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Background and Problem Formulation
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Problem Formulation

We consider the composite optimization problem:

minx∈Rd ψ(x) := f (x) + φ(x)

Basic Assumptions:

▶ φ : Rd → (−∞,∞] is a lower semicontinuous, proper, and convex
function (can be nonsmooth).

▶ f : Rd → R is smooth (can be nonconvex and large-scale).

Typical Situation:

▶ f measures the error between an iterate and given data.

▶ φ is a regularization term that promotes special structure.

▶ Evaluation of f / ∇f is too expensive ⇝ use stochastic techniques.
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Examples and Applications

Examples:

▶ Sparse / Low-rank optimization: φ(x) = µ∥x∥1, φ(X ) = µ∥X∥∗.

▶ Constrained optimization problems: φ(x) = ιC(x).

▶ Expected / Empirical risk: f (x) = E[F (x , ξ)], f (x) = 1
N

∑N
i=1f (x ; i).

⇝ Stochastic optimization techniques, nonsmoothness, and noncon-
vexity are prevalent in many large-scale and learning applications.

Neural Networks Supervised Learning Matrix Optimization
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The Proximal Stochastic Gradient Method
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Proximal Stochastic Gradient Descent

To solve minx∈Rd ψ(x) := f (x) + φ(x), we (can) consider:

Proximal Stochastic Gradient Descent (prox-SGD):

xk+1 = proxαkφ
(xk − αk g k )

▶ g k ≈ ∇f (xk) is a stochastic approximation of ∇f (xk).

▶ {αk}k are suitable step sizes.

▶ proxαφ(x) := arg miny∈Rd φ(y) + 1
2α∥x − y∥2 is the well-known

proximity operator of φ.

Literature:

▶ Duchi and Singer ’11, Xiao and Zhang ’14, Nitanda ’14, Ghadimi et
al. ’16, Atchadé et al. ’17, Davis and Drusvyatskiy ’19, . . .
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prox-SGD: What Do We Know?

Discussion:

⇝ Theory and convergence guarantees seem well-developed.

▶ If f (or ψ) is convex or strongly convex: analysis is close to SGD
and the deterministic case.

Ghadimi and Lan ’13, Rosasco et al. ’20, Khaled et al. ’20, Patrascu
and Irofti ’21, Garrigos and Gower ’24, . . .

▶ Understanding convergence of prox-SGD if f is nonconvex was a
long open problem.

▶ Finally addressed by Davis and Drusvyatskiy:

Complexity Bound for prox-SGD: (Davis and Drusvyatskiy ’19)

min
k∈{0,1,...,T−1}

E[∥Fλ
nat(x

k)∥2] = O(T−1/2)
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prox-SGD: What Do We Know?

Natural Residual:

Fλ
nat(x) :=

1

λ
(x − proxλφ(x − λ∇f (x))), λ > 0,

is a popular stationarity measure for proximal methods:

0 ∈ ∂ψ(x) = ∇f (x) + ∂φ(x) ⇐⇒ Fλ
nat(x) = 0.

Stochastic Conditions:

▶ Complexity and convergence is based on the standard assumptions:

E[g k | Fk ] = ∇f (xk) (unbiased)

E[∥g k −∇f (xk)∥2 | Fk ] ≤ σ2 (bounded variance)

(on some suitable underlying probability space (Ω,F , {Fk}k ,P)).

▶ Earlier results under variance reduction σ → 0, (Ghadimi et al. ’16,
Xiao and Zhang ’14, Reddi et al. ’16).
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prox-SGD: What Do We Know?

Asymptotic Convergence of prox-SGD: (Li and Milzarek ’22)

limk→∞ ∥Fλ
nat(x

k)∥ = 0 almost surely

▶ Requires diminishing step sizes
∑∞

k=0 αk = ∞,
∑∞

k=0 α
2
k <∞.

▶ φ needs to be Lipschitz on dom(φ).

▶ Stronger asymptotic guarantees in the convex case (⇝ folklore).

