Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	000000000	00000000000000	0000	000

A Stochastic-Gradient-based Interior-Point Method for Inequality-Constrained Continuous Optimization

Frank E. Curtis, Lehigh University

presented at

"Optimization and Learning: Theory and Applications" Workshop Centre de Recherches Mathématiques (CRM), Montreal, Canada

May 28, 2024

Bound Constraints 0000000000000000 General Constraints Revisited 0000

Collaborators and references

Published:

F. E. Curtis, V. Kungurtsev, D. P. Robinson, and Q. Wang, "A Stochastic-Gradient-Based Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems," *SIAM Journal on Optimization*, https://doi.org/10.1137/23M1569460.

Under review:

▶ F. E. Curtis, X. Jiang, and Q. Wang, "Single-Loop Deterministic and Stochastic Interior-Point Algorithms for Nonlinearly Constrained Optimization."

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	000000000	000000000000000	0000	000

Outline

Motivation

General Constraints

Bound Constraints

General Constraints Revisited

Conclusion

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
•000000	000000000	000000000000000	0000	000

Outline

Motivation

General Constraints

Bound Constraints

General Constraints Revisited

Conclusion

Interior-point methods

Interior-point methods (IPMs) are the workhorse for deterministic nonlinearly constrained optimization.

▶ Ipopt, Knitro, LOQO, etc.

How about noisy or stochastic settings? The current trend is to allow "constraints" only through:

- projection-based methods
- manifold-based methods
- conditional-gradient methods
- penalization (e.g., augmented Lagrangians)

Is the current trend the end of the story? A place for IPMs in noisy and stochastic optimization?

Prior recent work

With various collaborators in recent years, I have worked on stochastic Newton/SQP methods

- ▶ joint work with Berahas, Jiang, O'Neill, Robinson, Wang, Zhou
- stochastic objective gradient evaluations
- deterministic equality-constraint function and derivative evaluations
- ... follow-up work by others, e.g., Na et al.
- ... some work on solving generally constrained problems (SQP, not IPM)

I have also worked on an interior-point method for constrained optimization with deterministic noise

- joint work with Dezfulian and Waechter
- noisy objective function and gradient evaluations
- noisy equality- and inequality-constraint function and derivative evaluations
- ▶ ... follows work by Nocedal et al.

The impressive practical performance of these methods motivates stochastic-gradient-based IPMs

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	000000000	000000000000000	0000	000

SLIP (this talk), deterministic setting

Relative performance of SLIP and PGM, deterministic setting, training logistic regression (left) and neural network models with one hidden layer with cross-entropy loss (right).

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	000000000	00000000000000	0000	000

SLIP (this talk), stochastic setting, logistic regression

Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training logistic regression models; among 43 training datasets, 26 have testing datasets.

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	000000000	00000000000000	0000	000

SLIP (this talk), stochastic setting, neural network with cross-entropy loss

Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training neural network models (with one hidden layer) with cross-entropy loss; among 43 training datasets, 26 have testing datasets.

Challenges

... so the motivation to develop stochastic-gradient-based interior-point methods seems sufficient

What are the challenges?

- ▶ Stochastic-gradient-based algorithms require gradients to be bounded and Lipschitz continuous
- ▶ ... but barrier functions (e.g., logarithmic barrier) have neither property
- Standard interior-point methods have a two-loop structure
- ▶ ... but the stationarity test in the inner loop is problematic in stochastic settings

I will begin the talk by introducing the generally constrained case

- ▶ However, for a detailed look at the analysis, I will focus on the bound-constrained case, for simplicity
- ▶ I will end with our conclusions for the generally constrained case

	Motivation 0000000	General Constraints •00000000	Bound Constraints 000000000000000	General Constraints Revisited 0000	Conclusion 000
--	-----------------------	----------------------------------	--------------------------------------	------------------------------------	-------------------

Outline

Motivation

General Constraints

Bound Constraints

General Constraints Revisited

Conclusion

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	000000000	00000000000000	0000	000

