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Reproducibility crisis in ML

● With ML models being ubiquitous in practical deployments, reproducibility has become 

critical

● Reproducibility crisis in ML is real!

● Pineau et al (2021) discuss reasons (e.g. insufficient docs, insufficient hparam exploration, 

inaccessible code, etc.) and provide recommendations for reproducibility

● Many papers show that same model trained with same data can have different predictions 

on the same test example!

● Reasons: non-convex objective, random init, nondeterminism in training (e.g. shuffling, 

parallelism, scheduling, hardware differences, round-off errors, etc.)

● Thus, forced to accept some level of irreproducibility despite controlling everything we can



Focus of study: reproducibility in convex optimization

● Goal: advance understanding of the fundamental limits of reproducibility
● Specific focus: convex optimization
● Formal definition of reproducibility (informally, deviations in outputs due to 

errors in basic operations, e.g. gradient computations)
● Main results: 

○ Lower bounds on irreproducibility of convex optimization procedures in several settings of 
interest (e.g. smooth, non-smooth, strongly-convex, etc.) 

○ Algorithms matching lower bounds
○ Reproducibility in ML settings: finite-sum, and stochastic convex optimization; tight upper and 

lower bounds



Defining reproducibility

● Reproducibility: results of a computation are the same (or largely similar) 

when the computation is re-run (i.e. same code running on same data)

● Not to be confused with replicability: results should be same (or largely 

similar) when same code is run on different data

● Irreproducibility arises when basic ops constituting computation are inexact

● Thus, to define reproducibility, need to specify 
○ Which basic ops can be inexact, and

○ How to measure differences in results of computation.



Convex function classes

● Smooth: convex functions with Lipschitz continuous gradients

● Non-smooth: Lipschitz convex functions with potentially non-differentiable 
points

● Strongly-convex: functions f such that                       is convex for some μ > 0



Convex optimization procedures

First-order iterative (FOI) convex optimization procedure for function class F 

● uses init op which generates an initial point,

● uses gradient ops, which yield gradients at any given query points



Convex optimization procedures

First-order iterative (FOI) convex optimization procedure for function class F 

● uses init op which generates an initial point,

● uses gradient ops, which yield gradients at any given query points

● constructs iterates as follows:

    X0  is output of init op, and g(.) is the gradient op

● outputs xT for some T > 0

● Step sizes     may be adaptively chosen



Inexact ops in convex optimization

● Inexact initialization op: produces an initial point x0 within distance δ from 

some reference point.

● Stochastic gradient op: produces an unbiased stochastic gradient of f at any 

query point, with variance bounded by δ2.

● Non-stochastic inexact gradient op: produces a non-deterministic vector 

that is within distance δ from the true gradient of f at any query point.



(ε, δ)-deviation

● Consider first-order convex optimization procedure, A, that is built using init 

and gradient ops (e.g. gradient descent)

● Fix a class of convex functions F: e.g. smooth, non-smooth but Lipschitz, 

strongly-convex, etc.

● To avoid trivialities, insist that A outputs an ε suboptimal solution for any f in F.

● (ε, δ)-deviation: if xf and x’f are two outputs of two runs of A for f in F, then (ε,

δ)-deviation is

         

For stochastic settings



Parameter vs loss/prediction reproducibility

● (ε, δ)-deviation is defined in terms of deviation of output params
● In ML settings, can also measure irreproducibility in terms of deviation in loss on 

a test example, or deviation in predictions on a test example
● In this work, restrict to parameter reproducibility because:

○ For general convex optimization, loss or prediction reproducibility don’t make sense
○ In many ML settings, loss or prediction functions are Lipschitz in parameters; hence param 

reproducibility bounds can be transformed into loss/prediction reproducibility bounds
○ In practice, learned parametric model can be deployed in unknown ways; hence prediction 

reproducibility may not make sense even in ML settings
○ In practice, may care about multiple metrics; here param reproducibility is more useful
○ When surrogate losses are used, loss reproducibility may not be useful



Summary of results: Slowed-down SGD/GD are optimal

● Lower bounds are for first-order iterative algorithms like GD. Also allow adaptivity.