. . . seems pretty comprehensive

. . . anything open / missing?

. . . any major drawbacks of prox-SGD?

(. . . which might require / motivate some new research ,)
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Research Questions

The following questions have not been (re-)solved for prox-SGD:

▶ Can we guarantee asymptotic convergence without requiring global
Lipschitz continuity of φ?

– Is a full theory “SGD ⇝ prox-SGD” possible?
(a bit boring)

▶ Can we show dist(0, ∂ψ(xk)) → 0 (a.s.)?
(open)

▶ Can we say more? Can we ensure xk → x∗ in the stochastic, non-
convex, nonsmooth case?

(open)

▶ prox-SGD is known to not have a manifold identification property.

(limitation)
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Manifold Identification
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Failure of Identification: Illustration

Toy Example: (Duchi and Ruan ’21)

min
x∈[−1,1]

f (x) := x .

– Global solution x∗ = −1.

– Active set Mx∗ = {x ∈ [−1, 1] :
x = −1} = {x∗}.

▶ We run prox-SGD,

xk+1 = proj[−1,1](x
k − αkg

k),

with gk = f ′(xk) + ek , ek ∼ N (0, 1), αk = 1
k , and x0 = 100.

▶ Comparison with prox-GD (ek = 0, αk ≡ α = 1).
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Failure of Identification: Toy Example
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▶ Fig.: prox-GD ( ), prox-SGD ( ), k 7→ 3
k ( )

Fact: The iterates {xk}k generated by prox-SGD satisfy

P(xk /∈ Mx∗) ≥ η for some η > 0.
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Active Manifold Identification

▶ (Active) manifolds Mx∗ can capture the smooth local sub-structure
of the objective function ψ at a point x∗.

Manifold Identification: There is K ∈ N such that

xk ∈ Mx∗ ∀ k ≥ K (almost surely).

Low-rank. Let φ(X ) = ∥X∥∗ and X ∗ ∈ Rm×n be given and set:

MX∗ = {X ∈ Rm×n : rank(X ) = rank(X ∗)}.

The nuclear norm is smooth on MX∗ (Vaiter et al. ’17).

Remark: Once the (low-rank) sub-structure has been identified, more
efficient algorithmic strategies can be used.
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Active Manifold Identification

▶ Identification typically relies on the concept of partial smoothness
and on the strict complementarity condition.

Partial Smoothness (for ψ = f + φ): (Lewis ’03)

ψ is partly smooth at x∗ ∈ dom(∂φ) relative to Mx∗ if:

– (Smoothness) Mx∗ is a C 2-manifold and ψ|Mx∗ is C 2 near x∗;

– (Sharpness) affine span of ∂ψ(x∗) is parallel to NMx∗ (x∗);

– (Continuity) ∂ψ restricted to Mx∗ is continuous at x∗.

Theorem (Informal):

prox-GD has a manifold identification property.

References: Lewis ’03, Hare and Lewis ’04, Lewis and Wright ’08, Lee
and Wright ’12, Liang et al. ’17, Poon et al. ’18, . . .
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Failure of Identification: LASSO

Least-Squares with ℓ1-Regularizer:

min
x∈Rd

f (x) + φ(x) :=
1

2
∥Ax − b∥2 + µ∥x∥1.

▶ Fig.: prox-GD ( ),
prox-SGD ( ).

▶ Observed in (Xiao ’10,
Lee and Wright ’12,
Poon et al. ’18, . . . ).
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Solutions and Motivation
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Enabling Identification of prox-SGD

Can stochastic proximal-type methods achieve identification?

Current Solutions and Limitations:

▶ Incorporate variance reduction or use averaging techniques: RDA,
SAGA, prox-SVRG, prox-STORM.

⇝ Advantage: can work with fixed step size αk ≡ α, variance vanishes.

▶ Most results limited to the (strongly) convex case; a.s. convergence
xk → x∗ is often assumed as prerequisite.

