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Problem Formulation

We consider the

miny,erd P(x) 1= f(x) + ¢(x)

Basic Assumptions:

» ©:RY — (—00,00] is a lower semicontinuous, proper, and convex
function (can be ).

» f:RY — R is smooth (can be and ).

Typical Situation:
» f measures the error between an iterate and given data.
»  is a regularization term that promotes special structure.

» Evaluation of f / V£ is too expensive ~~ use
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Examples and Applications

Examples:
» Sparse / Low-rank optimization: o(x) = pl/x|]1, ¢(X) = p|| X]|..

» Constrained optimization problems: ¢(x) = tc(x).

» Expected / Empirical risk: f(x) = E[F(x,&)], f(x) = %Z?’Zlf(x; 0.

s , , and
are prevalent in many large-scale and learning applications.

Neural Networks Supervised Learning Matrix Optimization
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The Proximal Stochastic Gradient Method



Proximal Stochastic Gradient Descent

To solve minycpa ¥(x) := f(x) + ¢(x), we (can) consider:

Proximal Stochastic Gradient Descent (prox-SGD):

k+1

xkt1 — proxaw(xk —ax g")

» gk~ VF(x¥) is a stochastic approximation of V£(x¥).
» {ax}k are suitable step sizes.
> Prox,,(x) :=argmin,cgs ©(y) + 5=|/x — y||? is the well-known
of .
Literature:

» Duchi and Singer '11, Xiao and Zhang '14, Nitanda '14, Ghadimi et
al. '16, Atchadé et al. '17, Davis and Drusvyatskiy '19, ...
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prox-SGD: What Do We Know?

Discussion:

~» Theory and convergence guarantees seem well-developed.
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prox-SGD: What Do We Know?

Discussion:

~» Theory and convergence guarantees seem well-developed.

» If £ (or ) is or : analysis is close to SGD
and the deterministic case.
'13, '20, '20,
21, 24, ...
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prox-SGD: What Do We Know?

Discussion:

~» Theory and convergence guarantees seem well-developed.

» If £ (or ) is or : analysis is close to SGD

and the deterministic case.
'13, '20, '20,
21, 24, ...

» Understanding convergence of prox-SGD if f is was a
long open problem.

» Finally addressed by and

Complexity Bound for prox-SGD: ( '19)

g E F)\ kY1121 — T71/2
it BRI = O(T )
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prox-SGD: What Do We Know?

Natural Residual:

F(x) = +(x = proxy, (x — AVF(x)).

is a popular stationarity measure for proximal methods:

0 € OY(x) = VF(x) + dp(x) < F,
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prox-SGD: What Do We Know?

Natural Residual:

Fr;\at(x) = l(x — proxw(x —AVf(x))), A>0,

A
is a popular stationarity measure for proximal methods:
0 € 9u(x) = VF(x) +0p(x) <=  Fo(x)=0.
Stochastic Conditions:
» Complexity and convergence is based on the standard assumptions:
Elg" | Fi] = VF(x¥) (unbiased)
E[llgh — VF(x")|? | Fi] < o2 (bounded variance)

(on some suitable underlying probability space (Q, F, {Fk}«, P)).

» Earlier results under oc—0,( '16,
'14, '16).
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prox-SGD: What Do We Know?

Asymptotic Convergence of prox-SGD: ( '22)

limg oo [|Fine(x¥)]| =0 almost surely

» Requires diminishing step sizes Ziozo g = 09, Zk:io ai < 00.

» ¢ needs to be Lipschitz on dom(y).

» Stronger asymptotic guarantees in the case (~ folklore).
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prox-SGD: What Do We Know?

Asymptotic Convergence of prox-SGD: ( '22)

limg oo [|Fine(x¥)]| =0 almost surely

nat

» Requires diminishing step sizes Z‘;O:O g = 09, Zk:io ai < 00.

» ¢ needs to be Lipschitz on dom(y).

