Reproducibility in Optimization: Theoretical Framework and Limits

Kwangjun Ahn, Prateek Jain, Ziwei Ji, Satyen Kale, Praneeth Netrapalli, Gil I. Shamir

Reproducibility crisis in ML

- With ML models being ubiquitous in practical deployments, *reproducibility* has become critical
- Reproducibility crisis in ML is real!
- **Pineau et al (2021)** discuss reasons (e.g. insufficient docs, insufficient hparam exploration, inaccessible code, etc.) and provide recommendations for reproducibility
- Many papers show that *same* model trained with *same* data can have *different* predictions on the *same* test example!
- Reasons: non-convex objective, random init, nondeterminism in training (e.g. shuffling, parallelism, scheduling, hardware differences, round-off errors, etc.)
- Thus, forced to accept some level of irreproducibility despite controlling everything we can

Focus of study: reproducibility in convex optimization

- Goal: advance understanding of the fundamental limits of reproducibility
- **Specific focus:** *convex optimization*
- Formal definition of reproducibility (informally, deviations in outputs due to errors in basic operations, e.g. gradient computations)
- Main results:
 - Lower bounds on irreproducibility of convex optimization procedures in several settings of interest (e.g. smooth, non-smooth, strongly-convex, etc.)
 - Algorithms matching lower bounds
 - Reproducibility in ML settings: finite-sum, and stochastic convex optimization; tight upper and lower bounds

Defining reproducibility

- **Reproducibility:** results of a computation are the same (or largely similar) when the computation is re-run (i.e. same code running on same data)
- Not to be confused with **replicability:** results should be same (or largely similar) when same code is run on *different* data
- Irreproducibility arises when basic ops constituting computation are *inexact*
- Thus, to define reproducibility, need to specify
 - Which basic ops can be inexact, and
 - How to measure differences in results of computation.

Convex function classes

- **Smooth:** convex functions with Lipschitz continuous gradients
- Non-smooth: Lipschitz convex functions with potentially non-differentiable points
- **Strongly-convex:** functions *f* such that $f(x) \frac{\mu}{2} ||x||^2$ is convex for some $\mu > 0$

Convex optimization procedures

First-order iterative (FOI) convex optimization procedure for function class F

- uses *init* op which generates an initial point,
- uses *gradient* ops, which yield gradients at any given query points

Convex optimization procedures

First-order iterative (FOI) convex optimization procedure for function class F

- uses *init* op which generates an initial point,
- uses gradient ops, which yield gradients at any given query points
- constructs iterates as follows:

$$\boldsymbol{x}_t = \boldsymbol{x}_0 - \sum_{i=0}^{t-1} \lambda_i^{(t)} g(\boldsymbol{x}_i)$$
 for some $\lambda_i^{(t)}, i = 0, \dots, t-1$

 X_0 is output of init op, and g(.) is the gradient op

- outputs \mathbf{x}_{τ} for some T > 0
- Step sizes $\lambda_i^{(t)}$ may be adaptively chosen

Inexact ops in convex optimization

- Inexact initialization op: produces an initial point x₀ within distance δ from some reference point.
- Stochastic gradient op: produces an unbiased stochastic gradient of *f* at any query point, with variance bounded by δ^2 .
- Non-stochastic inexact gradient op: produces a non-deterministic vector that is within distance δ from the true gradient of *f* at any query point.

(ϵ, δ) -deviation

- Consider *first-order* convex optimization procedure, *A*, that is built using init and gradient ops (e.g. gradient descent)
- Fix a class of convex functions *F*: e.g. smooth, non-smooth but Lipschitz, strongly-convex, etc.
- To avoid trivialities, insist that A outputs an ε suboptimal solution for any f in F.
- (ε, δ)-deviation: if x_f and x'_f are two outputs of two runs of A for f in F, then (ε, δ)-deviation is

$$\sup_{f \in \mathcal{F}} \mathbb{E} \| \boldsymbol{x}_f - \boldsymbol{x}_f' \|^2$$
For stochastic settings

Parameter vs loss/prediction reproducibility

- (ϵ, δ) -deviation is defined in terms of deviation of output params
- In ML settings, can also measure irreproducibility in terms of deviation in loss on a test example, or deviation in predictions on a test example
- In this work, restrict to parameter reproducibility because:
 - For general convex optimization, loss or prediction reproducibility don't make sense
 - In many ML settings, loss or prediction functions are Lipschitz in parameters; hence param reproducibility bounds can be transformed into loss/prediction reproducibility bounds
 - In practice, learned parametric model can be deployed in unknown ways; hence prediction reproducibility may not make sense even in ML settings
 - In practice, may care about multiple metrics; here param reproducibility is more useful
 - When surrogate losses are used, loss reproducibility may not be useful