Problem formulation

Let's begin by supposing that we can handle the generally constrained case:

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $c_{\mathcal{E}}(x) = 0$
 $c_{\mathcal{I}}(x) \le 0$

To allow for an *infeasible method*, the typical approach is to introduce slack variables:

$$\begin{split} \min_{\substack{(x,s)\in\mathbb{R}^n\times\mathbb{R}^{|\mathcal{I}|}\\\text{ s.t. } c_{\mathcal{E}}(x)=0,\\ c_{\mathcal{I}}(x)+s=0, \quad s\geq 0 \end{split}}$$

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	000000000	00000000000000	0000	000

Barrier subproblem

The barrier can now be applied to the slack variables to allow infeasibility of the original constraints:

$$\begin{split} \min_{\substack{(x,s)\in\mathbb{R}^n\times\mathbb{R}^{|\mathcal{I}|}\\ \text{ s.t. } c_{\mathcal{E}}(x)=0,\\ c_{\mathcal{I}}(x)+s=0, \quad s>0}} f(x) - \sum_{i\in\mathcal{I}}\log(s_i) \end{split}$$

This is essentially an equality-constrained subproblem, so use simple (stochastic) Newton/SQP, right?

Sorry, no! Waechter and Biegler taught this lesson 25 years ago...

Motivation	General Constraints	Bound Constraints	General Constraints Revisited 0000	Conclusion
0000000	00000000	00000000000000		000

Waechter and Biegler example

Linearization of constraints + fraction-to-the-boundary rule (for slacks) \implies failure + degeneracy

image from Nocedal & Wright (2006)

What can be done?

Some options from the literature include:

- relax constraints
- ▶ feasibility restoration
- ▶ step decomposition with scaling

Each of these approaches come with major complications for the stochastic setting. Thus, we consider:

• *feasible method*, so need to limit the scope somewhat.

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	0000000000	00000000000000	0000	000

Feasible interior-point method

Given $f: \mathbb{R}^n \to \mathbb{R}, A \in \mathbb{R}^{l \times n}, b \in \mathbb{R}^l$, and $c: \mathbb{R}^n \to \mathbb{R}^m$, consider

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $Ax = b$
 $c(x) \le 0$

If x is a minimizer and a constraint qualification (e.g., the MFCQ) holds, then for some (y, z) one has

$$\nabla f(x) + A^T y + \nabla c(x) z = 0, \quad Ax = b, \quad c(x) \le 0, \quad z \ge 0, \text{ and } -z \circ c(x) = 0.$$

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	0000000000	00000000000000	0000	000

Textbook algorithm

For any $\mu \in \mathbb{R}_{>0}$, consider the barrier-augmented function and barrier subproblem

$$\phi(x,\mu) = f(x) - \mu \sum_{i=1}^{m} \log(-c_i(x)) \quad \text{and} \quad \begin{vmatrix} \min_{x \in \mathbb{R}^n} \phi(x,\mu) \\ \text{s.t. } Ax = b \end{vmatrix}$$

Algorithm IPM : Interior-point method (textbook version)

1: choose x_1 with $Ax_1 = b$ and $c(x_1) < 0$; choose y_1 ; choose barrier parameter $\mu \in \mathbb{R}_{>0}$

2: for all
$$k \in \{1, 2, ...\}$$
 do

3: set
$$z_{k,i} \leftarrow -\mu(c_i(x_k))^{-1}$$
 for all $i \in [m]$

- 4: **if** $\|(\nabla f(x_k) + A^T y_k + \nabla c(x_k) z_k, Ax_k b, z_k \circ c(x_k) + \mu \mathbb{1})\|_2 = \mathcal{O}(\mu)$ **then** set $\mu \leftarrow 10^{-1}\mu$
- 5: compute $d_k \in \text{Null}(A)$ that is a descent direction for $\phi(\cdot, \mu)$ at x_k
- 6: set $\alpha_{k,\max} \in (0,1]$ by fraction-to-the-boundary rule to ensure $c(x_k + \alpha_{k,\max}d_k) \leq 10^{-2}c(x_k)$
- 7: set $\alpha_k \in (0, \alpha_{k, \max}]$ to ensure sufficient decrease $\phi(x_k + \alpha_k d_k, \mu) \ll \phi(x_k, \mu)$