» Stronger asymptotic guarantees in the case (~ folklore).

seems pretty comprehensive
anything open / missing?
any major drawbacks of prox-SGD?

(... which might require / motivate some new research ©)
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Research Questions

The following questions have not been (re-)solved for prox-SGD:

» Can we guarantee asymptotic convergence without requiring global
Lipschitz continuity of ?

— Is a full theory “SGD ~ prox-SGD" possible?
Y P P (a bit boring)

. ’ k 2
» Can we show dist(0, 9y (x*)) — 0 (a.s.)? (open)

» Can we say more? Can we ensure xK — x* in the stochastic, non-
convex, nonsmooth case?
(open)

» prox-SGD is known to not have a

(limitation)
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Manifold ldentification



Failure of Identification: Illustration

Toy Example:

min
xe€[—-1,1]

(

— Global solution x* = —1.
— Active set M, = {x € [-1,1] :
x=—-1} = {x*}.

'21)

f(x) = x.

» We run prox-SGD,

Xk+

with gk = f/(xK) + e¥, ek ~ N(0,1), ay =

» Comparison with prox-GD (eX =0, a) = «
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Failure of Identification: Toy Example

0
0 10
1008 I
10 10
I 108 108
1012 1012
10°1® 10716
100 200 300 400 500 o 2 4 6 8 10
Iterations Iterations %10°

» Fig.: prox-GD (W), prox-SGD (mm), k s 3 (mm)

Fact: The iterates {x“}, generated by prox-SGD satisfy

P(x* ¢ M,.)>n for some n > 0.
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Active Manifold Identification

> M+ can capture the smooth local sub-structure
of the objective function ¢ at a point x*.

Manifold Identification: There is K € N such that
xKe My YVhk>K (almost surely).
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Active Manifold Identification

> M+ can capture the smooth local sub-structure
of the objective function ¢ at a point x*.

Manifold Identification: There is K € N such that
xKe My YVhk>K (almost surely).

Low-rank. Let o(X) = || X]|. and X* € R™*" be given and set:
My ={X € R™" : rank(X) = rank(X™)}.
The nuclear norm is smooth on Mx« ( '17).

Remark: Once the (low-rank) sub-structure has been identified, more
efficient algorithmic strategies can be used.
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Active Manifold Identification

> typically relies on the concept of
and on the strict complementarity condition.

Partial Smoothness (for 1) = f + ¢): ( '03)
P is at x* € dom(9y) relative to My« if:
— (Smoothness) My~ is a C?-manifold and 9| rq,. is C? near x*;
— (Sharpness) affine span of 9y(x*) is parallel to Nay,. (x*);
— (Continuity) 9 restricted to My~ is continuous at x*.

Theorem (Informal):

prox-GD has a manifold identification property.

References: '03, '04, '08,
'12, '17, '18, ...
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Failure of Identification: LASSO

Least-Squares with ¢1-Regularizer:

. 1
min f(x) + ¢(x) := S||Ax — b[|* + x|
xeRd 2

dimension of the support
1000 T T T

» Fig.: prox-GD (mm),
prox-SGD (=), g00 |

» Observed in ( '10, :

550 [supp(z")]

10° 10* 102 10°
iterations
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Solutions and Motivation



Enabling Identification of prox-SGD

Can stochastic proximal-type methods achieve identification?
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Enabling Identification of prox-SGD

Can stochastic proximal-type methods achieve identification?

Current Solutions and Limitations:

» Incorporate or use : RDA,
SAGA, prox-SVRG, prox-STORM.

~~ Advantage: can work with fixed step size ax = «, variance vanishes.

» Most results limited to the (strongly) convex case; a.s. convergence
xK — x* is often assumed as prerequisite.

References: '10, '12, '18,
'19, 21, '22, '23.
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Observation

Can stochastic proximal-type methods achieve identification
without variance reduction techniques?
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Observation

Can stochastic proximal-type methods achieve identification
without variance reduction techniques?

