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Outline

Most machine learning (ML) algorithms use 1st order optimization like (stochastic) gradient descent

That's generally a good idea! But in some cases, Oth and 2nd order methods make sense
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Outline

Most machine learning (ML) algorithms use 1st order optimization like (stochastic) gradient descent
That's generally a good idea! But in some cases, Oth and 2nd order methods make sense
Learning objectives of this talk
» Oth order optimization / “derivative-free optimization”

® |ntroduce a class of Oth order optimization methods

®* Argue that stepsize selection is a key issue

®* Show some ML examples where these methods make sense
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Outline

Most machine learning (ML) algorithms use 1st order optimization like (stochastic) gradient descent
That's generally a good idea! But in some cases, Oth and 2nd order methods make sense
Learning objectives of this talk

* Oth order optimization / “derivative-free optimization”
® |ntroduce a class of Oth order optimization methods
* Argue that stepsize selection is a key issue

* Show some ML examples where these methods make sense

® 2nd order optimization
® Introduce a variant of Newton's method
® Demonstrate why non-convexity has to be taken more seriously

®* Argue that linear algebra is a key issue
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Part 0: Oth order methods / derivative-free optimization

mg}i f(x) where we do not have access to V f(x)
xTc

Traditional applications: PDE constrained optimization, when the adjoint state method or automatic differentiation is inapplicable

- e.g., multiphysics codes with complicated adjoints (and hard to code in HPC); memory issues in AD for time-dependent problems, etc.
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Part 0: Oth order methods / derivative-free optimization

m%b f(x) where we do not have access to V f(x)
xrc

Traditional applications: PDE constrained optimization, when the adjoint state method or automatic differentiation is inapplicable

- e.g., multiphysics codes with complicated adjoints (and hard to code in HPC); memory issues in AD for time-dependent problems, etc.

Machine learning applications
- hyper parameter tuning

- black-box attacks, e.g., adversarial attacks on a model (attacker doesn’'t have access to source code)
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Part 0: Oth order methods / derivative-free optimization

m%}l f(x) where we do not have access to V f(x)
xTc

Traditional applications: PDE constrained optimization, when the adjoint state method or automatic differentiation is inapplicable

- e.g., multiphysics codes with complicated adjoints (and hard to code in HPC); memory issues in AD for time-dependent problems, etc.

- hyper parameter tuning
- black-box attacks, e.g., adversarial attacks on a model (attacker doesn’t have access to source code)
Recent theme of my work: exploit multi-fidelity models

- in applied math, for PDE simulations, we often have several physics based models (with different approximations), different

discretizations, different numerical precisions, reduced-order models, etc

- machine learning also has examples of multi-fidelity models
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COnteXt a Local methods ™

“zeroth order”: approximate V f(x) (e.g., w/ finite differences) . ;ﬂfk—l

High dimensions, | " .

low accuracy . stochastic zeroth order:  approximate g such that E[g] = Vf(x) | o @ o

__todaystalk ] .
* * . n . - o OLk+1
polling methods: Nelder-Mead, coordinate descent, etc. X X
o

\_ J
4 )

Global / model-based methods
polynomial model, minimize with a trust-region (“DFO-TR") T 1
O
. . -
Low dimensions, see our new paper “A Unified Framework for Entropy Search and @ g
hlgh aCcuracy Expected Improvement in BayeS|an Opt|m|zat|on N Cheng et al. ICI\/IL ‘25
Gaussuan process ‘model, use ach|S|t|on function to tradeoff exploratlon ® k1
| ' and exploitation (Bayesian Optimization”) i
the time spent in the optimization method (creating and solving surrogate models) 4 )

Misc. / heuristics
should equal /

the time spent in the function evaluation (e.g., solving the PDE, training neural net...) genetic algorithms, particle swarm,

CMA-ES, simulated annealing, etc.

. hence, the best method to use depends a lot on the problem. \- J

Stephen Becker (CU) Oth, 1st and 2nd order optimization methods for learning problems CRM Workshop: Optimization and learning: theory and applications 2025



A stochastic zeroth-order method: SSD

: + hq) —
Assume we can compute/approximate quVf(m) = (hm /(= 9) f(a:)> q

PR 7 e.g., finite differences, or forward-mode AutoDiff

directional derivative, “two-point” estimator in ZO literature

q' Vix)= Eg@(t) where ©(t) = f(x + tq)
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A stochastic zeroth-order method: SSD

, xr+ hqg) — f(x
Assume we can compute/approximate quVf(:L‘) = (}ILIE% S ;IL) /{ )> q

