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Pharmacokenetic clearance

A simple one compartment model of drug clearance from plasma.

After an injection, the concentration of a drug remaining in the
body at time t is modeled by exponential decay:

g(t, β) :=
exp(−K t)

V
.

The unknown parameters to be estimated are

β :=

[
K
V

]
=

[
clearance rate
blood volume

]
.

The observations are blood draws at times t1, . . . , tN ,

y = G(β) + ε =

 g(t1, β) + ε1
...

g(tN , β) + εN

 .

The observation errors, εj , are depend on the individual from
which the sample is taken.
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Model error for the individual

We assume that the model error for the individual comes from a
known parametric family of densities P (ε | β). For example, a
normal family N (0, R(β)) so that

P (y | β) =

(
1

|2πR(β)|

) 1
2

exp

[
−1

2
(y −G(β))TR(β)−1(y −G(β))

]
.

For example in a clearance model, one often takes something
similar to

yj ∼ N (g(tj , β), g(tj , β)2), j = 1, . . . , N.

In a population study, one studies a population of individuals
(think phase 3 clinical trials). That is, we have many observations
from distinct individuals yi ∈ RN , i = 1, . . . ,m, however, N , the
number of samples per individual is small.
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Nonparametric population density estimation

• Goal: Estimate P (y | µ) for µ ∈ P(Ω) over the population.

• Assumption: We can estimate the measure µ as a mixture of the
individual error models:

P (y | µ) =

∫
Ω
P (y | β)dµ(β).

• Individualized medicine:
The nonparametric setting is chosen since we wish to discover
subpopulations (or modes) within the population having distinctly
different clearance profiles.
This population estimate can be used for covariate discovery to
explain the variability. It can also be used as a prior to quickly
identify the therapeutic treatment range for a new patients.

5 / 26



Nonparametric population density estimation

• Goal: Estimate P (y | µ) for µ ∈ P(Ω) over the population.

• Assumption: We can estimate the measure µ as a mixture of the
individual error models:

P (y | µ) =

∫
Ω
P (y | β)dµ(β).

• Individualized medicine:
The nonparametric setting is chosen since we wish to discover
subpopulations (or modes) within the population having distinctly
different clearance profiles.
This population estimate can be used for covariate discovery to
explain the variability. It can also be used as a prior to quickly
identify the therapeutic treatment range for a new patients.

5 / 26



Nonparametric population density estimation

• Goal: Estimate P (y | µ) for µ ∈ P(Ω) over the population.

• Assumption: We can estimate the measure µ as a mixture of the
individual error models:

P (y | µ) =

∫
Ω
P (y | β)dµ(β).

• Individualized medicine:
The nonparametric setting is chosen since we wish to discover
subpopulations (or modes) within the population having distinctly
different clearance profiles.
This population estimate can be used for covariate discovery to
explain the variability. It can also be used as a prior to quickly
identify the therapeutic treatment range for a new patients.

5 / 26



Sample Results: Single plasma bolus
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Figure: Marginal probability density functions of (a) V and (b) K ; solid
line, true density; dotted line, smoothed sample distribution; x–line,
smoothed optimal solution
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Nonparametric Maximum Likelihood (NPML)

Given observation y1, . . . , ym ∈ RN solve

min
µ∈P(Ω)

L(µ) := ϕ

(∫
Ω

F (β)µ(dβ)

)
+ δK

(∫
Ω

H(β)µ(dβ)

)
,

where Ω ⊂ Rn compact, K ⊂ Rs is closed convex,

F (β) =

 P (y1|β)
...

P (ym|β)

 and ϕ(z) =

{
−
∑m
i=1 log(zi) , z ∈ Rm++,

+∞ , else.

Examples of component functions for H : Rn → Rs:

(i) Moment constraints, e.g. the mean

∫
Ω

βµ(dβ) = θ.

(ii) Mean-Variance constraints:∫
Ω

βµ(dβ) = θ, Σl �
∫

Ω

(β − θ)(β − θ)Tµ(dβ) � Σu .
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NPML, the unconstrained case

(P)NPML min
µ∈P(Ω)

ϕ

(∫
Ω

F (β)µ(dβ)

)

µ 7→
∫

Ω
F (β)µ(dβ) is a continuous linear transformation B(Ω) 7→ Rm.

