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Interior-point methods

Interior-point methods (IPMs) are the workhorse for deterministic nonlinearly constrained optimization.

▶ Ipopt, Knitro, LOQO, etc.

How about noisy or stochastic settings? The current trend is to allow “constraints” only through:

▶ projection-based methods

▶ manifold-based methods

▶ conditional-gradient methods

▶ penalization (e.g., augmented Lagrangians)

Is the current trend the end of the story? A place for IPMs in noisy and stochastic optimization?

Stochastic-Gradient-based Interior-Point Method 5 of 41



Motivation General Constraints Bound Constraints General Constraints Revisited Conclusion

Prior recent work

With various collaborators in recent years, I have worked on stochastic Newton/SQP methods

▶ joint work with Berahas, Jiang, O’Neill, Robinson, Wang, Zhou

▶ stochastic objective gradient evaluations

▶ deterministic equality-constraint function and derivative evaluations

▶ . . . follow-up work by others, e.g., Na et al.

▶ . . . some work on solving generally constrained problems (SQP, not IPM)

I have also worked on an interior-point method for constrained optimization with deterministic noise

▶ joint work with Dezfulian and Waechter

▶ noisy objective function and gradient evaluations

▶ noisy equality- and inequality-constraint function and derivative evaluations

▶ . . . follows work by Nocedal et al.

The impressive practical performance of these methods motivates stochastic-gradient-based IPMs
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SLIP (this talk), deterministic setting

Relative performance of SLIP and PGM, deterministic setting, training logistic regression (left) and neural
network models with one hidden layer with cross-entropy loss (right).
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SLIP (this talk), stochastic setting, logistic regression

Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training logistic regression
models; among 43 training datasets, 26 have testing datasets.
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SLIP (this talk), stochastic setting, neural network with cross-entropy loss

Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training neural network models
(with one hidden layer) with cross-entropy loss; among 43 training datasets, 26 have testing datasets.
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Challenges

... so the motivation to develop stochastic-gradient-based interior-point methods seems sufficient

What are the challenges?

▶ Stochastic-gradient-based algorithms require gradients to be bounded and Lipschitz continuous

▶ . . . but barrier functions (e.g., logarithmic barrier) have neither property

▶ Standard interior-point methods have a two-loop structure

▶ . . . but the stationarity test in the inner loop is problematic in stochastic settings

I will begin the talk by introducing the generally constrained case

▶ However, for a detailed look at the analysis, I will focus on the bound-constrained case, for simplicity

▶ I will end with our conclusions for the generally constrained case
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Problem formulation

Let’s begin by supposing that we can handle the generally constrained case:

min
x∈Rn

f(x)

s.t. cE(x) = 0

cI(x) ≤ 0

To allow for an infeasible method, the typical approach is to introduce slack variables:

min
(x,s)∈Rn×R|I|

f(x)

s.t. cE(x) = 0,

cI(x) + s = 0, s ≥ 0
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Barrier subproblem

The barrier can now be applied to the slack variables to allow infeasibility of the original constraints:

min
(x,s)∈Rn×R|I|

f(x)−
∑
i∈I

log(si)

s.t. cE(x) = 0,

cI(x) + s = 0, s > 0

This is essentially an equality-constrained subproblem, so use simple (stochastic) Newton/SQP, right?

▶ Sorry, no! Waechter and Biegler taught this lesson 25 years ago...
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Waechter and Biegler example

Linearization of constraints + fraction-to-the-boundary rule (for slacks) =⇒ failure + degeneracy

image from Nocedal & Wright (2006)
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What can be done?

Some options from the literature include:

▶ relax constraints

▶ feasibility restoration

▶ step decomposition with scaling

Each of these approaches come with major complications for the stochastic setting. Thus, we consider:

▶ feasible method, so need to limit the scope somewhat.
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Feasible interior-point method

Given f : Rn → R, A ∈ Rl×n, b ∈ Rl, and c : Rn → Rm, consider

min
x∈Rn

f(x)

s.t. Ax = b

c(x) ≤ 0

If x is a minimizer and a constraint qualification (e.g., the MFCQ) holds, then for some (y, z) one has

∇f(x) +AT y +∇c(x)z = 0, Ax = b, c(x) ≤ 0, z ≥ 0, and − z ◦ c(x) = 0.

