blacksquare), norm-SGD, $\lambda = 2$ (\blacksquare), prox-SGD (\blacksquare).

 \rightsquigarrow More results and experiments in the paper.

Summary

Conclusions

Take-Away: New normal map-based perspective & KL-analysis techniques for stochastic methods.

→ Can be applied to many other contexts and problems: random reshuffling, distributed algorithms, . . .

Theory	prox-SGD	norm-SGD
Complexity	$\mathcal{O}(T^{-1/2})$	$\mathcal{O}(T^{-1/2})$
Asymp. Conv.	$\ F_{\mathrm{nat}}^{\lambda}(\boldsymbol{x}^{k})\ ightarrow 0$	$dist(m{0},\partial\psi(m{x}^k)) o 0$
Iter. Conv.	× (?)	$oldsymbol{x}^k o oldsymbol{x}^*$ a.s.
Identification	×	$oldsymbol{x}^k \in \mathcal{M}_{oldsymbol{x}^*}$ a.s.

Joint work with Junwen Qiu and Li Jiang:

"A Normal Map-Based Proximal Stochastic Gradient Method: Convergence and Identification Properties"

Thank you very much! ©