8: set
$$x_{k+1} \leftarrow x_k + \alpha_k d_k$$

9: end for

Motivation Ge	eneral Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000 00		00000000000000	0000	000

Major challenges for the stochastic setting

Stationarity test:

- Computing $\|\nabla f(x_k) + A^T y_k + \nabla c(x_k) z_k\|_2$ is intractable
- ▶ Could estimate it using a stochastic gradient, but then a probabilistic guarantee, at best

Fraction-to-the-boundary rule:

- ▶ Tying fraction to current iterate x_k through $c(x_k)$ leads to issues
- ▶ ... stochastic gradients could push iterate sequence to boundary too quickly

Unbounded gradients and lack of Lipschitz continuity:

Our approach

Our approach is based on two coupled ideas:

- ▶ prescribed decreasing barrier parameter sequence $\{\mu_k\} \searrow 0$ (single-loop algorithm!)
- ▶ prescribed $\{\theta_k\} \searrow 0$ and enforcement of

$$x_{k+1} \in \mathcal{N}(\theta_k) := \{ x \in \mathbb{R}^n : c(x) \le -\theta_k \mathbb{1} \}$$

Will it converge? Will it work well in practice?

Our work says yes to both!

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusior
0000000	000000000	•000000000000000	0000	000

Outline

Motivation

General Constraints

Bound Constraints

General Constraints Revisited

Conclusion

	Motivation 0000000	General Constraints 000000000	Bound Constraints 000000000000000000000000000000000000	General Constraints Revisited 0000	$\begin{array}{c} \mathrm{Conclusion} \\ \mathrm{OOO} \end{array}$
--	-----------------------	----------------------------------	---	---------------------------------------	--

Proposed algorithm

$$\min_{x \in \mathbb{R}^n} f(x) \text{ s.t. } l \le x \le u \qquad \phi(x, \mu) = f(x) - \mu \sum_{i=1}^n \log(x_i - l_i) + \sum_{i=1}^n \log(u_i - x_i)$$

Algorithm SLIP : Single-loop interior-point method

- 1: choose an initial point $x_1 \in \mathcal{N}_{[l,u]}(\theta_0), \{\mu_k\} \searrow 0, \{\theta_k\} \searrow 0$
- 2: for all $k \in \{1, 2, ...\}$ do
- 3: compute descent direction d_k (e.g., estimating $-\nabla \phi(x_k, \mu_k)$)

$$\alpha_k \leftarrow \frac{1}{L + 2\mu_k \theta_k^{-2}}$$
 where $L = \text{Lipschitz constant for } \nabla f$

5: set $\gamma_k \in (0, 1]$ to ensure

$$x_{k+1} \leftarrow x_k + \gamma_k \alpha_k d_k \in \mathcal{N}_{[l,u]}(\theta_k)$$

6: **end for**

Note: Our paper considers a more general framework; this is a simplified instance

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	000000000	000000000000000000000000000000000000	0000	000

Key observation

Our first key observation is that the algorithm essentially acts equivalently to minimize

$$\phi(x,\mu) = f(x) - \mu \sum_{i=1}^{n} \log(x_i - l_i) - \mu \sum_{i=1}^{n} \log(u_i - x_i)$$

and

$$\tilde{\phi}(x,\mu) = f(x) - \mu \sum_{i=1}^{n} \log\left(\frac{x_i - l_i}{\chi}\right) - \mu \sum_{i=1}^{n} \log\left(\frac{u_i - x_i}{\chi}\right),$$

where χ is sufficiently large such that $\frac{x_i - l_i}{\chi} \in [0, 1]$ and $\frac{u_i - x_i}{\chi} \in [0, 1]$ for all $i \in [n]$.