Stochastic-Gradient-based Interior-Point Method 16 of 41



Motivation General Constraints Bound Constraints General Constraints Revisited Conclusion

Textbook algorithm

For any µ ∈ R>0, consider the barrier-augmented function and barrier subproblem

ϕ(x, µ) = f(x)− µ
m∑
i=1

log(−ci(x)) and
min
x∈Rn

ϕ(x, µ)

s.t. Ax = b

Algorithm IPM : Interior-point method (textbook version)

1: choose x1 with Ax1 = b and c(x1) < 0; choose y1; choose barrier parameter µ ∈ R>0
2: for all k ∈ {1, 2, . . . } do
3: set zk,i ← −µ(ci(xk))

−1 for all i ∈ [m]

4: if ∥(∇f(xk) +AT yk +∇c(xk)zk, Axk − b, zk ◦ c(xk) + µ1)∥2 = O(µ) then set µ← 10−1µ
5: compute dk ∈ Null(A) that is a descent direction for ϕ(·, µ) at xk

6: set αk,max ∈ (0, 1] by fraction-to-the-boundary rule to ensure c(xk + αk,maxdk) ≤ 10−2c(xk)
7: set αk ∈ (0, αk,max] to ensure sufficient decrease ϕ(xk + αkdk, µ)≪ ϕ(xk, µ)
8: set xk+1 ← xk + αkdk
9: end for
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Major challenges for the stochastic setting
Stationarity test:

▶ Computing ∥∇f(xk) +AT yk +∇c(xk)zk∥2 is intractable

▶ Could estimate it using a stochastic gradient, but then a probabilistic guarantee, at best

Fraction-to-the-boundary rule:

▶ Tying fraction to current iterate xk through c(xk) leads to issues

▶ ... stochastic gradients could push iterate sequence to boundary too quickly

Unbounded gradients and lack of Lipschitz continuity:

−ci(xk)

−µ log(−ci(xk))
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Our approach

Our approach is based on two coupled ideas:

▶ prescribed decreasing barrier parameter sequence {µk} ↘ 0 (single-loop algorithm!)

▶ prescribed {θk} ↘ 0 and enforcement of

xk+1 ∈ N (θk) := {x ∈ Rn : c(x) ≤ −θk1}

Will it converge? Will it work well in practice?

▶ Our work says yes to both!
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Proposed algorithm

min
x∈Rn

f(x) s.t. l ≤ x ≤ u ϕ(x, µ) = f(x)− µ
n∑

i=1

log(xi − li) +
n∑

i=1

log(ui − xi)

Algorithm SLIP : Single-loop interior-point method

1: choose an initial point x1 ∈ N[l,u](θ0), {µk} ↘ 0, {θk} ↘ 0
2: for all k ∈ {1, 2, . . . } do
3: compute descent direction dk (e.g., estimating −∇ϕ(xk, µk))
4: set

αk ←
1

L+ 2µkθ
−2
k

where L = Lipschitz constant for ∇f

5: set γk ∈ (0, 1] to ensure
xk+1 ← xk + γkαkdk ∈ N[l,u](θk)

6: end for

Note: Our paper considers a more general framework; this is a simplified instance
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Key observation

Our first key observation is that the algorithm essentially acts equivalently to minimize

ϕ(x, µ) = f(x)− µ
n∑

i=1

log(xi − li)− µ
n∑

i=1

log(ui − xi)

and

ϕ̃(x, µ) = f(x)− µ
n∑

i=1

log

(
xi − li

χ

)
− µ

n∑
i=1

log

(
ui − xi

χ

)
,

where χ is sufficiently large such that xi−li
χ
∈ [0, 1] and ui−xi

χ
∈ [0, 1] for all i ∈ [n].

The latter is simply a shifted form of the former.

▶ They have the same gradients! ∇xϕ(x, µ) = ∇xϕ̃(x, µ)

▶ For the latter, µ̄ < µ implies that ϕ̃(x, µ̄) < ϕ̃(x, µ).

The algorithm uses ϕ, but our analysis can focus on monotonically decreasing {ϕ̃(xk, µk)}.