Prox-SGD:

k+1

x = proxakw(xk —a,g") with gk~ VF(xF).

» Diminishing step sizes, ax — 0, are required to ensure convergence.

» Small oy can harm identification properties.
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Observation

Can stochastic proximal-type methods achieve identification
without variance reduction techniques?

Prox-SGD:

k+1

x = proxakw(xk —a,g") with gk~ VF(xF).

» Diminishing step sizes, ax — 0, are required to ensure convergence.

» Small oy can harm identification properties.

How about keeping the proximal parameter constant?

k+1

XK+ = (1 — ay )xk + akproxw(xk - \gh).

» No, this does not work (variance scaled with “ay”). ®
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Revisiting prox-GD

prox-GD:
Xkl = prox)w(xk — AVF(x9)).

Introduce an auxiliary iterate z*:
2K = xk — \VF(x5),

k+

xk = proxw(zk“).
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Revisiting prox-GD

prox-GD:
Xkl = prox)w(xk — AVF(x9)).

Introduce an auxiliary iterate z*:

k+

ZK = xk AV F(x9),
X

1= proxw(zk“).

We rearrange

2K =2k o [VF(xF) + 2T (ZF - x
k+1

Xt = prox, ,(z2"T1) with o=\

~~ We also have A~1(zX — x¥) = Venv,,(z¥) € dp(x¥).
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Revisiting prox-GD

prox-GD:
Xkl = prox)w(xk — AVF(x9)).

Introduce an auxiliary iterate z*:

k+

ZK = xk AV F(x9),
X

1= proxw(zk“).

We rearrange

=z . [Vf(xk) + )\*l(zk — xk)]
k+1

Xt = prox, ,(z2"T1) with o=\

~~ We also have A~1(zX — x¥) = Venv,,(z¥) € dp(x¥).

» ldea: Keep )\ fixed and vary the parameter o ~» ay.
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The Proposed Method: norm-SGD



Proposed Method

Normal Map-based Proximal SGD (norm-SGD):

k+

> X KLy

l= prox,,(z

p ZKL = 2k — oy - [gh + AH(Zk — xM)) (Normal map step)

(Proximal step)
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Proposed Method

Normal Map-based Proximal SGD (norm-SGD):

p ZKL = 2k — oy - [gh + AH(Zk — xM)) (Normal map step)
» Xk = prox, (K1) (Proximal step)
» The ( '92) is defined as

FA(2) :=VFf(x)+ XY (z—x) where x= prox,,(z).
1
€9¢p(x)

Since 1 = f + ¢, it holds that F\ (z) € 9v(x).

~> The z-update can be seen as a special
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Proposed Method

Normal Map-based Proximal SGD (norm-SGD):

p ZKL = 2k — oy - [gh + AH(Zk — xM)) (Normal map step)
» Xk = prox, (K1) (Proximal step)
» The ( '92) is defined as
Fﬁ\or( ):=VFf(x)+ A 1(z—x) where x= prox,,(z).
— ]
€0¢(x)

Since 1 = f + ¢, it holds that F\ (z) € 9v(x).

~> The z-update can be seen as a special

» The normal map has been primarily used in variational inequalities
and generalized equations ( '03).
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Does It Work?

Let us revisit the earlier toy example:

10° 10°
10 10
7 10® E 108
1012 1012
10710 107

0 100 200 300 400 500 0

Iterations

» Fig.: prox-GD (=), prox-SGD (

Andre Milzarek (SD:!

) k= g (

UHK-SZ) The Proposed Method: norm-SGD

4

Iterations

)

6

10
10°



Does It Work?

