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Jobs

Postdoc positions in ML / Optimization.

At CNRS, INRIA, Ecole Normale Supérieure in Paris.
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Shapley-Folkman Theorem

+ 000

The £y /5 ball, Minkowsi average of two and ten balls, convex hull.

Minkowsi sum of five first digits (obtained by sampling).
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Shapley-Folkman Theorem

Shapley-Folkman Theorem [Starr, 1969, Emerson and Greenleaf, 1969]

Suppose V; CR%, i=1,...,n, and

then

xr € Z Vi + ZCO(Vi)

[1,n]\S S
for some |S| < d.
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Shapley-Folkman Theorem: Carathéodory

Proof sketch. Write z € > | Co(V}), or

n d-+1

i=1 j=1 ¢

Conic Carathéodory then yields representation with at most n + d nonzero
coefficients. Use a pigeonhole argument

]

Number of nonzero \;; controls gap with convex hull.
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Shapley-Folkman: a Quantization Result

One Line Proof. Suppose = € 2i=1V for some V e RY.

1=
n

m Write x as
d 2% d 2%
7 (/
:L‘—Elgvi, where Elg—l
1= 1=

for v; € V', where p; > 0 is the number of times v; is repeated in 2?21 V.

m As n — oo, we can approximate any point in Co(V)

d+1 d+1
F=) Auvi, where » X\=1, A>0,

by a point of ¥ with arbitrarily small quantization error 1/n.
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Shapley-Folkman

Consequences.

= If the sets V; C RY are uniformly bounded with rad(V;) < R, then

di (M,Co (ZLM)) < pYmin{n, d}

n

where rad(V') = inf ey sup,cy ||z — yl.

= Holds for many other nonconvexity measures (e.g. volume deficit) [Fradelizi
et al., 2017].
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Outline

m The Shapley-Folkman Theorem
s Duality Gap Bounds
m Primalization

m Applications
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Nonconvex Optimization

Separable nonconvex problem. Solve

minimize > | fi(z;) (P)

subject to Az < b,

in the variables x; € R% with d = Z?’:l d;, where f; are lower semicontinuous
and A € Rm*4,

Take the dual twice to form a convex relaxation,

minimize 2?21 [ (xs)
subject to Ax <b (P

in the variables z; € R%,
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Nonconvex Optimization

Convex envelope. Biconjugate f** satisfies epi(f**) = Co(epi(f)), which
means that

f**(x) and f(x) match at extreme points of epi(f**).

Define lack of convexity as p(f) £ sup,cgom(s){/f(2) — [**(2)}.

Example.

The [; norm is the convex envelope of Card(x) in |[—1,1].
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Nonconvex Optimization

Writing the epigraph of problem (P) as in [Lemaréchal and Renaud, 2001],

gré {(7“0,7“) ER1+mZ Zfz(a:@) ST(), ACI?bST,CI?ERd},

1=1

we can write the dual function of (P) as

TN 2inf {ro+A'r: (ro,r) € G},

in the variable A € R™, where G** = Co(G) is the closed convex hull of the
epigraph G.

If G** = G, no duality gap in (P).
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Nonconvex Optimization

Epigraph & duality gap. Define
where A; € R™*% js the i'" block of A.

s The epigraph of problem (P) can be written as a Minkowski sum of F;

Gr = Zfi + (0, —b) + R
i=1

= Shapley-Folkman thus shows f**(z;) = f(x;) for all but at most m + 1
terms in the objective.

s As n — oo, with m/n — 0, G, gets closer to its convex hull G**, and the
duality gap becomes negligible.
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Bound on duality gap

Linear constraints. A priori bound on duality gap of

minimize > | fi(z;)
subject to Ax < b,

where A € Rm*d,

Proposition [Aubin and Ekeland, 1976, Ekeland and Temam, 1999]

A priori bounds on the duality gap Suppose the functions f; in (P) satisfy
Assumption (... ). There is a point x* € R? at which the primal optimal value

of (CoP) is attained, such that

m—+1

O fran) < ) @) < @)+ > plf)
i=1 j i=1 ) i=1 ) =1 j
CoP P CoP -

where £* is an optimal point of (P) and p(f)) > p(fi2) = --- = p(fin))-
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Bound on duality gap

General result. Consider the separable nonconvex problem

hp(u) := min. >0 fi(x,)
i st Yo gi(x) <b+u (P)

in the variables x; € R%, with perturbation parameter u € R™.