Summary of results: Slowed-down SGD/GD are optimal

	Stochastic Inexact	Non-stochastic Inexact	Inexact Initialization
	Gradient Oracle	Gradient Oracle	Oracle
	Theorem 1	Theorem 2	Theorem 3
Smooth	$\Theta(\delta^2/(T\varepsilon^2))$	$\Theta(\delta^2/arepsilon^2)$	$\Theta(\delta^2)$
Smooth Strongly-Cvx.	$\Theta(\delta^2/T\wedgearepsilon)$	$\Theta(\delta^2\wedgearepsilon)$	$\Theta(e^{-\Omega(T)}\delta^2\wedgearepsilon)$
Nonsmooth	$\Theta(1/(T\varepsilon^2))$	$\Theta(1/(T\varepsilon^2) + \delta^2/\varepsilon^2)$	$\Theta(1/(T\varepsilon^2))$
Nonsmooth Strongly-Cvx.	$\Theta(1/T\wedgearepsilon)$	$\Theta((1/T+\delta^2)\wedgearepsilon)$	$\Theta(1/T\wedgearepsilon)$

- Lower bounds are for first-order iterative algorithms like GD. Also allow *adaptivity*.
- Upper bounds are achieved by "slowed-down GD/SGD": i.e. run with a smaller learning rate for more iterations

Summary of Results: Non-smooth Settings

	Stochastic Inexact	Non-stochastic Inexact	Inexact Initialization
	Gradient Oracle	Gradient Oracle	Oracle
	Theorem 1	Theorem 2	Theorem 3
Smooth	$\Theta(\delta^2/(T\varepsilon^2))$	$\Theta(\delta^2/arepsilon^2)$	$\Theta(\delta^2)$
Smooth Strongly-Cvx.	$\Theta(\delta^2/T\wedgearepsilon)$	$\Theta(\delta^2\wedgearepsilon)$	$\Theta(e^{-\Omega(T)}\delta^2\wedgearepsilon)$
Nonsmooth	$\Theta(1/(T\varepsilon^2))$	$\Theta(1/(T\varepsilon^2) + \delta^2/\varepsilon^2)$	$\Theta(1/(T\varepsilon^2))$
Nonsmooth Strongly-Cvx.	$\Theta(1/T\wedgearepsilon)$	$\Theta((1/T+\delta^2)\wedgearepsilon)$	$\Theta(1/T\wedgearepsilon)$

Non-smooth settings:

- Slightest errors in ops can lead to drastic deviation!
- Intuitively, at non-differentiable points errors lead to large deviations
- Standard bound of T = $1/\epsilon^2$ iterations can lead to *maximal* irreproducibility

Summary of Results: Strongly-Convex Settings

	Stochastic Inexact	Non-stochastic Inexact	Inexact Initialization
	Gradient Oracle	Gradient Oracle	Oracle
	Theorem 1	Theorem 2	Theorem 3
Smooth	$\Theta(\delta^2/(T\varepsilon^2))$	$\Theta(\delta^2/arepsilon^2)$	$\Theta(\delta^2)$
Smooth Strongly-Cvx.	$\Theta(\delta^2/T\wedgearepsilon)$	$\Theta(\delta^2\wedgearepsilon)$	$\Theta(e^{-\Omega(T)}\delta^2\wedgearepsilon)$
Nonsmooth	$\Theta(1/(T\varepsilon^2))$	$\Theta(1/(T\varepsilon^2) + \delta^2/\varepsilon^2)$	$\Theta(1/(T\varepsilon^2))$
Nonsmooth Strongly-Cvx.	$\Theta(1/T\wedgearepsilon)$	$\Theta((1/T+\delta^2)\wedgearepsilon)$	$\Theta(1/T\wedgearepsilon)$

Strongly-convex settings:

- Deviation smaller due to unique minimizer
- ε-accuracy implies ε-deviation automatically

Theorem: Given ε and T, there is a smooth convex function and a δ-bounded stochastic gradient op such that any FOI alg has (ε, δ) deviation at least $\delta^2/(\epsilon^2 T)$

Construct T+1 dim function f with dummy args $x \in \mathbb{R}^T$ and $y \in \mathbb{R}$ as $f(x,y) = 4\epsilon \mathcal{F}(y)$

If y is initialized at 1, to reduce suboptimality gap to ε , y must decrease to 0.5

