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Reproducibility crisis in ML

e \With ML models being ubiquitous in practical deployments, reproducibility has become
critical

e Reproducibility crisis in ML is real!

e Pineau et al (2021) discuss reasons (e.g. insufficient docs, insufficient hparam exploration,
inaccessible code, etc.) and provide recommendations for reproducibility

e Many papers show that same model trained with same data can have different predictions
on the same test example!

e Reasons: non-convex objective, random init, nondeterminism in training (e.g. shuffling,
parallelism, scheduling, hardware differences, round-off errors, etc.)

e Thus, forced to accept some level of irreproducibility despite controlling everything we can



Focus of study: reproducibility in convex optimization

e Goal: advance understanding of the fundamental limits of reproducibility

e Specific focus: convex optimization

e Formal definition of reproducibility (informally, deviations in outputs due to
errors in basic operations, e.g. gradient computations)

e Main results:

o Lower bounds on irreproducibility of convex optimization procedures in several settings of
interest (e.g. smooth, non-smooth, strongly-convex, etc.)

o  Algorithms matching lower bounds

o Reproducibility in ML settings: finite-sum, and stochastic convex optimization; tight upper and
lower bounds



Defining reproducibility

e Reproducibility: results of a computation are the same (or largely similar)
when the computation is re-run (i.e. same code running on same data)

e Not to be confused with replicability: results should be same (or largely
similar) when same code is run on different data

e Irreproducibility arises when basic ops constituting computation are inexact

e Thus, to define reproducibility, need to specify

o  Which basic ops can be inexact, and

o How to measure differences in results of computation.



Convex function classes
e Smooth: convex functions with Lipschitz continuous gradients

e Non-smooth: Lipschitz convex functions with potentially non-differentiable
points

e Strongly-convex: functions fsuch that f(z) — gllwllzis convex for some u > 0



Convex optimization procedures

First-order iterative (FOI) convex optimization procedure for function class F
e uses init op which generates an initial point,

e uses gradient ops, which yield gradients at any given query points



Convex optimization procedures

First-order iterative (FOI) convex optimization procedure for function class F
e uses init op which generates an initial point,
e uses gradient ops, which yield gradients at any given query points

e constructs iterates as follows:

Ty = Ty — Zz;é )\(t)g(a:z-) for some )\gt), i=0,...,t—1

1

X, is output of init op, and g(.) is the gradient op

e outputs x_forsome T>0

e Step sizes )\gt)lmay be adaptively chosen



Inexact ops in convex optimization

e Inexact initialization op: produces an initial point x, within distance 6 from
some reference point.

e Stochastic gradient op: produces an unbiased stochastic gradient of f at any
query point, with variance bounded by 2.

e Non-stochastic inexact gradient op: produces a non-deterministic vector

that is within distance & from the true gradient of f at any query point.



(g, O)-deviation

e Consider first-order convex optimization procedure, A, that is built using init
and gradient ops (e.g. gradient descent)

e Fix a class of convex functions F: e.g. smooth, non-smooth but Lipschitz,
strongly-convex, etc.

e To avoid trivialities, insist that A outputs an € suboptimal solution for any fin F.

e (g, 8)-deviation: if x.and x’. are two outputs of two runs of A for fin F, then (¢,

0)-deviation is

supser [ |lzy — f||2

[ﬁtochastlc settings




Parameter vs loss/prediction reproducibility

e (g, O)-deviation is defined in terms of deviation of output params

e In ML settings, can also measure irreproducibility in terms of deviation in loss on
a test example, or deviation in predictions on a test example

e In this work, restrict to parameter reproducibility because:

o For general convex optimization, loss or prediction reproducibility don’t make sense

o Inmany ML settings, loss or prediction functions are Lipschitz in parameters; hence param
reproducibility bounds can be transformed into loss/prediction reproducibility bounds

o In practice, learned parametric model can be deployed in unknown ways; hence prediction
reproducibility may not make sense even in ML settings

o In practice, may care about multiple metrics; here param reproducibility is more useful

