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Shapley-Folkman Theorem

The `1/2 ball, Minkowsi average of two and ten balls, convex hull.

+ + + + =

Minkowsi sum of five first digits (obtained by sampling).
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Shapley-Folkman Theorem

Shapley-Folkman Theorem [Starr, 1969, Emerson and Greenleaf, 1969]

Suppose Vi ⊂ Rd, i = 1, . . . , n, and

x ∈
n∑
i=1

Co(Vi)

then
x ∈

∑
[1,n]\S

Vi +
∑
S

Co(Vi)

for some |S| ≤ d.
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Shapley-Folkman Theorem: Carathéodory

Proof sketch. Write x ∈∑n
i=1Co(Vi), or

(
x
1n

)
=

n∑
i=1

d+1∑
j=1

λij

(
vij
ei

)
, for λ ≥ 0,

Conic Carathéodory then yields representation with at most n+ d nonzero
coefficients. Use a pigeonhole argument

λij

} d

}
n xi ∈ Vixi ∈ Co(Vi)

Number of nonzero λij controls gap with convex hull.
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Shapley-Folkman: a Quantization Result

One Line Proof. Suppose x ∈
∑n
i=1 V
n for some V ∈ Rd.

� Write x as

x =

T∑
i=1

µi
n
vi, where

T∑
i=1

µi
n

= 1

for vi ∈ V , where µi ≥ 0 is the number of times vi is repeated in
∑n
i=1 V .

� As n→∞, we can approximate any point in Co(V )

x̃ =

d+1∑
i=1

λivi, where
d+1∑
i=1

λi = 1, λ ≥ 0,

by a point of
∑n
i=1 V
n , with arbitrarily small quantization error 1/n.
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Shapley-Folkman

Consequences.

� If the sets Vi ⊂ Rd are uniformly bounded with rad(Vi) ≤ R, then

dH

(∑n
i=1 Vi
n

,Co

(∑n
i=1 Vi
n

))
≤ R

√
min{n, d}

n

where rad(V ) = infx∈V supy∈V ‖x− y‖.

� Holds for many other nonconvexity measures (e.g. volume deficit) [Fradelizi
et al., 2017].

Alex d’Aspremont CRM, May 2025. 7/36



Outline

� The Shapley-Folkman Theorem

� Duality Gap Bounds

� Primalization

� Applications
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Nonconvex Optimization

Separable nonconvex problem. Solve

minimize
∑n
i=1 fi(xi)

subject to Ax ≤ b, (P)

in the variables xi ∈ Rdi with d =
∑n
i=1 di, where fi are lower semicontinuous

and A ∈ Rm×d.

Take the dual twice to form a convex relaxation,

minimize
∑n
i=1 f

∗∗
i (xi)

subject to Ax ≤ b (CoP)

in the variables xi ∈ Rdi.
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Nonconvex Optimization

Convex envelope. Biconjugate f∗∗ satisfies epi(f∗∗) = Co(epi(f)), which
means that

f∗∗(x) and f(x) match at extreme points of epi(f∗∗).

Define lack of convexity as ρ(f) , supx∈dom(f){f(x)− f∗∗(x)}.

Example.

0

1

−1 1

Card(x)

|x|

x

The l1 norm is the convex envelope of Card(x) in [−1, 1].
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Nonconvex Optimization

Writing the epigraph of problem (P) as in [Lemaréchal and Renaud, 2001],

Gr ,
{

(r0, r) ∈ R1+m :

n∑
i=1

fi(xi) ≤ r0, Ax− b ≤ r, x ∈ Rd
}
,

we can write the dual function of (P) as

Ψ(λ) , inf
{
r0 + λ>r : (r0, r) ∈ G∗∗r

}
,

in the variable λ ∈ Rm, where G∗∗ = Co(G) is the closed convex hull of the
epigraph G.

If G∗∗ = G, no duality gap in (P).
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Nonconvex Optimization

Epigraph & duality gap. Define

Fi =
{

(fi(xi), Aixi) : xi ∈ Rdi
}

+ Rm+1
+

where Ai ∈ Rm×di is the ith block of A.

� The epigraph of problem (P) can be written as a Minkowski sum of Fi

Gr =

n∑
i=1

Fi + (0,−b) + Rm+1
+

� Shapley-Folkman thus shows f∗∗(xi) = f(xi) for all but at most m+ 1
terms in the objective.