The latter is simply a shifted form of the former.

- ▶ They have the same gradients! $\nabla_x \phi(x, \mu) = \nabla_x \tilde{\phi}(x, \mu)$
- For the latter, $\bar{\mu} < \mu$ implies that $\tilde{\phi}(x, \bar{\mu}) < \tilde{\phi}(x, \mu)$.

The algorithm uses ϕ , but our analysis can focus on monotonically decreasing $\{\tilde{\phi}(x_k, \mu_k)\}$.

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	000000000	00000000000000	0000	000

Critical lemmas, deterministic setting

Lemma

For all
$$k \in \mathbb{N}$$
, one finds for $L_k := L + 2\mu_k \theta_k^{-2}$ that

$$\tilde{\phi}(x_{k+1},\mu_k) \leq \tilde{\phi}(x_k,\mu_k) + \nabla_x \tilde{\phi}(x_k,\mu_k)^T (x_{k+1} - x_k) + \frac{1}{2} L_k \|x_{k+1} - x_k\|_2^2,$$

so $\{\alpha_k\} = \{L_k^{-1}\} \implies \tilde{\phi}(x_{k+1},\mu_{k+1}) \leq \tilde{\phi}(x_k,\mu_k) - \frac{1}{2} \gamma_k \alpha_k \|\nabla_x \tilde{\phi}(x_k,\mu_k)\|_2^2.$

Lemma

For all $k \in \mathbb{N}$, one finds that γ_k is bounded below by the minimum of 1 and

$$\alpha_k^{-1} \left(\frac{\frac{1}{2}\mu_k \Delta}{\mu_k + \frac{1}{2}\kappa_{\nabla f} \Delta} - \theta_k \right) (\kappa_{\nabla f} + \mu_k \theta_{k-1}^{-1})^{-1}.$$

Thus, with $t \in [-1,0)$, $\{\mu_k\} = \{\mu_1 k^t\}$, $\{\theta_{k-1}\} = \{\theta_0 k^t\}$, and $\{\alpha_k\} = \{L_k^{-1}\}$, one finds that

$$\sum_{k=1}^{\infty} \gamma_k \alpha_k = \infty \quad and \quad \{\mu_k \theta_{k-1}^{-1}\} \quad is \ bounded.$$

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	000000000	00000000000000	0000	000

Convergence guarantee, deterministic setting

Theorem

One finds that

$$\liminf_{k \to \infty} \|\nabla_x \phi(x_k, \mu_k)\|_2^2 = 0,$$

and, for any infinite-cardinality set $\mathcal{K} \subseteq \mathbb{N}$ such that $\{\nabla_x \phi(x_k, \mu_k)\}_{k \in \mathcal{K}} \to 0$ and $\{x_k\}_{k \in \mathcal{K}} \to \overline{x}$, the limit point \overline{x} is a KKT point (i.e., there exists \overline{y} and \overline{z} such that $(\overline{x}, \overline{y}, \overline{z})$ satisfies KKT conditions).

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	000000000	00000000000000	0000	000

Why does it work?

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	000000000	00000000000000	0000	000

Why does it work?

|--|

Why does it work?

Stochastic setting

In the stochastic setting, the algorithm parameters need to be chosen more carefully!

- ▶ Notably, γ_k needs to be chosen based on knowledge of noise bound.
- For the deterministic setting, $\{\mu_k\} = \{\mu_1 k^t\}$ and $\{\theta_{k-1}\} = \{\theta_0 k^t\}$ for t = -1 implies

$$\{\alpha_k\} = \left\{\frac{1}{L+2\mu_k\theta_k^{-2}}\right\} = \Theta(k^t),$$

but for stochastic setting, step-size sequence $\{\alpha_k\}$ can no longer decrease at same rate as $\{\mu_k\}$. It needs to decrease more slowly than $\{\mu_k\}$ (although rates can be arbitrarily close).