o  When surrogate losses are used, loss reproducibility may not be useful



Summary of results: Slowed-down SGD/GD are optimal

Stochastic Inexact | Non-stochastic Inexact | Inexact Initialization
Gradient Oracle Gradient Oracle Oracle
Theorem 1 Theorem 2 Theorem 3
Smooth O (9%/(Te2)) ©(9%/<2) 0(6%)
Smooth Strongly-Cvx. O(%*/T N €) O(6% Ne) O(e~ T2 N ¢)
Nonsmooth O(1/(Te?)) O(1/(Te?) + 62/62) O(1/(Te2))
Nonsmooth Strongly-Cvx. O(Y/T Ne) O((1/T + %) Ae) O(Y/T Ne)

e Lower bounds are for first-order iterative algorithms like GD. Also allow adaptfivity.
e Upper bounds are achieved by “slowed-down GD/SGD”: i.e. run with a smaller learning rate for

more iterations




Summary of Results: Non-smooth Settings

Stochastic Inexact | Non-stochastic Inexact | Inexact Initialization
Gradient Oracle Gradient Oracle Oracle
Theorem 1 Theorem 2 Theorem 3
Smooth O (9%/(Te2)) ©(9%/<2) 0(6%)
Smooth Strongly-Cvx. O(%*/T N €) O(6% Ne) O(e~ T2 N ¢)
Nonsmooth O(1/(Te?)) O(1/(Te?) + 52/62) O(1/(Te2))
Nonsmooth Strongly-Cvx. O(Y/T Ne) O((1/T + %) Ae) O(Y/T Ne)

Non-smooth settings:
e Slightest errors in ops can lead to drastic deviation!
e Intuitively, at non-differentiable points errors lead to large deviations

e Standard bound of T = 1/¢? iterations can lead to maximal irreproducibility




Summary of Results: Strongly-Convex Settings

Stochastic Inexact

Non-stochastic Inexact

Inexact Initialization

Gradient Oracle Gradient Oracle Oracle
Theorem 1 Theorem 2 Theorem 3
Smooth O (9%/(Te2)) ©(9%/<2) 0(6%)
Smooth Strongly-Cvx. O(%*/T N €) O(6% Ne) O(e~ T2 N ¢)
Nonsmooth O(1/(Te?)) O(1/(Te?) + 62/62) O(1/(Te2))
Nonsmooth Strongly-Cvx. O(Y/T Ne) O((1/T + %) Ae) O(Y/T Ne)

Strongly-convex settings:

e Deviation smaller due to unique minimizer

e c¢-accuracy implies e-deviation automatically




Flavor of proofs: lower bound for smooth convex costs
with stochastic inexact gradient ops

Theorem: Given € and T, there is a smooth convex
function and a d-bounded stochastic gradient op such
that any FOI alg has (g, d) deviation at least 82/(€%T)




Flavor of proofs: lower bound for smooth convex costs
with stochastic inexact gradient ops
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Flavor of proofs: lower bound for smooth convex costs

with stochastic inexact gradient ops
5

Construct T+1 dim function f with dummy
args £ € RT and y € Ras

f(z,y) = 4eF(y)

If y is initialized at 1, to reduce
suboptimality gap to €, y must
decrease to 0.5

e E E EEEE®



Flavor of proofs: lower bound for smooth convex costs

Construct T+1 dim function f with dummy args x € RT and y € Ras
f(z,y) = 4eF(y)

If y is initialized at 1, to reduce suboptimality gap to €, y must decrease to 0.5
Gradient norm at most €, so for any FOI alg, average step size must be = 1/(¢T)
Stochastic gradient op: add +d noise to x coordinates one by one

When scaled by step sizes, deviation = T x 82 x 1/(€°T?) = 8%/(¢°T)



Flavor of proofs: upper bound for smooth convex costs
with stochastic inexact gradient ops

Theorem: Given € and T > 1/¢2, SGD with step size
1/(¢T) has (g, 8) deviation at most 8%/(€2T)




Flavor of proofs: upper bound for smooth convex costs
with stochastic inexact gradient ops

Let x, and y, be iterates of SGD and GD resp.:

E ||$t+1 — yt+1||2 =K ||(mt - ntg(iﬁt) - (yt - ntvf(yt))”2

= |lze — el = 2m E (@0 — yr, g(x:) — VS (30)) +77 E lg(@2) — V£ (we)II”