� As n→∞, with m/n→ 0, Gr gets closer to its convex hull G∗∗r , and the
duality gap becomes negligible.
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Bound on duality gap

Linear constraints. A priori bound on duality gap of

minimize
∑n
i=1 fi(xi)

subject to Ax ≤ b,

where A ∈ Rm×d.

Proposition [Aubin and Ekeland, 1976, Ekeland and Temam, 1999]

A priori bounds on the duality gap Suppose the functions fi in (P) satisfy
Assumption (. . . ). There is a point x? ∈ Rd at which the primal optimal value
of (CoP) is attained, such that

n∑
i=1

f∗∗i (x?i )︸ ︷︷ ︸
CoP

≤
n∑
i=1

fi(x̂
?
i )︸ ︷︷ ︸

P

≤
n∑
i=1

f∗∗i (x?i )︸ ︷︷ ︸
CoP

+

m+1∑
i=1

ρ(f[i])︸ ︷︷ ︸
gap

where x̂? is an optimal point of (P) and ρ(f[1]) ≥ ρ(f[2]) ≥ . . . ≥ ρ(f[n]).
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Bound on duality gap

General result. Consider the separable nonconvex problem

hP (u) := min.
∑n
i=1 fi(xi)

s.t.
∑n
i=1 gi(xi) ≤ b+ u

(P)

in the variables xi ∈ Rdi, with perturbation parameter u ∈ Rm.

Proposition [Ekeland and Temam, 1999]

A priori bounds on the duality gap Suppose the functions fi, gji in problem (P)
satisfy assumption (...) for i = 1, . . . , n, j = 1, . . . ,m. Let

p̄j = (m+ 1) max
i
ρ(gji), for j = 1, . . . ,m

then
hP (p̄)∗∗ ≤ hP (p̄) ≤ hP (0)∗∗ + (m+ 1) max

i
ρ(fi).

where hP (u)∗∗ is the optimal value of the dual to (P).
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Outline

� The Shapley-Folkman Theorem

� Duality Gap Bounds

� Primalization

� Applications
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Primal Solutions

Primalization.

� We have explicit bounds on the duality gap.

� Only some of the solutions of the relaxation satisfy the duality gap bounds.

� How do we efficiently find good primal solutions?

Randomized algorithm in [Udell and Boyd, 2016].

� Function domains are assumed convex.

� Requires solving a random problem over explicit optimality constraints.

Can we lift these restrictions?
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Primal Solutions

Bidual. The bidual is given by

minimize
∑n
i=1 f

∗∗
i (xi)

subject to Ax ≤ b,
xi ∈ Co(Xi), i = 1, . . . , n.

(CoP)

Let z∗ = (v∗, b) with v∗ the optimal value of (CoP).

There exists x∗ ∈ Rd such that Ax∗ ≤ b and v∗ =
∑n
i=1 f

∗∗
i (x∗i ), i.e.

z∗ ∈
n∑
i=1

{(
f∗∗i (xi)
Aixi

)
| xi ∈ convXi

}
+ Rm+1

+ . (1)

Define C =
∑n
i=1 Ci, with Ci =

{(
f∗∗i (xi)
Aixi

)
| xi ∈ convXi

}
, i = 1, . . . , n,
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Primal Solutions

Primalization. We seek an explicit convex representation of z∗.

� Remember fi and f∗∗i match at extreme points of Ci.
� Approximating z∗ using extreme points of Ci thus reduces the duality gap.

Use Frank-Wolfe to solve a bounded equivalent of

min
z
‖z − z∗‖2 subject to z ∈ C + Rm+1

+ . (2)

written

min
z
‖z − z∗‖2+ subject to z ∈ C. (3)

Any solution of problem (3) has optimal value zero, solves (CoP) and, thanks to
FW, writes the solution as a convex combination of extreme points of Ci.
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Primal Solutions

LMO. Write (αk, g
k) ∈ R× Rm the gradient of the objective function.

� The linear minimization step then reads

sk ∈ argmin
z∈

∑n
i=1 Ci

z>(αk, g
k). (4)

This problem is separable

yki ∈ argmin
xi∈convXi

αkf
∗∗
i (xi) + (gk)>Aixi, (5)

and amounts to solving, for each i ∈ {1, . . . , n},

yki ∈ argmax
xi∈convXi

(
−A
>
i g

k

αk

)>
xi − f∗∗i (xi) = ∂f∗i

(
−A
>
i g

k

αk

)
.