Stochastic-Gradient-based Interior-Point Method 22 of 41



Motivation General Constraints Bound Constraints General Constraints Revisited Conclusion

Critical lemmas, deterministic setting

Lemma

For all k ∈ N, one finds for Lk := L+ 2µkθ
−2
k that

ϕ̃(xk+1, µk) ≤ ϕ̃(xk, µk) +∇xϕ̃(xk, µk)
T (xk+1 − xk) +

1
2
Lk∥xk+1 − xk∥22,

so {αk} = {L−1
k } =⇒ ϕ̃(xk+1, µk+1) ≤ ϕ̃(xk, µk)− 1

2
γkαk∥∇xϕ̃(xk, µk)∥22.

Lemma

For all k ∈ N, one finds that γk is bounded below by the minimum of 1 and

α−1
k

(
1
2
µk∆

µk + 1
2
κ∇f∆

− θk

)
(κ∇f + µkθ

−1
k−1)

−1.

Thus, with t ∈ [−1, 0), {µk} = {µ1kt}, {θk−1} = {θ0kt}, and {αk} = {L−1
k }, one finds that

∞∑
k=1

γkαk =∞ and {µkθ
−1
k−1} is bounded.
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Convergence guarantee, deterministic setting

Theorem

One finds that
lim inf
k→∞

∥∇xϕ(xk, µk)∥22 = 0,

and, for any infinite-cardinality set K ⊆ N such that {∇xϕ(xk, µk)}k∈K → 0 and {xk}k∈K → x, the limit
point x is a KKT point (i.e., there exists y and z such that (x, y, z) satisfies KKT conditions).
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Why does it work?

−µk log(·)

θk−1

θk

−µk+1 log(·)
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Stochastic setting

In the stochastic setting, the algorithm parameters need to be chosen more carefully!

▶ Notably, γk needs to be chosen based on knowledge of noise bound.

▶ For the deterministic setting, {µk} = {µ1kt} and {θk−1} = {θ0kt} for t = −1 implies

{αk} =
{

1

L+ 2µkθ
−2
k

}
= Θ(kt),

but for stochastic setting, step-size sequence {αk} can no longer decrease at same rate as {µk}.
▶ It needs to decrease more slowly than {µk} (although rates can be arbitrarily close).
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Accounting for the error

The issue arises from the following lemma.

Lemma

For all k ∈ N, one finds that

ϕ̃(Xk+1, µk+1)− ϕ̃(Xk, µk)

≤ − ΓkAk∥∇xϕ̃(Xk, µk)∥2H−1
k

+ ΓkAk∇xϕ̃(Xk, µk)
TH−1

k (∇xϕ̃(Xk, µk)−Qk)

+ 1
2
Γ2
kA

2
kλ

−1
k,minℓ∇f,B,k∥Qk∥2H−1

k

.

Using {µk} = {µ1k−1} and {θk−1} = {θ0k−1}, so {αk} = Θ(k−1), leaves the final term uncontrolled!
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Parameter rule

Given prescribed (t, tα) ∈ (−∞,− 1
2
)× (−∞, 0) such that t+ tα ∈ [−1, 0), and t+ 2tα ∈ (−∞,−1) along

with prescribed αbuff ∈ R≥0, {αk,buff} ⊂ R≥0, γbuff ∈ R≥0, and {γk,buff} ⊂ R≥0 such that

αk,buff ≤ αbuffk
2t and γk,buff ≤ γbuffk

t for all k ∈ N, the algorithm employs

αk,min :=
λk,mink

tα

ℓ∇f,B+2µkθ
−2
k

, γk,min := min

1,

λk,min

 1
2
µk∆

µk+
1
2
(κ∇f,B,∞+σ∞)∆

−θk


αk,max(κ∇f,B,∞+σ∞+µkθ

−1
k−1

)

 ,

αk,max := αk,min + αk,buff, and γk,max := min{1, γk,min + γk,buff}

and makes a (run-and-iterate-dependent) choice αk ∈ min

{
λk,mink

tα

L+2µkθ
−2
k

, αk,max

}
for all k ∈ N.
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Acceptable rate values

0

t

tα

t+ tα = −1

0

t

tα

t+ tα = −1

t = − 1
2

t+ 2tα = −1
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Convergence guarantee, stochastic setting

Theorem

Suppose t ∈ (−1,− 1
2
) and tα ∈ (−∞, 0) have

t+ tα ∈ [−1, 0) and t+ 2tα ∈ (−∞,−1)

and for some σ ∈ R>0 one has for all k ∈ N that

E[Gk|Fk] = ∇f(Xk) and ∥Gk −∇f(Xk)∥2 ≤ σ.