Accounting for the error

The issue arises from the following lemma.

Lemma

For all $k \in \mathbb{N}$, one finds that

$$\begin{split} &\tilde{\phi}(X_{k+1},\mu_{k+1}) - \tilde{\phi}(X_k,\mu_k) \\ &\leq -\Gamma_k A_k \|\nabla_x \tilde{\phi}(X_k,\mu_k)\|_{H_k^{-1}}^2 + \Gamma_k A_k \nabla_x \tilde{\phi}(X_k,\mu_k)^T H_k^{-1} (\nabla_x \tilde{\phi}(X_k,\mu_k) - Q_k) \\ &+ \frac{1}{2} \Gamma_k^2 A_k^2 \lambda_{k,\min}^{-1} \ell_{\nabla f,\mathcal{B},k} \|Q_k\|_{H_k^{-1}}^2. \end{split}$$

Using $\{\mu_k\} = \{\mu_1 k^{-1}\}$ and $\{\theta_{k-1}\} = \{\theta_0 k^{-1}\}$, so $\{\alpha_k\} = \Theta(k^{-1})$, leaves the final term uncontrolled!

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	$\begin{array}{c} \mathrm{Conclusion} \\ \mathrm{OOO} \end{array}$
0000000	000000000	00000000000000000	0000	

Parameter rule

Given prescribed $(t, t_{\alpha}) \in (-\infty, -\frac{1}{2}) \times (-\infty, 0)$ such that $t + t_{\alpha} \in [-1, 0)$, and $t + 2t_{\alpha} \in (-\infty, -1)$ along with prescribed $\alpha_{\text{buff}} \in \mathbb{R}_{\geq 0}$, $\{\alpha_{k, \text{buff}}\} \subset \mathbb{R}_{\geq 0}$, $\gamma_{\text{buff}} \in \mathbb{R}_{\geq 0}$, and $\{\gamma_{k, \text{buff}}\} \subset \mathbb{R}_{\geq 0}$ such that $\alpha_{k, \text{buff}} \le \alpha_{\text{buff}} k^{2t}$ and $\gamma_{k, \text{buff}} \le \gamma_{\text{buff}} k^{t}$ for all $k \in \mathbb{N}$, the algorithm employs

$$\alpha_{k,\min} := \frac{\lambda_{k,\min}k^{t_{\alpha}}}{\ell_{\nabla f,\mathcal{B}}+2\mu_{k}\theta_{k}^{-2}}, \qquad \gamma_{k,\min} := \min\left\{1, \frac{\lambda_{k,\min}\left(\frac{\frac{1}{2}\mu_{k}\Delta}{\mu_{k}+\frac{1}{2}(\kappa_{\nabla f,\mathcal{B},\infty}+\sigma_{\infty})\Delta}-\theta_{k}\right)}{\alpha_{k,\max}(\kappa_{\nabla f,\mathcal{B},\infty}+\sigma_{\infty}+\mu_{k}\theta_{k-1}^{-1})}\right\},$$
$$\alpha_{k,\max} := \alpha_{k,\min} + \alpha_{k,\mathrm{buff}}, \qquad \text{and} \quad \gamma_{k,\max} := \min\{1, \gamma_{k,\min}+\gamma_{k,\mathrm{buff}}\}$$

and makes a (run-and-iterate-dependent) choice $\alpha_k \in \min\left\{\frac{\lambda_{k,\min}k^{t\alpha}}{L+2\mu_k\theta_k^{-2}}, \alpha_{k,\max}\right\}$ for all $k \in \mathbb{N}$.

