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Interior-point methods

Interior-point methods (IPMs) are the workhorse for deterministic nonlinearly constrained optimization.
> Ipopt, Knitro, LOQO, etc.

How about noisy or stochastic settings? The current trend is to allow “constraints” only through:
> projection-based methods
» manifold-based methods
» conditional-gradient methods

> penalization (e.g., augmented Lagrangians)

Is the current trend the end of the story? A place for IPMs in noisy and stochastic optimization?
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Prior recent work

With various collaborators in recent years, I have worked on stochastic Newton/SQP methods
» joint work with Berahas, Jiang, O’Neill, Robinson, Wang, Zhou
> stochastic objective gradient evaluations
» deterministic equality-constraint function and derivative evaluations
» ... follow-up work by others, e.g., Na et al.

> ...some work on solving generally constrained problems (SQP, not IPM)

I have also worked on an interior-point method for constrained optimization with deterministic noise
> joint work with Dezfulian and Waechter
» noisy objective function and gradient evaluations
» noisy equality- and inequality-constraint function and derivative evaluations

» ... follows work by Nocedal et al.

The impressive practical performance of these methods motivates stochastic-gradient-based IPMs
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Relative performance of SLIP and PGM, deterministic setting, training logistic regression (left) and neural
network models with one hidden layer with cross-entropy loss (right).
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SLIP (this talk), stochastic setting, logistic regression
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Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training logistic regression
models; among 43 training datasets, 26 have testing datasets.
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SLIP (this talk), stochastic setting, neural network with cross-entropy loss

; training loss, stochastic, 1 epoch , testing loss, stochastic, 1 epoch
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Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training neural network models
(with one hidden layer) with cross-entropy loss; among 43 training datasets, 26 have testing datasets.
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Challenges

. so the motivation to develop stochastic-gradient-based interior-point methods seems sufficient

What are the challenges?

» Stochastic-gradient-based algorithms require gradients to be bounded and Lipschitz continuous

» ...but barrier functions (e.g., logarithmic barrier) have neither property
» Standard interior-point methods have a two-loop structure

P ...but the stationarity test in the inner loop is problematic in stochastic settings

I will begin the talk by introducing the generally constrained case
» However, for a detailed look at the analysis, I will focus on the bound-constrained case, for simplicity

» I will end with our conclusions for the generally constrained case

I I
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Problem formulation

Let’s begin by supposing that we can handle the generally constrained case:

2 @
st.cg(z) =0
cz(z) <0

To allow for an infeasible method, the typical approach is to introduce slack variables:

min f(z)
(z,8) ER™ xRIZ]

s.t. ce(x) =0,
cr(z)+s=0, s>0
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Barrier subproblem

The barrier can now be applied to the slack variables to allow infeasibility of the original constraints:

fl@) = log(s:)
i€T

s.t. cg(x) =0,

cr(z)+s=0, s>0

min
(z,8) ER™ xRIZ]

This is essentially an equality-constrained subproblem, so use simple (stochastic) Newton/SQP, right?

> Sorry, no! Waechter and Biegler taught this lesson 25 years ago...
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Waechter and Biegler example

Linearization of constraints + fraction-to-the-boundary rule (for slacks) = failure 4+ degeneracy

feasible region

05

\\ B - X

image from Nocedal & Wright (2006)
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What can be done?

Some options from the literature include:
> relax constraints
» feasibility restoration

> step decomposition with scaling

Each of these approaches come with major complications for the stochastic setting. Thus, we consider:

» feasible method, so need to limit the scope somewhat.
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Feasible interior-point method

Given f:R® - R, A € R\*" b e R, and ¢: R* — R™, consider

2 1@
st. Az =b
c(z) <0

If = is a minimizer and a constraint qualification (e.g., the MFCQ) holds, then for some (y, z) one has

Vi) + ATy + Ve(x)z =0, Az =b, c¢(x) <0, 2>0, and — zoc(z)=0.
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Textbook algorithm

For any p € Ry, consider the barrier-augmented function and barrier subproblem

d(z,p) = f(x) —py_log(—ci(x))  and ver
i=1 s.t. Ax=0b

Algorithm IPM : Interior-point method (textbook version)

1: choose z1 with Azq = b and ¢(z1) < 0; choose y1; choose barrier parameter p € Ry

2: for all k € {1,2,...} do

3: set zg ; « —p(ci(wg)) ! for all 3 € [m]

4 if |(Vf(zg) + ATy + Ve(z)zn, Azg — b, 2z, 0 c(xp) + pl)|l2 = O(p) then set p + 101y
5: compute dy, € Null(A) that is a descent direction for ¢(-, u) at zy,

6: set o max € (0,1] by fraction-to-the-boundary rule to ensure c(x + g maxdi) < 10~ 2¢(zg,)
7 set oy € (0, 0 max] to ensure sufficient decrease ¢(xy + apdy, 1) <K ¢(xg, 1)