Let us revisit the earlier toy example:

10
10
I 10%
102
106

0 200

400 600
Iterations

10 T T T T

10

I 10®

10 12

10 16
800 1000 o 2 4 6 8 10
Iterations 10°

» Fig.: prox-GD (=), prox-SGD (7%), norm-SGD (), and

ki % (19)
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Why Does It Work? (Theory)



The Normal Map as Stationarity Measure

Normal Map ( '92, 93, ... ):

A
Fnor

(z) = VF(x) + A"}z —x) where x= prox,,,(z),

= Vf(prox,,(z)) + Az~ prox,,(z)).
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The Normal Map as Stationarity Measure

Normal Map ( '92, 93, ... ):

A
Fnor

(z) = VF(x) + A"}z —x) where x= prox,,,(z),

= Vf(prox,,(z)) + Az~ prox,,(z)).

Comparison with F)\,:
Fro:(2) € VF(x) +9p(x) = 99(x)
Fiue(x) € VF(x) + 9p(x ) # 0u(x)

where xT := prox, ,(x — AVf(x)).
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The Normal Map as Stationarity Measure

Stationarity:
» If F,.(2) = 0, then x := prox, ,(2) € crit(¢) := {x : 0 € dY(x)}.
» If F)\(x) =0, then z := x — A\Vf(x) satisfies F\ (z) = 0.

Relationship: For all x € dom(d¢p) and z € RY, we have

IF

nat

(x)|| < dist(0,0u(x)),  dist(0, v (prox,,(2))) < | Foue(2)]

(see, e.g., '18)

» Remark: In general: [|F(x)]| <e == dist(0,0¢(x)) <e.
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Complexity of norm-SGD

Basic Assumptions
(A.1) fis CY; ¢ is convex, Isc., proper; infycpa 1(x) > —occ.
(A.2) The gradient mapping V£ is L-continuous on dom(yp).
(A.3) (Variance Bound). We assume E[gk | Fx] = Vf(x*) and
E[llgk — VF(x¥)||? | Fx] < o2 (for all k, a.s.).
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Complexity of norm-SGD

Basic Assumptions
(A.1) fis CY; ¢ is convex, Isc., proper; infycpa 1(x) > —occ.
(A.2) The gradient mapping V£ is L-continuous on dom(yp).
(A.3) (Variance Bound). We assume E[gk | Fx] = Vf(x*) and
E[llgk — VF(x¥)||? | Fx] < o2 (for all k, a.s.).

Theorem: Iteration Complexity of norm-SGD ( '25)

Under - ,and if ap = a ~ T-1/2 then:

; : K\)21 — ~1/2
ke{oT.l,anl} E[dist(0, 0¢(x*))*] = O(T~1/=).

w prox-SGD: minye o, .71 B[l F(x)|?] = O(T4/2),
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Asymptotic Convergence

Theorem: Asymptotic Convergence of norm-SGD '25)

Under - ,and if Y77 o = oo and Y7 af, then:
dist(0, 9¢(x*)) — 0 and (x*) — 4™ almost surely;

and we have E[dist(0, 91(x¥))?] — 0 and E[y(x*)] — E["].

~ prox-SGD: ||F (x¥)|| — 0 and ¢(x¥) — v* almost surely.
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Asymptotic Convergence

Theorem: Asymptotic Convergence of norm-SGD  (QJM '25)
Under (A.1)—=(A.3), and if Y77 oy = 0o and Y7 af, then:

dist(0, 9¢(x*)) — 0 and (x*) — 4™ almost surely;

and we have E[dist(0, 91(x¥))?] — 0 and E[y(x*)] — E["].

~ prox-SGD: ||F (x¥)|| — 0 and ¢(x¥) — v* almost surely.

» (Hare and Lewis '04): Let 1 be C2-partly smooth at x* rel. to M-
with 0 € 1i(d%(x*)). Suppose x* — x* and (x*) — 1 (x*). Then:

xK € My VY ksufficiently large <= dist(0, di)(x*)) — 0.
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Asymptotic Convergence

Theorem: Asymptotic Convergence of norm-SGD  (QJM '25)
Under (A.1)—=(A.3), and if Y77 oy = 0o and Y7 af, then:

dist(0, 9¢(x*)) — 0 and (x*) — 4™ almost surely;

and we have E[dist(0, 91(x¥))?] — 0 and E[y(x*)] — E["].