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	000000000	000000000000000000000000000000000000	0000	000

Acceptable rate values

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	000000000	00000000000000000	0000	000

Convergence guarantee, stochastic setting

Theorem

Suppose $t \in (-1, -\frac{1}{2})$ and $t_{\alpha} \in (-\infty, 0)$ have

 $t + t_{\alpha} \in [-1, 0)$ and $t + 2t_{\alpha} \in (-\infty, -1)$

and for some $\sigma \in \mathbb{R}_{>0}$ one has for all $k \in \mathbb{N}$ that

 $\mathbb{E}[G_k|\mathcal{F}_k] = \nabla f(X_k) \quad and \quad \|G_k - \nabla f(X_k)\|_2 \le \sigma.$

Then, with $\{\mu_k\} = \{\mu_1 k^t\}, \{\theta_{k-1}\} = \{\theta_0 k^t\}, \text{ and } \{\alpha_k\} = \{L_k^{-1} k^{t_\alpha}\}, \text{ one finds that}$

 $\liminf_{k\to\infty} \|\nabla_x \phi(X_k,\mu_k)\|_2^2 = 0 \quad almost \ surely.$

Consequently, considering any realization $\{x_k\}$ of $\{X_k\}$, for any infinite-cardinality set $\mathcal{K} \subseteq \mathbb{N}$ such that $\{\nabla_x \phi(x_k, \mu_k)\}_{k \in \mathcal{K}} \to 0$ and $\{x_k\}_{k \in \mathcal{K}} \to \overline{x}$, the limit point \overline{x} is a KKT point.

Numerical experiments

Compare SLIP with a projected stochastic gradient method (PSGM) for which

$$x_{k+1} \leftarrow \operatorname{Proj}_{[l,u]}(x_k + \alpha_k d_k).$$

Experiments involve:

- binary classification problems with LIBSVM datasets
- ▶ two classifiers:
 - ▶ logistic regression (convex) and
 - neural network with one hidden layer and cross-entropy loss (nonconvex)
- performance measure

$$\frac{f(x_{\text{end}}^{\text{SLIP}}) - f(x_{\text{end}}^{\text{PSGM}})}{\max\{f(x_{\text{end}}^{\text{SLIP}}), f(x_{\text{end}}^{\text{PSGM}}), 1\}} \in (-1, 1)$$

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	000000000	000000000000000000	0000	000

Deterministic setting

Relative performance of SLIP and PGM, deterministic setting, training logistic regression (left) and neural network models with one hidden layer with cross-entropy loss (right).

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	000000000	000000000000000	0000	000

Stochastic setting, logistic regression

Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training logistic regression models; among 43 training datasets, 26 have testing datasets.

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	000000000	00000000000000	0000	000

Stochastic setting, neural network with cross-entropy loss

Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training neural network models (with one hidden layer) with cross-entropy loss; among 43 training datasets, 26 have testing datasets.

Motivation	General Constraints	Bound Constraints	General Constraints Revisited \bullet 000	Conclusion
0000000	00000000	000000000000000		000

Outline

Motivation

General Constraints

Bound Constraints

General Constraints Revisited

Conclusion

	Motivation 0000000	General Constraints 000000000	Bound Constraints 00000000000000	General Constraints Revisited $0 \bullet 00$	Conclusion 000
--	-----------------------	----------------------------------	-------------------------------------	--	-------------------

Search direction conditions

$$\min_{x \in \mathbb{R}^n} f(x)$$

s.t. $Ax = b$
 $c(x) \le 0$

$$\phi(x,\mu) = f(x) - \mu \sum_{i=1}^{n} \log(-c_i(x))$$

Need an initial point $x_1 \in \mathbb{R}^n$ satisfying

$$Ax_1 = b$$
 and $c(x_1) < 0$,

and, with $P := I - A^T (AA^T)^{-1} A$, to ensure/assume that, for all $k \in \mathbb{N}$, one can compute d_k satisfying

$$\begin{aligned} Ad_{k} &= 0\\ \underline{\zeta} \| Pq_{k} \|_{2} \leq \| d_{k} \|_{2} \leq \overline{\zeta} \| Pq_{k} \|_{2}\\ -(Pq_{k})^{T} d_{k} \geq \zeta \| Pq_{k} \|_{2} \| d_{k} \|_{2}\\ \nabla c_{i}(x_{k})^{T} d_{k} \leq -\frac{1}{2} \overline{\eta} \| d_{k} \|_{2} \quad \text{for all} \quad i \in \{ j \in [m] : -\eta \mu_{k} < c_{i}(x_{k}) \}. \end{aligned}$$