Then, with {µk} = {µ1kt}, {θk−1} = {θ0kt}, and {αk} = {L−1
k ktα}, one finds that

lim inf
k→∞

∥∇xϕ(Xk, µk)∥22 = 0 almost surely.

Consequently, considering any realization {xk} of {Xk}, for any infinite-cardinality set K ⊆ N such that
{∇xϕ(xk, µk)}k∈K → 0 and {xk}k∈K → x, the limit point x is a KKT point.
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Numerical experiments

Compare SLIP with a projected stochastic gradient method (PSGM) for which

xk+1 ← Proj[l,u](xk + αkdk).

Experiments involve:

▶ binary classification problems with LIBSVM datasets
▶ two classifiers:

▶ logistic regression (convex) and
▶ neural network with one hidden layer and cross-entropy loss (nonconvex)

▶ performance measure
f(xSLIP

end )− f(xPSGM
end )

max{f(xSLIP
end ), f(xPSGM

end ), 1}
∈ (−1, 1)
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Deterministic setting

Relative performance of SLIP and PGM, deterministic setting, training logistic regression (left) and neural
network models with one hidden layer with cross-entropy loss (right).
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Stochastic setting, logistic regression

Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training logistic regression
models; among 43 training datasets, 26 have testing datasets.
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Stochastic setting, neural network with cross-entropy loss

Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training neural network models
(with one hidden layer) with cross-entropy loss; among 43 training datasets, 26 have testing datasets.
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Search direction conditions

min
x∈Rn

f(x)

s.t. Ax = b

c(x) ≤ 0

ϕ(x, µ) = f(x)− µ
∑n

i=1 log(−ci(x))

Need an initial point x1 ∈ Rn satisfying

Ax1 = b and c(x1) < 0,

and, with P := I −AT (AAT )−1A, to ensure/assume that, for all k ∈ N, one can compute dk satisfying

Adk = 0

ζ∥Pqk∥2 ≤ ∥dk∥2 ≤ ζ∥Pqk∥2

−(Pqk)
T dk ≥ ζ∥Pqk∥2∥dk∥2

∇ci(xk)
T dk ≤ − 1

2
η∥dk∥2 for all i ∈ {j ∈ [m] : −ηµk < ci(xk)}.
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Convergence guarantees

Theorem

With t ∈ [−1, 0), {µk} = {µ1kt}, {θk−1} = {θ0kt}, and {αk} = O(L−1
k ), one finds that

∞∑
k=1

γkαk =∞ and lim inf
k→∞

∥P∇xϕ(xk, µk)∥22 = 0.

In addition, for any infinite-cardinality set K ⊆ N such that

▶ {P∇xϕ(xk, µk)}k∈K → 0,

▶ {xk}k∈K → x, and

▶ the LICQ holds at x,

the limit point x is a KKT point (i.e., there exists y and z such that (x, y, z) satisfies KKT conditions).

Stochastic setting: Similar parameter rule as bound-constrained case yields

lim inf
k→∞

∥P∇xϕ(xk, µk)∥22 = 0 almost surely
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Main challenge
Recall the assumption that, for all k ∈ N, the algorithm computes dk satisfying

Adk = 0

ζ∥Pqk∥2 ≤ ∥dk∥2 ≤ ζ∥Pqk∥2

−(Pqk)
T dk ≥ ζ∥Pqk∥2∥dk∥2

∇ci(xk)
T dk ≤ − 1

2
η∥dk∥2 for all i ∈ {j ∈ [m] : −ηµk < ci(xk)}.

∇c1(0)

∇c2(0)

x

x− q
x+ d

∇c1(0)
∇c2(0)

x

x− q
x+ d
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Summary

Presented single-loop interior-point methods for solving inequality-constrained problems with

▶ prescribed barrier and “neighborhood” parameter sequences,

▶ no need for stationarity tests, fraction-to-the-boundary rules, or line searches,

▶ convergence guarantees in deterministic and stochastic settings, and

▶ promising numerical performance!
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