Denote this linear mapping by S ∈ L[B(Ω),Rm], that is

ϕ(Sµ) = ϕ

(∫
Ω

F (β)µ(dβ)

)
with F (β) =

P (y1|β)
...

P (ym|β)

 .
Therefore, (P) can be written as

min
µ∈P(Ω)

ϕ(Sµ) = min
w∈C

ϕ(w),

where C := S[P(Ω)] is the linear image of the w∗-compact convex set
P(Ω) and so C is compact convex.

(CQ)NPML ∃ β ∈ Ω s.t. P (yi|β) > 0, i = 1, . . . ,m.

(CQ)NPML implies strong duality.
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The Full Problem Class

(P) min
µ∈B(Ω)

ψ(Sµ) + δP(Ω)(µ).

Ω ⊂ Rn compact (e.g. a big box)

C(Ω) continuous functions on Ω (sup-norm)

B(Ω) Borel measures over Ω (C(Ω)∗ = B(Ω))

ψ : Rm → Re := R ∪ {+∞} lsc, proper, convex

S ∈ L(B(Ω),Rm) continuous linear transformation

P(Ω) ⊂ B(Ω) probability measures (convex w∗-compact set)

δP(Ω)(µ) :=

{
0 , µ ∈ P(Ω),

+∞ , µ /∈ P(Ω).
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Applications

1 nonparametric mixture models (Lindsay 83’ and 95’ book)

i mixed effects models (98’-, USC Pharmacokinetics Lab)
ii repeated measure models
iii latent class models
iv missing data models
v nuisance parameter models
vi deconvolution models
vii clustering

2 optimal experimental design
(Fedorov 72’ book)

3 maximum entropy problems
(Berger-Pietra-Pietra 96’ for Nat. Language Processing)

4 distributionally robust stochastic programming
(Shapiro-Kleywergt 2002)
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Duality for (P) minµ∈B(Ω) ψ(Sµ) + δP(Ω)(µ).

• B(Ω) (w∗-topology) and C(Ω) (sup-norm topology) are paired in
duality via the pairing

〈µ, f〉 :=

∫
Ω
f(ω)dµ(ω) ∀ (µ, f) ∈ B(Ω)× C(Ω).

Recall, C(Ω)∗ = B(Ω) but B(Ω)∗ 6= C(Ω).

• For g : B(Ω)→ Re, the convex conjugate of g is given by

g∗(φ) := sup
µ∈B(Ω)

[〈µ, φ〉 − g(µ)] ∀φ ∈ C(Ω),

where g∗ : C(Ω)→ Re.

Example: The support function for P(Ω) is the conjugate of δP(Ω):
for all f ∈ C(Ω),

δ∗P(Ω)(f) = sup
µ∈P(Ω)

〈µ, f〉 = sup
µ∈P(Ω)

∫
Ω
f(β)dµ(β) = max

β∈Ω
f(β).

Example: The support function for P(Ω) is the conjugate of δP(Ω):
for all f ∈ C(Ω),

δ∗P(Ω)(f) = sup
µ∈P(Ω)

〈µ, f〉 = sup
µ∈P(Ω)

∫
Ω
f(β)dµ(β) = max

β∈Ω
f(β).
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Dual Convex Programs

(P) min
µ∈B(Ω)

ψ(Sµ) + δP(µ)

(D) min
w∈Rm

ψ∗(−w) + δ∗P(S∗w)

where S∗ ∈ L[Rm, C(Ω)] is the unique solution to

〈w, Sµ〉Rm = 〈S∗w, µ〉 ∀ (w, µ) ∈ Rm × B(Ω).

Riesz representation theorem implies there exists a continuous
mapping F : Ω→ Rm such that

Sµ =

∫
Ω
F (β)dµ and S∗w = 〈w, F 〉Rm ∈ C(Ω),

where 〈w, F 〉Rm (β) := 〈w, F (β)〉. Hence

δ∗P(S∗w) = sup
β∈Ω
〈w, F (β)〉 .
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Duality: NPML, the unconstrained case

(P)NPML min
µ∈P(Ω)

φ

(∫
Ω
F (β)µ(dβ)

)

(D)NPML min
w∈Rm

[
φ∗(−w) + sup

β∈Ω
〈w, F (β)〉

]

Here, 〈w, F (β)〉 =
∑m
i=1 wiP (yi|β).

(CQ) ∃ β ∈ Ω s.t. P (yi|β) > 0, i = 1, . . . ,m.