� The key subproblem in conditional gradient methods, namely the linear
minimization oracle (4), is then as tractable as computing the conjugates
of the functions fi.
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Primal Solutions

Trimming. Once we get a convex representation with FW, a constructive version
of Carathéodory gets a representation with at most m+ 1 nontrivial convex
representations, hence at most (m+ 1) terms where fi and f∗∗i do not match.

Proposition [Dubois-Taine and A., 2024]

Primalization. Suppose that Xi is convex for all i = 1, . . . , n, and let v∗ be
the optimal value of (CoP). Assume that we run Frank-Wolfe for K iterations,
followed by Carathéodory to trim the number of elements and set x̄ ∈ Rd be the
final point obtained. Then x̄ satisfies

n∑
i=1

fi(x̄i) ≤ v∗ +
2DC√
K + 1

+ (m+ 1) max
i
ρ(fi),

∥∥∥∥∥
n∑
i=1

Aix̄i − b
∥∥∥∥∥
+

≤ 2DC√
K + 1

.
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Feature Selection

� Reduce number of variables while preserving classification performance.

� Often improves test performance, especially when samples are scarce.

� Helps interpretation.

Classical examples: LASSO, `1-logistic regression, RFE-SVM, . . .
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Introduction: feature selection

RNA classification. Find genes which best discriminate cell type (lung cancer vs
control). 35238 genes, 2695 examples. [Lachmann et al., 2018]
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Number of features (k)
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Best ten genes: MT-CO3, MT-ND4, MT-CYB, RP11-217O12.1, LYZ,
EEF1A1, MT-CO1, HBA2, HBB, HBA1.
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Introduction: feature selection

Applications. Mapping brain activity by fMRI.

From PARIETAL team at INRIA.
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Introduction: feature selection

fMRI. Many voxels, very few samples leads to false discoveries.

Wired article on Bennett et al. “Neural Correlates of Interspecies Perspective
Taking in the Post-Mortem Atlantic Salmon: An Argument For Proper Multiple
Comparisons Correction” Journal of Serendipitous and Unexpected Results, 2010.
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Multinomial Naive Bayse

Multinomial Naive Bayse. In the multinomial model

logProb(x | C±) = x> log θ± + log

(
(
∑m
j=1 xj)!∏m
j=1 xj!

)
.

Training by maximum likelihood

(θ+∗ , θ
−
∗ ) = argmax

1>θ+=1>θ−=1
θ+,θ−∈[0,1]m

f+> log θ+ + f−> log θ−

where f± are sum of positive (resp. negative) feature vectors. Linear
classification rule: for a given test point x ∈ Rm, set

ŷ(x) = sign(v + w>x),

where

w , log θ+∗ − log θ−∗ and v , logProb(C+)− logProb(C−),
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Sparse Naive Bayse

Naive Feature Selection. Make w , log θ+∗ − log θ−∗ sparse.

Solve
(θ+∗ , θ

−
∗ ) = argmax f+> log θ+ + f−> log θ−

subject to ‖θ+ − θ−‖0 ≤ k
1>θ+ = 1>θ− = 1
θ+, θ+ ≥ 0

(SMNB)

where k ≥ 0 is a target number of features. Features for which θ+i = θ−i can be
discarded.

Nonconvex problem.

� Convex relaxation?

� Approximation bounds?
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Sparse Naive Bayse

Convex Relaxation. The dual is very simple.

Sparse Multinomial Naive Bayes [Askari, A., El Ghaoui, 2019]

Let φ(k) be the optimal value of (SMNB). Then φ(k) ≤ ψ(k), where ψ(k) is the
optimal value of the following one-dimensional convex optimization problem

ψ(k) := C + min
α∈[0,1]

sk(h(α)), (USMNB)

where C is a constant, sk(·) is the sum of the top k entries of its vector argument,
and for α ∈ (0, 1),

h(α) := f+◦log f++f−◦log f−−(f++f−)◦log(f++f−)−f+ logα−f− log(1−α).

Solved by bisection, linear complexity O(n+ k log k).
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Naive Feature Selection

Duality gap bound. Sparse naive Bayes reads

hP (u) = minq,r −f+> log q − f−> log r

subject to 1>q = 1 + u1,

1>r = 1 + u2,∑m
i=1 1qi 6=ri ≤ k + u3

in the variables q, r ∈ [0, 1]m, where u ∈ R3. There are three constraints, two of
them convex, which means p̄ = (0, 0, 4).