8: set Tp41 < T + apdy

9: end for

I I
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Major challenges for the stochastic setting
Stationarity test:
> Computing ||V f(zx) + ATyx + Ve(zk)zk||2 is intractable

» Could estimate it using a stochastic gradient, but then a probabilistic guarantee, at best

Fraction-to-the-boundary rule:
»> Tying fraction to current iterate xj, through c(zy) leads to issues

> ... stochastic gradients could push iterate sequence to boundary too quickly

Unbounded gradients and lack of Lipschitz continuity:

—plog(—ci(wk))

—ci(xk)

I I
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Our approach

Our approach is based on two coupled ideas:
> prescribed decreasing barrier parameter sequence {ug} \( 0 (single-loop algorithm!)

» prescribed {0} \, 0 and enforcement of
Tpr1 EN(Og) :={z € R" : ¢(z) < =61}

Will it converge? Will it work well in practice?

» Our work says yes to both!
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Proposed algorithm

min f(z) st. I<z<u Pz, p) = f(z) — uiz::llog(mi — 1)+ ;bg(ui — @)

Algorithm SLIP : Single-loop interior-point method
1: choose an initial point z1 € Nyg,,)(00), {#x} N0, {0k} N\ 0
2: for all k € {1,2,...} do
3: compute descent direction dj (e.g., estimating —V(x, ur))
4: set

1

< —————5 where L = Lipschitz constant for V f
L+ 21“‘160]@

af

5: set v € (0,1] to ensure
Tyt Tk + Yeards € Ny o) (0k)

6: end for

Note: Our paper considers a more general framework; this is a simplified instance

I I
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Key observation

Our first key observation is that the algorithm essentially acts equivalently to minimize
n n
b, p) = f(@) —p Y _log(zi — i) — 'y log(u; — ;)
i=1 i=1

and
~ Ui — T4
bz, ) = f(x) — p Z log —n Z log

where ¥ is sufficiently large such that =Y € [0,1] and H €00, 1] for all i € [n].

The latter is simply a shifted form of the former.
» They have the same gradients! Voé(z, 1) = Ved(z, 1)
> For the latter, i < p implies that ¢(z, &) < ¢(x, ).

The algorithm uses ¢, but our analysis can focus on monotonically decreasing {@(zy, 1)}

I I
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Critical lemmas, deterministic setting
Lemma,
For all k € N, one finds for L, :== L + 2;%0,:2 that

(@1, k) < (@, k) + Vad(@r, k)T (Thg1 — Tn) + 5 Lillzrsr — zill3,
so {on} ={L;'} = G(xrs1,bh11) < d(@h, k) — 2veanl| Vad(@r, ue)l3-

Lemma

For all k € N, one finds that 7y is bounded below by the minimum of 1 and

—1 ( %,UkA

a — 2 0k | (kg b )T
o\ + SrvsA >( ! k=)

Thus, with t € [~1,0), {ur} = {p1k'}, {0x—1} = {60k}, and {ax} = {L; '}, one finds that

oo
Z'ykak =00 and {uke,;_ll} 1is bounded.
k=1

Stochastic-Gradient-based Interior-Point Method
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Convergence guarantee, deterministic setting

Theorem
One finds that
lim inf ||V ¢(zk, )3 = 0,

and, for any infinite-cardinality set KK C N such that {Vz¢(xk, k) tkex — 0 and {zk}rexc — T, the limit
point T is a KKT point (i.e., there exists § and Z such that (Z,7,z) satisfies KKT conditions).

I
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Stochastic setting

In the stochastic setting, the algorithm parameters need to be chosen more carefully!
> Notably, v; needs to be chosen based on knowledge of noise bound.
» For the deterministic setting, {ux} = {p1k?} and {0x_1} = {0ok'} for t = —1 implies

1 t
{an} = {m} = O(k"),

but for stochastic setting, step-size sequence {ay} can no longer decrease at same rate as {py }.

» It needs to decrease more slowly than {ux} (although rates can be arbitrarily close).

I I
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Accounting for the error

The issue arises from the following lemma.

Lemma
For all k € N, one finds that

(X1, rt1) — B X, i)
< - FkAk“vx(Z)(Xka/‘k)“iI—l + Tk ApVad(X, )T Hy N (Vo (X, i) — Qi)
k

-+ %F%Aix,;}nmfw,s,k||Qk||§,k_1.

Using {p1} = {p1k~ '} and {051} = {60k~ 1}, so {ar} = ©(k~1), leaves the final term uncontrolled!