A >y

= (@i —y1, V(@) -V (30))
= |l@e — ye|* — 2ne (x¢ — ye, V(@) — VI (ye)) + 02 E | g(me) — V(o)
+?ﬁt2 E(g(z:) — Vf(xs), Vf(zs) — Vf(yt)>1+77t2 IV f(x:) — Vf(yt)||2

~"

=0
= ||x: — yt\|2:2nt (s — ye, V() — VI(ys)) + 77t2 IV f(x:) — Vf(yt)”i

-~

<0

+n2E||V () — g(z)|?
< |l&e — ye||* + 262,



Flavor of proofs: upper bound for smooth convex costs
with stochastic inexact gradient ops

Let x, and y, be iterates of SGD and GD resp.:  E ||z — yr||® < 6 an

Standard SGD analysis:

L|zo — x| | llmo — z.|® | nd?
— f(zy) < il
( th) = o7 2T ' 2




Flavor of proofs: upper bound for smooth convex costs
with stochastic inexact gradient ops

Let x, and y, be iterates of SGD and GD resp.:  E ||z — yr||® < 6 an
t

Standard SGD analysis, _ 1 2\
with step size 1/(T), Ef(2r) - f(z.) <O (T TET 5= O(e)
since T > 1/¢2:

Deviation bound for step size 1/(¢T):



Reproducibility in Optimization for ML: Finite-Sum Setting

Finite-Sum setting: optimize f(z) := 1 3", f;(z) via inexact gradient

ops for component functions f.
Measure of complexity: number of component gradient calls

Lower bound via setting where all f are identical: 2(1/(Te?) + 6°/¢2)
“Full batch” gradient descent: O(™/(Te?) + 6°/&2)
Main result: SGD (via randomly sampling components) gets optimal deviation!

Variance reduction doesn’t help here



Reproducibility in Optimization for ML: Stochastic Convex Opt

Stochastic Convex Opt: optimize F(x) = E¢oz f(, ) via access to samples

Given sample & ~ = obtain f(+,§)
l.e. access to (&, f(z,€), Vf(z,£),V?f(x,£), ) forall x

Assumption: For all x, IE%NE HVf‘(:c\,f‘)’ — VE(x)|]” < 62
For smooth F, lower bound for stochastic inexact gradient ops: Q(8°/(Te?))
Main result: Same lower bound holds despite access to more info!

Implication: SGD is optimal in this setting
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Follow-Up Work

Smooth

Non-stochastic Inexact
Gradient Oracle
Theorem 2

Inexact Initialization
Oracle
Theorem 3
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Need T > 1/¢
Accelerated GD requires only 1/Ve gradient ops for € accuracy

But: Attia and Koren (2021) showed that AGD is unstable

For inexact init, deviation can be as bad as @(5261/‘/2)

Conjecture: acceleration doesn’t help for reproducibility




Follow-Up Work

Non-stochastic Inexact
Gradient Oracle
Theorem 2

Inexact Initialization
Oracle
Theorem 3
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Need T > 1/¢

Comiectire: eration-dossniiholot o

Zhang et al (2023) give algs using 1/Ve gradient ops with deviation bounds:

e &2%/g2° for non-stochastic inexact gradient ops
e &2 for inexact init ops (optimal!)

Also extend these results for smooth convex-concave minimax problems




Limitations

e Qur results don’t apply to methods like AdaGrad.

e QOur lower bounds are only for “span-following” first-order-iterative methods,
i.e. each iterate is constructed in the linear span of the previously seen
gradients.

e \We have info-theoretic lower bounds (i.e. alg can do arbitrary computations

with gradients seen) for one setting, believe they hold for all



Further directions

e Extend analysis to non-convex settings

e Prove info-theoretic lower bounds!

e Experimental evidence needed: does slowing-down help in practice?

e Extensions to loss reproducibility or prediction reproducibility that may be
more directly relevant to ML

e Extensions to related notions such as replicability (parallel work by

Impagliazzo et al (2022) has initiated a study)



Thank you!

Questions?