Theorem [Askari, A., El Ghaoui, 2019]

NFS duality gap bounds. Let φ(k) be the optimal value of (SMNB) and ψ(k)
that of the convex relaxation (USMNB). We have

ψ(k − 4) ≤ φ(k) ≤ ψ(k),

for k ≥ 4.
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Sparse Programs

Sparse Programs. Low rank data and sparsity constraints

pcon(k) , min
‖w‖0≤k

f(Xw) +
γ

2
‖w‖22, (P-CON)

in the variable w ∈ Rm, where X ∈ Rn×m is low rank, y ∈ Rn, γ > 0 and k ≥ 0.

Penalized formulation

ppen(λ) , min
w

f(Xw) +
γ

2
‖w‖22 + λ‖w‖0 (P-PEN)

in the variable w ∈ Rm, where λ > 0.

Key examples: LASSO, `0-constrained logistic regression.
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Naive Feature Selection

Data.

Feature Vectors Amazon IMDB Twitter MPQA SST2

Count Vector 31,666 103,124 273,779 6,208 16,599

tf-idf 31,666 103,124 273,779 6,208 16,599

tf-idf wrd bigram 870,536 8,950,169 12,082,555 27,603 227,012

tf-idf char bigram 25,019 48,420 17,812 4838 7762

Number of features in text data sets used below.

Amazon IMDB Twitter MPQA SST2

Count Vector 0.043 0.22 1.15 0.0082 0.037

tf-idf 0.033 0.16 0.89 0.0080 0.027

tf-idf wrd bigram 0.68 9.38 13.25 0.024 0.21

tf-idf char bigram 0.076 0.47 4.07 0.0084 0.082

Average run time (seconds, plain Python on CPU).
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Naive Feature Selection.
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Accuracy versus run time on IMDB/Count Vector, MNB in stage two.
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Naive Feature Selection.
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Duality gap bound versus sparsity level for m = 30 (left panel) and m = 3000
(right panel), showing that the duality gap quickly closes as m or k increase.
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Naive Feature Selection.
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Run time with IMDB dataset/tf-idf vector data set, with increasing m, k with
fixed ratio k/m, empirically showing (sub-) linear complexity.

Alex d’Aspremont CRM, May 2025. 34/36



Naive Feature Selection.

Criteo data set. Conversion logs. 45 GB, 45 million rows, 15000 columns.

� Preprocessing (NaN, encoding categorical features) takes 50 minutes.

� Computing f+ and f− takes 20 minutes.

� Computing the full curve below (i.e. solving 15000 problems) takes 2 minutes.
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Standard workstation, plain Python on CPU.
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Conclusion

Shapley Folkman.

� Duality gap bounds for separable problems with linear constraints.

� Systematic primalization.

� Applications to Sparse Naive Bayes, LASSO, `0-logistic regression. . .

For naive Bayes, we get sparsity almost for free.

Papers: ArXiv:1905.09884 at AISTATS 2020, ArXiv:2102.06742 in
SIAM Journal on the Mathematics of Data Science, 4 (2), pp. 514-530, 2022,
and ArXiv:2406.18282, to appear in Mathematical Programming.

Python code: https://github.com/aspremon/NaiveFeatureSelection
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Stable bounds on duality gap.

Active constraints. [Udell and Boyd, 2016] show that we can replace the
number of contraints m by the number of active contraints m̃.

� Write the optimal set

X? = {M1 × . . .×Mn} ∩ {Ax ≤ b}, where Mi = argmin
xi∈Yi

f∗∗i (xi) + λ?TAxi

� x is an extreme point of X? if and only if x is the only point at intersection of
minimal faces F1, F2 of resp. {M1 × . . .×Mn} and {Ax ≤ b} containing x
[Dubins, 1962, Th. 5.1], [Udell and Boyd, 2016, Lem. 3].

� This means that dimF1 + dimF2 ≤ d with d− m̃ ≤ dimF2, so dimF1 ≤ m̃.

� As faces of Cartesian products are Cartesian products of faces, the sum of
dimensions of the faces of Mi containing xi is smaller than m̃, hence at least
n− m̃ points xi of these faces are extreme points where f∗∗i (xi) = fi(xi).
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