(CQ) implies strong duality,
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Duality Theorem for (P)− (D)

(P) min
µ∈B(Ω)

ψ(Sµ) + δP(µ) (D) min
w∈Rm

[ψ∗(−w) + δ∗P(S∗w)]

Constraint Qualification (CQ) for (P)− (D)

ri (S [P(Ω)]) ∩ ri (dom (ψ)) 6= ∅

Strong Duality Theorem: If CQ holds, then there exists an
optimal (P)−(D) pair (µ,w) at which

ψ(Sµ) + δP(µ)] + [ψ∗(−w) + δ∗P(S∗w)] = 0.
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(P) =⇒ Convex-Composite Optimization

Ingredients from Choquet Theory.

• x ∈ ext(C) (extreme points of C) if

[x = (1− λ)z + λy, z, y ∈ C with λ ∈ (0, 1)] =⇒ [x = z = y].

• Krein-Milman Theorem: A compact convex subset C of a Hausdorff
locally convex topological vector space is equal to the closed convex hull
of its extreme points, C = co(ext(C)).
The closure is not required in finite dimensions.

• Let X and Y be two Hausdorff locally convex topological vector
spaces, C ⊂ X compact convex, and let T ∈ L[X,Y ]. Then TC is
compact convex and ext(TC) ⊂ T ext(C) .

• B(Ω) is a Hausdorff locally convex topological vector space and P(Ω)

is a w∗-compact convex subset, so

SP(Ω)=co(S[ext(P(Ω))]).
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The Extreme points of P(Ω)

• ext(P(Ω)) = {aβ |β ∈ Ω}, the set of Dirac measures on Ω,
where for all A ⊂ Ω (Borel),

aβ(A) :=

{
1 , β ∈ A,
0 , β /∈ A.

•

The representation of the linear transformation S yields

Saβ̄ =

∫
Ω
F (β)daβ̄(β) = F (β̄).

• Consequently,

S[ext(P(Ω))] = {Saβ |β ∈ Ω} = {F (β) |β ∈ Ω} .
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Reduction of (P) to Finite Dimensions

min
w
{ψ(w) |w ∈ SP(Ω)} = min

w
{ψ(w) |w ∈ co(S [ext(P(Ω))])}

= min
w
{ψ(w) |w ∈ co({F (β) |β ∈ Ω})}

(by Carathéodory’s Theorem with m̂ > m)

= min
λ∈∆m̂, βi

{
ψ
(
F(β1, . . . , βm̂)λ

) ∣∣∣ βi ∈ Ω, i = 1, . . . , m̂
}
∼ (̂P)

where ∆m̂ :=
{
λ ∈ Rm̂+

∣∣ eTλ = 1
}

(the unit simplex), and e

denotes the vector of all ones, and

F(β1, . . . , βm) = [F (β1), . . . , F (βm̂)],

(̂P) is convex-composite but not Convex!

But the dual of (̂P) is (D)!
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Numerical Methods

1) EM methods

2) mesh or grid (including random mesh generation) and moving
mesh methods

3) (Steepest descent) Frank Wolfe methods, vertex direction
methods, cutting plane methods
(Mallet 86’, Böhning 85’-86’)

4) smoothing and convex composite methods

5) projected subgradient descent methods

6) Bender’s decomposition methods
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Vertex direction methods for NPML

Given observation y1, . . . , ym ∈ RN solve

min
µ∈P(Ω)

L(µ) := ϕ

(∫
Ω

F (β)µ(dβ)

)
where K ⊂ E is closed convex and

F (β) =

 P (y1|β)
...

P (ym|β)

 and ϕ(z) =

{
−
∑m
i=1 log(zi) , z ∈ Rm++,

+∞ , else.

Finite dimensional version:
min
w∈C

ϕ(w),

where C = SP(Ω) = co({F (β) |β ∈ Ω}).
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First-order optimality conditions

(P) min
w∈C

ϕ(w), C = co({F (β) |β ∈ Ω})

We have ∇ϕ(w̄) = −w̄−1 where (w̄−1)i = 1/w̄i is the componentwise
inverse if the vector w̄.

w̄ ∈ Rm++ solves (P)

⇐⇒
ϕ′(w̄;w − w̄) ≥ 0 ∀w ∈ C

⇐⇒
m ≥

〈
w̄−1, w

〉
≥ 0 ∀w ∈ C

⇐⇒
m ≥ sup

β∈Ω

〈
w̄−1, F (β)