I I
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Parameter rule

Given prescribed (¢,ta) € (—o0, —%) X (—00,0) such that t + to € [—1,0), and t + 2to € (—o0, —1) along

with prescribed apust € Ry, {a@r but} C Rsg, Youft € Ry, and {7y bust} C Ry such that
g buff < apurk?t and Vi, buft < Yougk! for all k € N, the algorithm employs

1
FHEA
)‘k,min 1 _ek
1 brt5(EvfB,cotoc)A

@ Akmin k' v, min

k in \:— — k in +— p—

o b §.8+20K0), 2’ i ’ ak,max(HVf,B,oo+Uoo+Mk9k_11) ’
Q. max ‘= Qk,min T Ok, buffs and Yk,max ‘= min{ly'yk,min + 'Yk:,buff}

>‘k,min ktcx

and makes a (run-and-iterate-dependent) choice oy € min { Tt2m 02 Olk,max} for all k € N.
HEVy
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Acceptable rate values

AN

t+ 2o =—1
t+te=—1 S
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Convergence guarantee, stochastic setting

Theorem
Suppose t € (—1, —%) and to € (—o00,0) have
t+ta € [—1,0) and t+ 2tn € (—o0, —1)
and for some o € R, one has for all k € N that
E[Gk|Fk] = VI(Xk) and [|Gr — Vf(Xp)l2 <o
Then, with {u} = {u1k'}, {0k—1} = {6ok'}, and {ar} = {L; 'k'~}, one finds that

liminf || Vaod(Xg, ux)l|3 = 0 almost surely.
k— o0

Consequently, considering any realization {z} of {Xy}, for any infinite-cardinality set K C N such that
{Vaed(zk, pr)tkex — 0 and {zr}kex — T, the limit point T is a KKT point.

I
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Numerical experiments

Compare SLIP with a projected stochastic gradient method (PSGM) for which
@41 < Projy ) (zk + ard)-

Experiments involve:
P binary classification problems with LIBSVM datasets
> two classifiers:

> logistic regression (convex) and
» neural network with one hidden layer and cross-entropy loss (nonconvex)

» performance measure
f(mSLIP) _ f(mPSGM)

end end
€ (_15 1)
max{f(z354"), fF(eE5FM), 1}
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Deterministic setting
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Relative performance of SLIP and PGM, deterministic setting, training logistic regression (left) and neural
network models with one hidden layer with cross-entropy loss (right).
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Stochastic setting, logistic regression

training loss, stochastic, 1 epoch testing loss, stochastic, 1 epoch
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Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training logistic regression
models; among 43 training datasets, 26 have testing datasets.
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Stochastic setting, neural network with cross-entropy loss

; training loss, stochastic, 1 epoch , testing loss, stochastic, 1 epoch
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Relative performance of SLIP and PSGM, stochastic setting (10 runs each), training neural network models
(with one hidden layer) with cross-entropy loss; among 43 training datasets, 26 have testing datasets.
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Search direction conditions

@
st. Az =b ¢ ) = f(@) — p 1, log(—ci(a)) |
c(z) <0

Need an initial point 1 € R™ satisfying
Azi =b and c(z1) <0,
and, with P :=T — AT(AAT)~1 A, to ensure/assume that, for all k € N, one can compute dj, satisfying
Ad, =0
¢IPqrllz < lldillz < ClIPaxll2
—(Par)"dx > ¢||Pag|l2lldk 2
Vei(on)Tdy < —L7lldyllz for all i€ {j € [m] : —np < ciwn)}-

I
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Convergence guarantees

Theorem
With t € [-1,0), {ux} = {p1k'}, {0k—1} = {00k'}, and {ax} = O(L; "), one finds that

oo
Z e = oo and liminf||PVy¢(zk, ux)||3 = 0.
= k—oo

In addition, for any infinite-cardinality set IC C N such that
> {PVyd(zy, pr)vex — 0,
> {zx}rex — T, and
» the LICQ holds at T,
the limit point T is a KKT point (i.e., there exists § and Z such that (Z,7¥, z) satisfies KKT conditions).

Stochastic setting: Similar parameter rule as bound-constrained case yields

lim inf || PV 3¢ (g, ux)[|3 = 0 almost surely
k— o0

I I
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Main challenge
Recall the assumption that, for all £ € N, the algorithm computes dj, satisfying

Ady, =0
¢IIPgkll2 < lldell2 < ¢l Pqgll2

—(Par)"di > ¢||Pkll2lldkl2
Veiler) d, < =471lldy |2 for all i€ {j € [m] : —nuy, < ci(ax)}.

z—q
z+d
x
Ve (0) <= - -
~
.
~
0
VC2(0)

I I
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: :
Summary

Presented single-loop interior-point methods for solving inequality-constrained problems with
» prescribed barrier and “neighborhood” parameter sequences,
» no need for stationarity tests, fraction-to-the-boundary rules, or line searches,
P convergence guarantees in deterministic and stochastic settings, and

» promising numerical performance!
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