~ prox-SGD: ||F (x¥)|| — 0 and ¢(x¥) — v* almost surely.

» (Hare and Lewis '04): Let 1 be C2-partly smooth at x* rel. to M-
with 0 € 1i(d%(x*)). Suppose x* — x* and (x*) — 1 (x*). Then:

xK € My VY ksufficiently large <= dist(0, di)(x*)) — 0.

~» Manifold Identification: We only need to show x* — x* (a.s.)!
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Iterate Convergence

» Can we guarantee x* — x* (almost surely)?

» Can we show manifold identification of norm-SGD?
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Iterate Convergence

» Can we guarantee x* — x* (almost surely)?

» Can we show manifold identification of norm-SGD?

Core ldea:

» We apply extended

Assumptions for Iterate Convergence
(B.1) The function 1 is definable in an o-minimal structure.

(B.2) We assume P({w : liminf,_, || x*(w)| < c0}) = 1.

» Semialgebraic and globally subanalytic functions and functions in
log-exp structures are definable.

» Literature: tojasiewicz '65, '93, Kurdyka '98, van den Dries '97,
Attouch and Bolte '09, ...

Andre Milzarek (SDS / CUHK-SZ)

Iterate Convergence and Manifold Identification



Iterate Convergence and Manifold Identification

Theorem: lterate Convergence ( '25)

Let - , - hold and assume

e’} ) 5 k P
Z oy = oo and Z o (Z oz,-) < 00
k=0 k=0 i=0

for some p > 1. Then, limy_,o, x* = x* € crit(z)) almost surely.

» Holds for step sizes a ~ k=7 with v € (3, 1].

Theorem: Manifold Identification ( '25)

. in addition, if ¢ is C2-partly smooth at x* and if 0 € ri(9y(x*))
for almost every w, then:

xX € My for all k large, almost surely.
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Proof Snippets — 1

» Measure descent via a merit function ( 21):
He(2) = v(prox,,(2)) + £l P (2) 1% A€ > 0.
~> This allows us to leverage the unbiasedness in the z-updates!

» Analysis of H along natural time scales szl a;. For 7 >0, we
define the time indices {t}« via to = 0:

tkr1 :=<(tk,7) where ¢(k,T):=sup{n>k: Z::kl a; <71}

( 17, 92, '03, 15, ...).
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Proof Snippets — 11

» Time window-based approximate descent:
He(2™+) — He(2%) < =G| Fon(2%)]? + Cosi

» Aggregated error sy := maxe, <j<t,, || Z, y ailg’ — VF(x)]| are
controllable via the .

» Convergence behavior of iterates j € (tx, tx+1) can be recovered via

» Use a specialized KL inequality to handle the additional error terms
in the descent condition.
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Related Work

Traditional KL-Framework:

> '05, '09, '10, '13,
'10, '14, '15, ...
KL-Results for SGD and RR:
> '09, '15: step sizes {ag }x with o) = ﬁ v E (%, 1),

F(x*) = F(x)| = O(k™P),  [Ix = x*|| = O(k™), ko0

a.s. on {w : sup [|[x*(w)|| < oo} where p € (0,1], q € (0, 1].

» Related: '18, 21,
'23: RR: '21; SGD with momentum: '24.
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Related Work

Traditional KL-Framework:

> '05, '09, '10, '13,
'10, '14, '15, ...
KL-Results for SGD and RR:
> '09, '15: step sizes {ag }x with o) = ﬁ v E (%, 1),

F(x*) = F(x)| = O(k™P),  [Ix = x*|| = O(k™), ko0

a.s. on {w : sup [|[x*(w)|| < oo} where p € (0,1], q € (0, 1].