Flavor of proofs: lower bound for smooth convex costs

Construct T+1 dim function f with dummy args $x \in \mathbb{R}^T$ and $y \in \mathbb{R}$ as

$$f(x,y) = 4\epsilon \mathcal{F}(y)$$

If y is initialized at 1, to reduce suboptimality gap to ε , y must decrease to 0.5

Gradient norm at most ε , so for any FOI alg, average step size must be $\approx 1/(\varepsilon T)$

Stochastic gradient op: add $\pm \delta$ noise to *x* coordinates one by one

When scaled by step sizes, deviation $\approx T \times \delta^2 \times 1/(\epsilon^2 T^2) = \delta^2/(\epsilon^2 T)$

Theorem: Given ε and T > $1/ε^2$, SGD with step size 1/(εT) has (ε, δ) deviation at most $\delta^2/(ε^2T)$

Let x_t and y_t be iterates of SGD and GD resp.:

$$\begin{split} \mathbb{E} \left\| \boldsymbol{x}_{t+1} - \boldsymbol{y}_{t+1} \right\|^{2} &= \mathbb{E} \left\| \left(\boldsymbol{x}_{t} - \eta_{t} g(\boldsymbol{x}_{t}) - (\boldsymbol{y}_{t} - \eta_{t} \nabla f(\boldsymbol{y}_{t})) \right\|^{2} \\ &= \left\| \boldsymbol{x}_{t} - \boldsymbol{y}_{t} \right\|^{2} - 2\eta_{t} \underbrace{\mathbb{E} \left\langle \boldsymbol{x}_{t} - \boldsymbol{y}_{t}, g(\boldsymbol{x}_{t}) - \nabla f(\boldsymbol{y}_{t}) \right\rangle}_{= \left\langle \boldsymbol{x}_{t} - \boldsymbol{y}_{t}, \nabla f(\boldsymbol{x}_{t}) - \nabla f(\boldsymbol{y}_{t}) \right\rangle} + \eta_{t}^{2} \mathbb{E} \left\| g(\boldsymbol{x}_{t}) - \nabla f(\boldsymbol{y}_{t}) \right\|^{2} \\ &= \left\| \boldsymbol{x}_{t} - \boldsymbol{y}_{t} \right\|^{2} - 2\eta_{t} \left\langle \boldsymbol{x}_{t} - \boldsymbol{y}_{t}, \nabla f(\boldsymbol{x}_{t}) - \nabla f(\boldsymbol{y}_{t}) \right\rangle + \eta_{t}^{2} \mathbb{E} \left\| g(\boldsymbol{x}_{t}) - \nabla f(\boldsymbol{x}_{t}) \right\|^{2} \\ &+ 2\eta_{t}^{2} \mathbb{E} \left\langle g(\boldsymbol{x}_{t}) - \nabla f(\boldsymbol{x}_{t}), \nabla f(\boldsymbol{x}_{t}) - \nabla f(\boldsymbol{y}_{t}) \right\rangle}_{=0} + \eta_{t}^{2} \left\| \nabla f(\boldsymbol{x}_{t}) - \nabla f(\boldsymbol{y}_{t}) \right\|^{2} \\ &= \left\| \boldsymbol{x}_{t} - \boldsymbol{y}_{t} \right\|^{2} \underbrace{-2\eta_{t} \left\langle \boldsymbol{x}_{t} - \boldsymbol{y}_{t}, \nabla f(\boldsymbol{x}_{t}) - \nabla f(\boldsymbol{y}_{t}) \right\rangle}_{\leq 0} + \eta_{t}^{2} \mathbb{E} \left\| \nabla f(\boldsymbol{x}_{t}) - g(\boldsymbol{x}_{t}) \right\|^{2} \\ &\leq \left\| \boldsymbol{x}_{t} - \boldsymbol{y}_{t} \right\|^{2} + \eta_{t}^{2} \delta^{2}. \end{split}$$

Let x_t and y_t be iterates of SGD and GD resp.: $\mathbb{E} \| \boldsymbol{x}_T - \boldsymbol{y}_T \|^2 \le \delta^2 \sum_t \eta_t^2$

Standard SGD analysis:

$$\mathbb{E} f\left(\frac{1}{T}\sum_{t=1}^{T} \boldsymbol{x}_{t}\right) - f(\boldsymbol{x}_{*}) \leq \frac{L \|\boldsymbol{x}_{0} - \boldsymbol{x}_{*}\|^{2}}{2T} + \frac{\|\boldsymbol{x}_{0} - \boldsymbol{x}_{*}\|^{2}}{2\eta T} + \frac{\eta \delta^{2}}{2}$$