References: Xiao ’10, Lee and Wright ’12, Poon et al. ’18, Sun et al.
’19, Duchi and Ruan ’21, Huang and Lee ’22, Dai et al. ’23.
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Observation

Can stochastic proximal-type methods achieve identification
without variance reduction techniques?

Prox-SGD:

xk+1 = proxαkφ
(xk − αkg k) with g k ≈ ∇f (xk).

▶ Diminishing step sizes, αk → 0, are required to ensure convergence.

▶ Small αk can harm identification properties.

How about keeping the proximal parameter constant?

xk+1 = (1 − αk)xk + αkproxλφ(xk − λg k).

▶ No, this does not work (variance scaled with “αk”). /
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Revisiting prox-GD

prox-GD:
xk+1 = proxλφ(xk − λ∇f (xk)).

Introduce an auxiliary iterate zk :[
zk+1 = xk − λ∇f (xk),

xk+1 = proxλφ(zk+1).

We rearrange

[
zk+1 = zk − α · [∇f (xk) + λ−1(zk − xk)]

xk+1 = proxλφ(zk+1) with α = λ.

⇝ We also have λ−1(zk − xk) = ∇envλφ(zk) ∈ ∂φ(xk).

▶ Idea: Keep λ fixed and vary the parameter α⇝ αk .
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The Proposed Method: norm-SGD
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Proposed Method

Normal Map-based Proximal SGD (norm-SGD):

▶ zk+1 = zk − αk · [g k + λ−1(zk − xk)] (Normal map step)

▶ xk+1 = proxλφ(zk+1) (Proximal step)

▶ The normal map (Robinson ’92) is defined as

Fλ
nor(z) := ∇f (x) + λ−1(z − x)

∈∂φ(x)

where x = proxλφ(z).

Since ψ = f + φ, it holds that Fλ
nor(z) ∈ ∂ψ(x).

⇝ The z-update can be seen as a special stochastic subgradient step!

▶ The normal map has been primarily used in variational inequalities
and generalized equations (Facchinei and Pang ’03).
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Does It Work?

Let us revisit the earlier toy example:
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▶ Fig.: prox-GD ( ), prox-SGD ( ), k 7→ 3
k ( )
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Why Does It Work? (Theory)
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The Normal Map as Stationarity Measure

Normal Map (Robinson ’92, Pang ’93, . . . ):

Fλ
nor(z) = ∇f (x) + λ−1(z − x) where x = proxλφ(z), λ > 0

= ∇f (proxλφ(z)) + λ−1(z − proxλφ(z)).

Comparison with Fλ
nat:

Fλ
nor(z) ∈ ∇f (x) + ∂φ(x) = ∂ψ(x)

Fλ
nat(x) ∈ ∇f (x) + ∂φ(x+) ̸= ∂ψ(x)

where x+ := proxλφ(x − λ∇f (x)).
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The Normal Map as Stationarity Measure

Stationarity:

▶ If Fλ
nor(z) = 0, then x := proxλφ(z) ∈ crit(ψ) := {x : 0 ∈ ∂ψ(x)}.

▶ If Fλ
nat(x) = 0, then z := x − λ∇f (x) satisfies Fλ

nor(z) = 0.

Relationship: For all x ∈ dom(∂φ) and z ∈ Rd , we have

∥Fλ
nat(x)∥ ≤ dist(0, ∂ψ(x)), dist(0, ∂ψ(proxλφ(z))) ≤ ∥Fλ

nor(z)∥

(see, e.g., Drusvyatskiy and Lewis ’18)

▶ Remark: In general: ∥Fλ
nat(x)∥ ≤ ε ≠⇒ dist(0, ∂ψ(x)) ≤ ε.
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Complexity of norm-SGD

Basic Assumptions

(A.1) f is C 1; φ is convex, lsc., proper; infx∈Rd ψ(x) > −∞.

(A.2) The gradient mapping ∇f is L-continuous on dom(φ).