〉
⇐⇒

m = sup
β∈Ω

〈
w̄−1, F (β)

〉
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Steepest descent: Vertex direction method

Given

w̄ :=

m̂∑
j=1

λjF (βj) = S

 m̂∑
j=1

λjaβj

 , λ ∈ ∆m̂,

solve

inf
w∈SP(Ω)

φ′(w̄;w − w̄)

= inf
w∈SP(Ω)

〈
−w̄−1, w − w̄

〉
= m− sup

µ∈P(Ω)

〈
w̄−1,

∫
Ω

F (β)dµ

〉
= m− sup

β∈Ω

〈
w̄−1, F (β)

〉
for β+ and set w+ = F (β+).

Line search:
min
τ>0

ϕ(w̄ + τ(w+ − w̄))

Updated to the Vertex Exchange Methods. But this class of methods are
quite slow.
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Grid and sampling methods

Suppose m̂ >> m, that is {β1, . . . , βm̂} is a grid on Ω, or a large
sample of elements from Ω. Set Ψ := F(β1, . . . , βm̂) ∈ Rm×m̂ and
consider the problem

(̂P)m̂ min
λ∈∆m̂

ϕ(Ψλ).

One can show that (̂P)m̂ is equivalent to

min
λ≥0

ϕ(Ψλ) + m̂(eTλ− 1).

The log-barrier relaxation of this problem is

(̂P)
τ

m̂ min
λ
ϕ(Ψλ) + m̂(eTλ− 1) + τϕ(λ).
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Grid and sampling methods

(̂P)
τ

m̂ min
λ
ϕ(Ψλ) + m̂(eTλ− 1) + τϕ(λ).

where λ̄ ∈ Rm̂++ solves (̂P)
τ

m̂ it and only if there exist
z, w ∈ Rm++, y ∈ Rm̂++ such that

m̂e = ΨTw + y

z = Ψλ̄

e = Diag(w)Diag(z)e

τe = Diag(λ)Diag(y)e .

Now apply an interior point predictor-corrector strategy (τ ↓ 0) to solve

(̂P)m̂ quickly and accurately. (3 ≤ m ≤ 15, 20, 000 ≤ m̂ ≤ 80, 000)

An Algorithm for Nonparametric Estimation of A Multivariate Mixing Distribution
with Applications to Population Pharmacokinetics, W.M.Yamada, M.N.Neely, J.
Bartroff, D.S.Bayard, J.V. Burke, M. van Guilder, R.W.Jelliffe, A.Kryshchenko,
R.Leary, T.Tatarinova, A.Schumitzky. Pharmaceutics. 2020 Dec 30;13(1):42.
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EM Algorithm

The basic problem in λ:

(̂P)
NPML

min
λ∈∆m̂

ϕ(Ψλ).

Basic Assumptions for Ψ:

Ψ∆M̂ ⊂ RM

+ and ∃λ ∈ ∆M̂ such that Ψλ > 0 .

EM fixed point iteration:

λν+1 =
1

M

ΛνΨT (Ψλν)−1 with λ > 0 and Ψλ0 > 0.

Convergence: {λν} ⊂ ∆m̂ and every cluster point solves (̂P)
NPML

.
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Bender’s decomposition

min
λ∈∆m̂, x∈Ωm̂

ϕ (F(x)λ) = min
x∈Ωm̂

[
min
λ∈∆m̂

ϕ(F(x)λ)

]

Choose a smoothing function ϕτ for ϕ+ δ∆m̂
and solve for

decreasing τ :

min
x∈Ωm̂

vτ (x), where vτ (x) := min
λ
ϕτ (F(x)λ).

vτ ∈ C2 and vτ (x) = minλ∈∆m̂
ϕ(F(x)λ), ∇vτ (x), and ∇2vτ (x)

can be rapidly and accurately evaluated.
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Many unresolved key statistical questions

∫
Ω
P (y|β)µ(dβ)

a mixture density with mixing measure µ ∈ P(Ω).

Goal: Estimate µ from observations of y1, . . . , ym ∈ RN .

Let µm be the maximum likelihood estimate.

• As m ↑ ∞, does µm converge to something of interest?

• Does it converge to the measure describing the population
distribution in the mixed effects in NPML model?

• If it does converge, in what sense does it converge, and are
there error estimates?

• When do you have enough samples, or data?
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