Let x_t and y_t be iterates of SGD and GD resp.: $\mathbb{E} \| \boldsymbol{x}_T - \boldsymbol{y}_T \|^2 \le \delta^2 \sum_t \eta_t^2$

Standard SGD analysis, with step size 1/(ε T), since T > 1/ ε ²: $\mathbb{E} f(\bar{x}_T) - f(x_*) \le O\left(\frac{1}{T} + \varepsilon + \frac{\delta^2}{\varepsilon T}\right) = O(\varepsilon)$

Deviation bound for step size $1/(\epsilon T)$:

$$\mathbb{E} \left\| ar{oldsymbol{x}}_T - ar{oldsymbol{y}}_T
ight\|^2 \leq rac{1}{T} \sum_t \mathbb{E} \left\| oldsymbol{x}_t - oldsymbol{y}_t
ight\|^2$$

Reproducibility in Optimization for ML: Finite-Sum Setting

Finite-Sum setting: optimize $f(\boldsymbol{x}) := \frac{1}{m} \sum_{i=1}^{m} f_i(\boldsymbol{x})$ via inexact gradient ops for *component* functions f_i .

Measure of complexity: number of component gradient calls

Lower bound via setting where all f_i are identical: $\Omega(1/(T\varepsilon^2) + \delta^2/\varepsilon^2)$

"Full batch" gradient descent: $O(m/(T\epsilon^2) + \delta^2/\epsilon^2)$

Main result: SGD (via randomly sampling components) gets optimal deviation!

Variance reduction doesn't help here

Reproducibility in Optimization for ML: Stochastic Convex Opt

Stochastic Convex Opt: optimize $F(x) = \mathbb{E}_{\xi \sim \Xi} f(x, \xi)$ via access to samples

Given sample $\xi \sim \Xi$ obtain $f(\cdot, \xi)$ I.e. access to $(\boldsymbol{x}, f(\boldsymbol{x}, \xi), \nabla f(\boldsymbol{x}, \xi), \nabla^2 f(\boldsymbol{x}, \xi), \cdots)$ for all \boldsymbol{x} Assumption: For all \boldsymbol{x} , $\mathbb{E}_{\xi \sim \Xi} \| \nabla f(\boldsymbol{x}, \xi) - \nabla F(\boldsymbol{x}) \|^2 \leq \delta^2$

For smooth *F*, lower bound for stochastic inexact gradient ops: $\Omega(\delta^2/(T\varepsilon^2))$

Main result: Same lower bound holds despite access to more info!

Implication: SGD is optimal in this setting

Optimal Guarantees for Algorithmic Reproducibility and Gradient Complexity in Convex Optimization

Liang Zhang* ETH Zurich & Max Planck Institute liang.zhang@inf.ethz.ch **Junchi Yang*** ETH Zurich junchi.yang@inf.ethz.ch

Amin Karbasi Yale University & Google Research amin.karbasi@yale.edu Niao He ETH Zurich niao.he@inf.ethz.ch

Follow-Up Work

Accelerated GD requires only $1/\sqrt{\epsilon}$ gradient ops for ϵ accuracy

But: Attia and Koren (2021) showed that AGD is unstable

For inexact init, deviation can be as bad as $\,\Theta(\delta^2 e^{1/\sqrt{\epsilon}})\,$

Conjecture: acceleration doesn't help for reproducibility

Follow-Up Work

Conjecture: acceleration doesn't help for reproducibility

Zhang et al (2023) give algs using $1/\sqrt{\epsilon}$ gradient ops with deviation bounds:

- $\delta^2/\epsilon^{2.5}$ for non-stochastic inexact gradient ops
- δ^2 for inexact init ops (optimal!)

Also extend these results for smooth convex-concave minimax problems

Limitations

- Our results don't apply to methods like AdaGrad.
- Our lower bounds are only for "span-following" first-order-iterative methods,
 i.e. each iterate is constructed in the linear span of the previously seen gradients.
- We have info-theoretic lower bounds (i.e. alg can do arbitrary computations with gradients seen) for one setting, believe they hold for all

Further directions

- Extend analysis to non-convex settings
- Prove info-theoretic lower bounds!
- Experimental evidence needed: does slowing-down help in practice?
- Extensions to loss reproducibility or prediction reproducibility that may be more directly relevant to ML
- Extensions to related notions such as *replicability* (parallel work by Impagliazzo et al (2022) has initiated a study)

Thank you!

Questions?