Motivation	General Constraints	Bound Constraints	General Constraints Revisited 0000	Conclusion
0000000	000000000	000000000000000		000

Convergence guarantees

Theorem

With
$$t \in [-1,0)$$
, $\{\mu_k\} = \{\mu_1 k^t\}$, $\{\theta_{k-1}\} = \{\theta_0 k^t\}$, and $\{\alpha_k\} = \mathcal{O}(L_k^{-1})$, one finds that

$$\sum_{k=1}^{\infty} \gamma_k \alpha_k = \infty \quad and \quad \liminf_{k \to \infty} \|P \nabla_x \phi(x_k, \mu_k)\|_2^2 = 0.$$

In addition, for any infinite-cardinality set $\mathcal{K} \subseteq \mathbb{N}$ such that

$$\blacktriangleright \{P\nabla_x \phi(x_k, \mu_k)\}_{k \in \mathcal{K}} \to 0,$$

$$\blacktriangleright \{x_k\}_{k\in\mathcal{K}}\to \overline{x}, and$$

▶ the LICQ holds at \overline{x} ,

the limit point \overline{x} is a KKT point (i.e., there exists \overline{y} and \overline{z} such that $(\overline{x}, \overline{y}, \overline{z})$ satisfies KKT conditions).

Stochastic setting: Similar parameter rule as bound-constrained case yields

$$\liminf_{k \to \infty} \|P\nabla_x \phi(x_k, \mu_k)\|_2^2 = 0 \text{ almost surely}$$

Motivation	General Constraints	Bound Constraints	General Constraints Revisited $000 \bullet$	Conclusion
0000000	000000000	00000000000000		000

Main challenge

Recall the assumption that, for all $k \in \mathbb{N}$, the algorithm computes d_k satisfying

$$Ad_{k} = 0$$

$$\underline{\zeta} \|Pq_{k}\|_{2} \leq \|d_{k}\|_{2} \leq \overline{\zeta} \|Pq_{k}\|_{2}$$

$$-(Pq_{k})^{T}d_{k} \geq \zeta \|Pq_{k}\|_{2} \|d_{k}\|_{2}$$

$$\nabla c_{i}(x_{k})^{T}d_{k} \leq -\frac{1}{2}\overline{\eta}\|d_{k}\|_{2} \text{ for all } i \in \{j \in [m]: -\eta\mu_{k} < c_{i}(x_{k})\}.$$

Motivation	General Constraints	Bound Constraints	General Constraints Revisited	Conclusion
0000000	000000000	000000000000000	0000	•00

Outline

Motivation

General Constraints

Bound Constraints

General Constraints Revisited

Conclusion

Summary

Presented single-loop interior-point methods for solving inequality-constrained problems with

- ▶ prescribed barrier and "neighborhood" parameter sequences,
- ▶ no need for stationarity tests, fraction-to-the-boundary rules, or line searches,
- convergence guarantees in deterministic and stochastic settings, and
- promising numerical performance!

General Constraint 000000000 Bound Constraints 0000000000000000 General Constraints Revisited 0000

Collaborators and references

Published:

F. E. Curtis, V. Kungurtsev, D. P. Robinson, and Q. Wang, "A Stochastic-Gradient-Based Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems," *SIAM Journal on Optimization*, https://doi.org/10.1137/23M1569460.

Under review:

▶ F. E. Curtis, X. Jiang, and Q. Wang, "Single-Loop Deterministic and Stochastic Interior-Point Algorithms for Nonlinearly Constrained Optimization."