Even better, average a few copies to reduce variance

¢
QQ'Vf(x) =) qaq Vf(x) Q :g[(ha---aQE] Q'Q=1,., E (%QQT> Sy
i=1
1 Q
i = Q' |=
columns not independent! < Q il Q )
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A stochastic zeroth-order method: SSD

Assume we can compute/approximate quVf(w) — (hm

Even better, average a few copies to reduce variance

¢
d
QQ'Vf(x) =) a4 Vf(x) Q= la-al QQ=1I., E (ZQQT) 1.
i=1
1 Q
Algorithm: stochastic subspace descent (SSD) Q Q 2l Q ¢
Repeat:
Draw a @ ; O(¥) oracle calls - )
e T
v /néQQ VIHX) It's a type of “stochastic gradient method” (direction is unbiased)
- / 7 but has much stronger guarantees due to its structure
stepsize

e.g., the direction is descent direction with prob. 1 if Q) is continuous

Important: draw new (independent) @ every iteration
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A stochastic zeroth-order method: SSD

Assume we can compute/approximate qq' Vf(x) = (ﬁm )iff

Even better, average a few copies to reduce variance

Q=l|q,...,q/]

14
QQVf(x) = aal Vi@ QQ=1Iir. E(5QQ") = Luus
1=1

Equivalent formulation... and why we call it “SSD”"

Columns of @) form a basis for V

4 N\ Algorithm 1 Stochastic Subspace Descent (SSD)
Algorithm: stochastic subspace descent (SSD) Require: 7 > Stepsize
Repeat: Require: z, € R > Initial point
Draw a @ p O(¥) oracle calls l: for k=0,1,2,... do . .
cz—n20QTVf (X) 2: Choose subspace Vj of dimension ¢ < d
* /776 3: g;. < projy, (Vf(xk)) > Project onto subspace
. 7 ) 4: Lp+1 <~ Lk — NG
stepsize 5: end for
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SSD: context

Variants have been investigated for a long time much recent work on variants, 2011—2020 [and more since then!]
(" i o - * D. Leventhal and A.S. Lewis, Randomized Hessian estimation and directional search, Optimization (2011)
> “random gradlent , [Id ndom pu rsuit , *S. U. Stich, C. Muller, and B. Gartner, Optimization of convex functions with random pursuit, SIAM J. Opt. (2013)

i“oq- . M . Yu. Nesterov, Random gradient-free minimization of convex functions, '11 / Yu. Nesterov and V. Spokoiny, FoCM 2017
dlreCthnaI S€d rCh J randOm SearCh P. Dvurechensky, A. Gasnikov, and A. Tiurin, Randomized similar triangles method: A unifying framework for accelerated

* ¢ch 6, Yu. Ermoliev and R.J.-B. Wets, Numerical techniques for stochastic randomized optimization methods (coordinate descent, directional search, derivative-free method), arXiv:1707.08486

P. Dvurechensky, A. Gasnikov, and E. Gorbunov, An accelerated directional derivative method for smooth stochastic convex

optimization; arXiv:1804.02394

S. Ghadimi and G. Lan, Stochastic first- and zeroth-order methods for nonconvex stochastic programming, SIAM J. Opt.
minimization problems, Towards Global Optimisation, 1975. (2013)

* F.J. Solis and R. J-B. Wets. Minimization by random search techniques Math. of =~ R Chenand 5. Wild, Randomized derivative-free optimization of noisy convex functions, arXiv:1507.03332 (2015).
] * K. Choromanski, M. Rowland, V. Sindhwani, R. E. Turner, and A. Weller, Structured evolution with compact architectures for
Operations Research 6 (1981), no. 1, 19-30. (no rate) | N
scalable policy optimization, ICML, 2018.

g Matyas 1965, Polyak 1987 * T. Salimans, J. Ho, X. Chen, S. Sidor, and |. Sutskever, Evolution strategies as a scalable alternative to reinforcement learning,
arXiv:1703.03864 (2017).
J. Duchi, M. Jordan, M. Wainwright, A. Wibisono, Optimal Rates for Zero-Order Convex Optimization: The Power of Two
Function Evaluations, IEEE Trans Info Theory (2015)
A. S. Berahas, L. Cao, K. Choromanski, K. Scheinberg, A Theoretical and Empirical Comparison of Gradient Approximations
in Derivative-Free Optimization, arXiv 1905.01332 (2019)
F. Hanzely, K. Mishchenko, P. Richtarik, SEGA: Variance Reduction via Gradient Sketching, NeurlPS 2018
cousin of “direct search” methods, cf. S. Gratton, C. W. Royer, L. N. Vicente, Z. Zhang, Direct Search Based on Probabilistic
Descent, SIAM J. Opt. (2015)

optimization, Springer-Verlag, 1988.