Proposition [Ekeland and Temam, 1999]

A priori bounds on the duality gap Suppose the functions f;, g;; in problem (P)
satisfy assumption (...) fori=1,...,n, j=1,...,m. Let

pj = (m+1)maxp(g;;), forj=1,...,m

then
hip(p)* < hp(p) < hp(0)* + (m + 1) max p( ;)

where hp(u)** is the optimal value of the dual to (P).
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Outline

m [he Shapley-Folkman Theorem
m Duality Gap Bounds
= Primalization

m Applications
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Primal Solutions

Primalization.

m We have explicit bounds on the duality gap.
s Only some of the solutions of the relaxation satisfy the duality gap bounds.

s How do we efficiently find good primal solutions?

Randomized algorithm in [Udell and Boyd, 2016].

m Function domains are assumed convex.

m Requires solving a random problem over explicit optimality constraints.

Can we lift these restrictions?
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Primal Solutions

Bidual. The bidual is given by

minimize >, [ (x;)
subject to Az <b,
xiGCo(Xi), 1=1,...,n.

Let 2* = (v*,b) with v* the optimal value of (CoP).

There exists z* € R? such that Az* < b and v* =" | f7*(z), i.e.

f**xz m—+1
2 EZ{(A% | ; € conv X; p + R,

Define C = >, C;, with C; = {(fZ CBZ)) | z; € coanZ} ,oi=1,...

Aiilfz'

(CoP)
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Primal Solutions

Primalization. We seek an explicit convex representation of z*.

m Remember f; and f** match at extreme points of C;.
i P

m Approximating z* using extreme points of C; thus reduces the duality gap.
Use Frank-Wolfe to solve a bounded equivalent of
min ||z — 2*||” subject to z € C+ R, (2)

written

: w2 .
min |z — 2"[|1 subject to z € C. (3)

Any solution of problem (3) has optimal value zero, solves (CoP) and, thanks to
FW, writes the solution as a convex combination of extreme points of C,.
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Primal Solutions

LMO. Write (g, g%) € R x R™ the gradient of the objective function.

m The linear minimization step then reads

s¥ € argmin z' (ag, g%). (4)
262?21 C;
This problem is separable
yr € argmin apf;*(z:) + (¢") " Az, (5)

x;Econv X;
and amounts to solving, for each ¢ € {1,... n},

AT RN\ ' AT g
e g (A8 oo (A1),

x;Econv X; 075 L

m The key subproblem in conditional gradient methods, namely the linear
minimization oracle (4), is then as tractable as computing the conjugates
of the functions f;.
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Primal Solutions

Trimming. Once we get a convex representation with FW, a constructive version
of Carathéodory gets a representation with at most m + 1 nontrivial convex
representations, hence at most (m + 1) terms where f; and f/* do not match.

Proposition [Dubois-Taine and A., 2024]

Primalization.  Suppose that X, is convex for all + = 1,...,n, and let v* be
the optimal value of (CoP). Assume that we run Frank-Wolfe for K iterations,
followed by Carathéodory to trim the number of elements and set & € RY be the
final point obtained. Then T satisfies

- 2D
(Zi) < v+ + (m + 1) max p(f;),
> h@) e (m - Dmax p()
- 2D
— K+1
= -
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Outline

m [he Shapley-Folkman Theorem
m Duality Gap Bounds
m Primalization

m Applications
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Feature Selection

m Reduce number of variables while preserving classification performance.
m Often improves test performance, especially when samples are scarce.

m Helps interpretation.