(A.3) (Variance Bound). We assume E[g k | Fk ] = ∇f (xk) and

E[∥g k −∇f (xk)∥2 | Fk ] ≤ σ2 (for all k , a.s.).

Theorem: Iteration Complexity of norm-SGD (QJM ’25)

Under (A.1)–(A.3), and if αk ≡ α ∼ T−1/2, then:

min
k∈{0,...,T−1}

E[dist(0, ∂ψ(xk))2] = O(T−1/2).

⇝ prox-SGD: mink∈{0,...,T−1} E[∥Fλ
nat(xk)∥2] = O(T−1/2).
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Asymptotic Convergence

Theorem: Asymptotic Convergence of norm-SGD (QJM ’25)

Under (A.1)–(A.3), and if
∑∞

k=0 αk = ∞ and
∑∞

k=0 α
2
k , then:

dist(0, ∂ψ(xk)) → 0 and ψ(xk) → ψ∗ almost surely;

and we have E[dist(0, ∂ψ(xk))2] → 0 and E[ψ(xk)] → E[ψ∗].

⇝ prox-SGD: ∥Fλ
nat(xk)∥ → 0 and ψ(xk) → ψ∗ almost surely.

▶ (Hare and Lewis ’04): Let ψ be C 2-partly smooth at x∗ rel. to Mx∗

with 0 ∈ ri(∂ψ(x∗)). Suppose xk → x∗ and ψ(xk) → ψ(x∗). Then:

xk ∈ Mx∗ ∀ k sufficiently large ⇐⇒ dist(0, ∂ψ(xk)) → 0.

⇝ Manifold Identification: We only need to show xk → x∗ (a.s.)!
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Iterate Convergence and Identification
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Iterate Convergence

▶ Can we guarantee xk → x∗ (almost surely)?

▶ Can we show manifold identification of norm-SGD? (✓)

Core Idea:

▶ We apply extended Kurdyka- Lojasiewicz analysis techniques.

Assumptions for Iterate Convergence

(B.1) The function ψ is definable in an o-minimal structure.

(B.2) We assume P({ω : lim infk→∞ ∥xk(ω)∥ <∞}) = 1.

▶ Semialgebraic and globally subanalytic functions and functions in
log-exp structures are definable.

▶ Literature:  Lojasiewicz ’65, ’93, Kurdyka ’98, van den Dries ’97,
Attouch and Bolte ’09, . . .
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Iterate Convergence and Manifold Identification

Theorem: Iterate Convergence (QJM ’25)

Let (A.1)–(A.3), (B.1)–(B.2) hold and assume∑∞

k=0
αk = ∞ and

∑∞

k=0
α2
k

(∑k

i=0
αi

)p

<∞

for some p > 1. Then, limk→∞ xk = x∗ ∈ crit(ψ) almost surely.

▶ Holds for step sizes αk ∼ k−γ with γ ∈ ( 2
3 , 1].

Theorem: Manifold Identification (QJM ’25)

. . . in addition, if ψ is C 2-partly smooth at x∗ and if 0 ∈ ri(∂ψ(x∗))
for almost every ω, then:

xk ∈ Mx∗ for all k large, almost surely.
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Proof Snippets — I

▶ Measure descent via a merit function (Ouyang and Milzarek ’21):

Hξ(z) := ψ(proxλφ(z)) + ξ∥Fλ
nor(z)∥2, λ, ξ > 0.

⇝ This allows us to leverage the unbiasedness in the z-updates!

▶ Analysis of Hξ along natural time scales
∑n−1

i=k αi . For τ > 0, we
define the time indices {tk}k via t0 = 0:

tk+1 := ς(tk , τ) where ς(k , τ) := sup{n ≥ k :
∑n−1

i=k αi ≤ τ}.

(Ljung ’77, Benveniste et al. ’92, Kushner, Yin ’03, Tadić ’15, . . . ).
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Proof Snippets — II

▶ Time window-based approximate descent:

Hξ(z tk+1) − Hξ(z tk ) ≤ −C1∥Fλ
nor(z

tk )∥2 + C2s2k .