● Upper bounds are achieved by “slowed-down GD/SGD”: i.e. run with a smaller learning rate for 

more iterations



Summary of Results: Non-smooth Settings

Non-smooth settings: 

● Slightest errors in ops can lead to drastic deviation!  

● Intuitively, at non-differentiable points errors lead to large deviations

● Standard bound of T = 1/ε2 iterations can lead to maximal irreproducibility



Summary of Results: Strongly-Convex Settings

Strongly-convex settings: 

● Deviation smaller due to unique minimizer

● ε-accuracy implies ε-deviation automatically



Flavor of proofs: lower bound for smooth convex costs 
with stochastic inexact gradient ops

Theorem: Given ε and T, there is a smooth convex 
function and a δ-bounded stochastic gradient op such 
that any FOI alg has (ε, δ) deviation at least δ2/(ε2T) 
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Flavor of proofs: lower bound for smooth convex costs

If y is initialized at 1, to reduce suboptimality gap to ε, y must decrease to 0.5 

Construct T+1 dim function f with dummy args  as 

Gradient norm at most ε, so for any FOI alg, average step size must be ≈ 1/(εT)

Stochastic gradient op: add ±δ noise to x coordinates one by one

When scaled by step sizes, deviation ≈ T x δ2 x 1/(ε2T2) =  δ2/(ε2T) 



Flavor of proofs: upper bound for smooth convex costs 
with stochastic inexact gradient ops

Theorem: Given ε and T > 1/ε2, SGD with step size 
1/(εT) has (ε, δ) deviation at most δ2/(ε2T) 
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Let xt and yt be iterates of SGD and GD resp.:
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Flavor of proofs: upper bound for smooth convex costs 
with stochastic inexact gradient ops

Let xt and yt be iterates of SGD and GD resp.:

Standard SGD analysis, 
with step size 1/(εT), 
since T > 1/ε2:

Deviation bound for step size 1/(εT):  



Reproducibility in Optimization for ML: Finite-Sum Setting

Finite-Sum setting: optimize      via inexact gradient 

ops for component functions fi. 

Measure of complexity: number of component gradient calls

Lower bound via setting where all fi are identical:

“Full batch” gradient descent: 

Main result: SGD (via randomly sampling components) gets optimal deviation! 

Variance reduction doesn’t help here



Reproducibility in Optimization for ML: Stochastic Convex Opt

Stochastic Convex Opt: optimize   via access to samples

Given sample              obtain        ,    

Assumption: For all x, 

I.e. access to  for all x

For smooth F, lower bound for stochastic inexact gradient ops: 

Main result: Same lower bound holds despite access to more info!

Implication: SGD is optimal in this setting



Follow-Up Work



Follow-Up Work

Need T > 1/ε

But: Attia and Koren (2021) showed that AGD is unstable

Accelerated GD requires only 1/⎷ε gradient ops for ε accuracy

For inexact init, deviation can be as bad as 

Conjecture: acceleration doesn’t help for reproducibility



Follow-Up Work

Need T > 1/ε

Conjecture: acceleration doesn’t help for reproducibility

Zhang et al (2023) give algs using 1/⎷ε gradient ops with deviation bounds:
● δ2/ε2.5 for non-stochastic inexact gradient ops
● δ2 for inexact init ops (optimal!)

Also extend these results for smooth convex-concave minimax problems



Limitations

● Our results don’t apply to methods like AdaGrad.

● Our lower bounds are only for “span-following” first-order-iterative methods, 

i.e. each iterate is constructed in the linear span of the previously seen 

gradients.

● We have info-theoretic lower bounds (i.e. alg can do arbitrary computations 

with gradients seen) for one setting, believe they hold for all



Further directions

● Extend analysis to non-convex settings

● Prove info-theoretic lower bounds!

● Experimental evidence needed: does slowing-down help in practice?

● Extensions to loss reproducibility or prediction reproducibility that may be 

more directly relevant to ML

● Extensions to related notions such as replicability (parallel work by 

Impagliazzo et al (2022) has initiated a study)



Thank you!

Questions?