Classical examples: LASSO, /;-logistic regression, RFE-SVM, . . .
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Introduction: feature selection

RNA classification. Find genes which best discriminate cell type (lung cancer vs
control). 35238 genes, 2695 examples. [Lachmann et al., 2018]

x1011
—3.430

—3.435

—3.440

Objective

—3.445

—3.450

—3.455

0 5000 10000 15000 20000 25000 30000 35000
Number of features (k)

Best ten genes: MT-CO3, MT-ND4, MT-CYB, RP11-217012.1, LYZ,
EEF1Al1, MT-CO1, HBA2, HBB, HBAL.

Alex d'Aspremont CRM, May 2025. 23/36



Introduction: feature selection

Applications. Mapping brain activity by fMRI.

Encoding and decoding models of cognition

Log-enet

From PARIETAL team at INRIA.
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Introduction: feature selection

fMRI. Many voxels, very few samples leads to false discoveries.

YNSRIV Y SCIENCE 89.18.83 B85:37 PM

Scanning Dead Salmon in fMRI

Machine Highlights Risk of Red
Herrings

t-value

Wired article on Bennett et al. “Neural Correlates of Interspecies Perspective
Taking in the Post-Mortem Atlantic Salmon: An Argument For Proper Multiple
Comparisons Correction” Journal of Serendipitous and Unexpected Results, 2010.
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Multinomial Naive Bayse

Multinomial Naive Bayse. In the multinomial model

log Prob(z | C1) = 2" log 6F + log o
Hj:l x]!

Training by maximum likelihood

(67,07) = argmax fT'logft + f~ ' logh”
1Tot=1T9"=1
0",0€[0,1]™

where f* are sum of positive (resp. negative) feature vectors. Linear
classification rule: for a given test point x € R™, set

T

y(x) = sign(v+w ' x),

where

w = logff —logh, and v = logProb(C,) — log Prob(C_),
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Sparse Naive Bayse

Naive Feature Selection. Make w £ log # — log 6 sparse.

Solve
(0F,07) = argmax ftTlogdt + f~Tlog 6~

subject to  [|[0T — 07 ||o < Kk
1"t =1""=1
6,07 >0

where k > 0 is a target number of features. Features for which ;" = 6. can be
discarded.

(SMNB)

Nonconvex problem.

m Convex relaxation?

m Approximation bounds?
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Sparse Naive Bayse

Convex Relaxation. The dual is very simple.

Sparse Multinomial Naive Bayes [Askari, A., El Ghaoui, 2019]

Let ¢(k) be the optimal value of (SMNB). Then ¢(k) < 1 (k), where 1(k) is the
optimal value of the following one-dimensional convex optimization problem

Y(k) :=C+ min sg(h(a)), (USMNB)

a€el0,1]

where C' is a constant, si(-) is the sum of the top k entries of its vector argument,
and for o € (0,1),

h(a) = frolog fi+ f_olog f-—(fit f-)olog(fi+f-)—fy log a—f_log(1—a).

Solved by bisection, linear complexity O(n + klogk).
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Naive Feature Selection

Duality gap bound. Sparse naive Bayes reads

hp(u) = ming, —f+tTlogqg— f~Tlogr
subjectto 1'¢g=1+ uy,
].T?“ =1+ U9,

221 Ly#r, < Kk +us

in the variables ¢,r € [0,1]™, where u € R3. There are three constraints, two of
them convex, which means p = (0,0, 4).

Theorem [Askari, A., El Ghaoui, 2019]

NFS duality gap bounds. Let ¢(k) be the optimal value of (SMNB) and (k)
that of the convex relaxation (USMNB). We have

Yk —4) < (k) < P(k),
for k > 4.
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Sparse Programs

Sparse Programs. Low rank data and sparsity constraints

Peon(k) 2 min f(Xw) + w3, (P-CON)

[wllo<k

in the variable w € R™, where X € R®"*™ is low rank, y € R",v > 0 and k£ > 0.