▶ Aggregated error sk := maxtk<j≤tk+1
∥
∑j−1

i=tk
αi [g i −∇f (x i )]∥ are

controllable via the Burkholder-Davis-Gundy inequality.

▶ Convergence behavior of iterates j ∈ (tk , tk+1) can be recovered via
Gronwall’s inequality.

▶ Use a specialized KL inequality to handle the additional error terms
in the descent condition.
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Related Work

Traditional KL-Framework:

▶ Absil et al. ’05, Attouch and Bolte ’09, Attouch et al. ’10, ’13,
Bolte et al. ’10, ’14, Frankel et al. ’15, . . .

KL-Results for SGD and RR:

▶ Tadić ’09, ’15: step sizes {αk}k with αk = α
(k+β)γ , γ ∈ ( 3

4 , 1),

|f (xk) − f (x∗)| = O(k−p), ∥xk − x∗∥ = O(k−q), k → ∞

a.s. on {ω : supk ∥xk(ω)∥ <∞} where p ∈ (0, 1], q ∈ (0, 12 ].

▶ Related: Benäım ’18, Dereich and Kassing ’21, Chouzenoux et al.
’23; RR: Li et al. ’21; SGD with momentum: Qiu et al. ’24.

Global KL / PL: Karimi et al. ’16, Gadat, Panloup ’17, Wojtowytsch
’23, Fatkhullin et al. ’22, . . .

In Expectation: Driggs et al. ’21 (Stochastic PALM with VR), . . .
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Numerical Illustrations
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Experiment: Sparse+Low-rank Recovery

We consider the application:

min
X ,Y∈Rm×n

1

2
∥X + Y − M∥2F + ν1∥X∥∗ + ν2∥Y ∥1, ν1, ν2 > 0.

Background and Remarks:

▶ M is a video clip; each column M i of M is a vectorized frame.

▶ The model aims to decompose M into a low-rank background X
and a sparse component Y (for movements).

▶ We test prox-SGD and norm-SGD on a video M ∈ [0, 1]230 400×351.

▶ We use the stochastic gradients g k = 1
|Sk |

∑
i∈Sk

∇fi (X k ,Y k) where

fi (X ,Y ) = n
2∥X i + Y i − M i∥2 and |Sk | = 8.

⇝ Each stochastic gradient only accesses 8 frames of M each iteration.

▶ We use αk ∼ 1/k3/4, λ ∈ {1, 2}, and ν1 = 150, ν2 = 0.25.
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Experiment: Sparse+Low-rank Recovery

▶ Fig.: Plot of objective function values.

norm-SGD, λ = 1 ( ), norm-SGD, λ = 2 ( ), prox-SGD ( ).
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Experiment: Sparse+Low-rank Recovery

▶ Fig.: Left: rank (solid line) & sparsity (dashed line); Right: cpu-
time per iteration.

▶ prox-SGD spent 57% more time than norm-SGD.

norm-SGD, λ = 1 ( ), norm-SGD, λ = 2 ( ), prox-SGD ( ).

⇝ More results and experiments in the paper.
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Summary
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Conclusions

Take-Away: New normal map-based perspective & KL-analysis tech-
niques for stochastic methods.

⇝ Can be applied to many other contexts and problems: random
reshuffling, distributed algorithms, . . .

Theory prox-SGD norm-SGD

Complexity O(T−1/2) O(T−1/2)

Asymp. Conv. ∥Fλ
nat(x

k )∥ → 0 dist(0, ∂ψ(xk )) → 0

Iter. Conv. ✗ (?) xk → x∗ a.s.

Identification ✗ xk ∈ Mx∗ a.s.

Joint work with Junwen Qiu and Li Jiang:

“A Normal Map-Based Proximal Stochastic Gradient
Method: Convergence and Identification Properties”
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Thank you very much! ,
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