» Related: '18, 21,
'23: RR: '21; SGD with momentum: '24.
Global KL / PL: '16, '17,
'23, 22, ...
In Expectation: '21 (Stochastic PALM with VR), ...
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Numerical Illustrations



Experiment: Sparse + Low-rank Recovery

We consider the application:

. 1
min fHX—l—Y—MH2F—|—V1HXH*+1/2||YH1, vy, > 0.
X,YERm*xn 2

Background and Remarks:

» Misa : each column M; of M is a vectorized frame.

» The model aims to decompose M into a low-rank background X
and a sparse component Y (for movements).
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Experiment: Sparse + Low-rank Recovery

We consider the application:

. 1
min fHX—l—Y—MH2F—|—V1HXH*+1/2||YH1, vy, > 0.
X,YERm*xn 2

Background and Remarks:

» Misa : each column M; of M is a vectorized frame.

» The model aims to decompose M into a low-rank background X
and a sparse component Y (for movements).

» We test prox-SGD and norm-SGD on a video M € [0, 1]230400x351,

» We use the stochastic gradients g« = Is—lk‘ > ies, VH(X¥, Y*) where
(X, Y)=35IXi+Y,— M;||? and |Sk| = 8.

~~ Each stochastic gradient only accesses 8 frames of M each iteration.

» We use ay ~ 1/k3* X e {1,2}, and v; = 150, 1, = 0.25.
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Experiment: Sparse + Low-rank Recovery

«10°

10° |

Obijective function value
5
5

106.....

r
O L ELLELEESEOERR RSP LO S
S S S S S SIS S S sS

AR N\ IO

Iterations

» Fig.: Plot of objective function values.

norm-SGD, \ = 1 (EM), norm-SGD, \ = 2 (=), prox-SGD (mm
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Experiment: Sparse + Low-rank Recovery

140 100 7
120 F 490
6
c
100 | 80 %
< foz B ]
I S
< Joo 2 B | pwd
S 60 g 2
o ] o E4 q
50 & =
3
40 1a0 g
3 ]
201 130
-9 g —
0 20 2
VLRSS LS ELERLLELLLS DSOS VLR LELLLELLLL LSS
PSR SO EEBOOELECEES PP PP P L LLELLRLECLES
Iterations Iterations

» Fig.: Left: rank (solid line) & sparsity (dashed line); Right: cpu-
time per iteration.

» prox-SGD spent than norm-SGD.

norm-SGD, \ = 1 (mM), norm-SGD, \ = 2 (=), prox-SGD (mm).
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Experiment: Sparse + Low-rank Recovery

140 100 7
120 F 490
6
c
100 | 80 %
< foz B ]
I S
< Joo 2 B | pwd
S 60 g 2
o ] o E4 q
50 & =
3
40 1a0 g
3 ]
201 130
-9 * —
0 20 2
VLRSS LS ELERLLELLLS DSOS VLR LELLLELLLL LSS
PSR SO EEBOOELECEES PP PP P L LLELLRLECLES
Iterations Iterations

» Fig.: Left: rank (solid line) & sparsity (dashed line); Right: cpu-
time per iteration.

» prox-SGD spent than norm-SGD.
norm-SGD, \ = 1 (mM), norm-SGD, \ = 2 (=), prox-SGD (mm).

~> More results and experiments in the paper.
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Summary



Conclusions

Take-Away: New normal map-based perspective & KL-analysis tech-

niques for stochastic methods.

~> Can be applied to many other contexts and problems: random
reshuffling, distributed algorithms, . ..

Theory prox-SGD norm-SGD
Complexity o(T~1/?2) o(T~1/2)
Asymp. Conv. | ||F), (x¥)|| — 0 | dist(0,dy(x¥)) — 0
Iter. Conv. X(?) xK — x* as.
Identification X xk € My« as.

Joint work with Junwen Qiu and Li Jiang:

“A Normal Map-Based Proximal Stochastic Gradient
Method: Convergence and Identification Properties”
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Thank you very much! ©®