Penalized formulation
Ppen(A) £ min f(Xw) + 2 [wll3 + Alwll, (P-PEN)

In the variable w € R™, where A > 0.

Key examples: LASSO, {y-constrained logistic regression.
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Naive Feature Selection

Data.
FEATURE VECTORS AMAZON IMDB TwITTER MPQA SST?2
COUNT VECTOR 31,666 103,124 273,779 6,208 16,599
TF-IDF 31,666 103,124 273,779 6,208 16,599
TF-IDF WRD BIGRAM 870,536 8,950,169 12,082,555 27,603 227,012
TF-IDF CHAR BIGRAM 25,019 48,420 17,812 4838 7762

Number of features in text data sets used below.

AmazoNn IMDB Twitter MPQA SST2

COUNT VECTOR 0.043 0.22 1.15 0.0082 0.037
TF-IDF 0.033 0.16 0.89 0.0080  0.027
TF-IDF WRD BIGRAM 0.68 9.38 13.25 0.024 0.21
TF-IDF CHAR BIGRAM 0.076 0.47 4.07 0.0084 0.082

Average run time (seconds, plain Python on CPU).
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Naive Feature Selection.

Method
Logistic-/,
Logistic-RFE
SVM-/,
SVM-RFE
LASSO
Odds Ratio
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Accuracy versus run time on IMDB/Count Vector, MNB in stage two.

Alex d'Aspremont CRM, May 2025. 32/36



Naive Feature Selection.

—6.54
—15.651
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Duality gap bound versus sparsity level for m = 30 (left panel) and m = 3000
(right panel), showing that the duality gap quickly closes as m or k increase.
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Naive Feature Selection.

0.16 1

0.14 -~
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Run time with IMDB dataset /tf-idf vector data set, with increasing m, k with
fixed ratio k/m, empirically showing (sub-) linear complexity.
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Naive Feature Selection.

Criteo data set. Conversion logs. 45 GB, 45 million rows, 15000 columns.

m Preprocessing (NaN, encoding categorical features) takes 50 minutes.
s Computing f* and f~ takes 20 minutes.

s Computing the full curve below (i.e. solving 15000 problems) takes 2 minutes.

x10°-1.7051x10°

Obijective
%
w

0 2000 4000 6000 8000 10000 12000 14000
Number of features (k)

Standard workstation, plain Python on CPU.
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Conclusion

Shapley Folkman.

m Duality gap bounds for separable problems with linear constraints.

m Systematic primalization.

m Applications to Sparse Naive Bayes, LASSO, /y-logistic regression. . .

For naive Bayes, we get sparsity almost for free.

Papers: ArXiv:1905.09884 at AISTATS 2020, ArXiv:2102.06742 in
SIAM Journal on the Mathematics of Data Science, 4 (2), pp. 514-530, 2022,
and ArXiv:2406.18282, to appear in Mathematical Programming.

Python code: https://github.com/aspremon/NaiveFeatureSelection
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Stable bounds on duality gap.

Active constraints. [Udell and Boyd, 2016] show that we can replace the
number of contraints m by the number of active contraints m.

m Write the optimal set

X*={M; x...x M,}Nn{Az < b}, where M; = argmin f;*(z;) + \*' Ax;
T;€Y;

m x is an extreme point of X ™ if and only if = is the only point at intersection of
minimal faces Fy, Fy of resp. {M; x ... x M,} and {Ax < b} containing x
[Dubins, 1962, Th.5.1], [Udell and Boyd, 2016, Lem. 3].

m [ his means that dim F} + dim Fo < d with d — m < dim F5, so dim F} < m.
m As faces of Cartesian products are Cartesian products of faces, the sum of

dimensions of the faces of M, containing x; is smaller than m, hence at least
n — m points x; of these faces are extreme points where f**(x;) = fi(z;).
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