~ M. Gaviano, Some general results on convergence of random search algorithms in

For recent results (2015-2025) on zeroth-order ML, see:

> “Zeroth-order Machine Learning” AAAI tutorial 2024
> Wotao Yin, Sijia Liu, Pin-Yu Chen
> https://sites.google.com /view/zo-tutorial-aaai-2024 /
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SSD: context

Variants have been investigated for a long time much recent work on variants, 2011—2020 [and more since then!]
y ) A - " D. Leventhal and A.S. Lewis,
* “random gradient”, “random pursuit”, - S. U. Stich, C. Muller, and B. Gartner,

" Yu. Nesterov, / Yu. Nesterov and V. Spokoiny,

directional search”, "random search * P. Dvurechensky, A. Gasnikov, and A. Tiurin,

~ ch 6, Yu. Ermoliev and R.J.-B. Wets, Numerical techniques for stochastic

optimization, Springer—VerIag, 1988 * P. Dvurechensky, A. Gasnikov, and E. Gorbunov,

" M. Gaviano, Some general results on convergence of random search algorithms in . ¢ < . . . Lan,

minimization problems, Towards Global Optimisation, 1975.

- F.J. Solis and R. J-B. Wets, Minimization by random search techniques, Math. of =~ R. Chenand 5. Wild,

Operat'ons Research 6 (1981) no. 1. 19-30 (I”IO rate) * K. Choromanski, M. Rowland, V. Sindhwani, R. E. Turner, and A. Weller, S

| : .1, —oV.
g I\/Iatyas 1965, Polyak 1987 * T. Salimans, J. Ho, X. Chen, S. Sidor, and |. Sutskever,
( \ *J. Duchi, M. Jordan, M. Wainwright, A. Wibisono,
MOSt |iteratu Fe focuses on f — 1 " A.S. Berahas, L. Cao, K. Choromanski, K. Scheinberg,
‘ q||2 p— ]_ * F. Hanzely, K. Mishchenko, P. Richtarik,

H . t . ” h 2 1 > cousin of “direct search” methods, cf. S. Gratton, C. W. Royer, L. N. Vicente, Z. Zhang,

oW IS ICa cnosen!t \ 1

4 HPIEaly lgq ' | = aIdxd

For recent results (2015-2025) on zeroth-order ML, see:

~ “Zeroth-order Machine Learning” AAAI tutorial 2024
or » Wotao Yin, Sijia Liu, Pin-Yu Chen

- canonical basis vector, g ~ unjform[eh Cel ed] * https://sites.google.com /view /zo-tutorial-aaai-2024 /

- spherical (or Gaussian, scaled appropriately)

(hence SSD reduces to randomized coordinate descent)

\_ J
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SSD: context

Variants have been investigated for a long time... much recent work on variants, 2011—2020 [and more since then!]

D 1 aovonibhal and A C | Avasic
“random gradient”
“directional cearc/ Most work has focused on a single directional derivative, ¢/ = 1 Nesterov and V. Spokoiny,
ch 6, Yu. Ermoliev ang 6000 I —©—Target accuracy 1e-03 100 dimensional quadratic
optimization, Springer; ——Target accuracy 1e-04 test problem, using

—+—Target accuracy 1e-05
—¥— Target accuracy 1e-06
—&—Target accuracy 1e-07

————___ |~%—Target accuracy 1e-08

M. Gaviano, Some ger| exact linesearch, averaged

Q1

-

-

o
I

minimization problems over 200 experiments

F.J. Solis and R. J-B.
Operations Research 6]
Matyas 1965, Polyak |

\

¢ =dis gradient descent,

fcn evaluations to reach target accuracy
S
o
o
0

sweet spc// and non-stochastic

3000 - e .
Most literature foc o , /

2000 - .

- — — -
How is g typicall ~ e
q yp y 1000 | | \J | I
0 20 40 60 80 100
More iterations, / Fewer iterations, rder ML’ see:

but each one costly

- spherical (or G

each one chea

o .. but the optimal c%oice may bel </ < d

- canonical basis vector, g ~ uniorim|ey, ..., &4 | TTTpSTY

(hence SSD reduces to randomized coordinate descent)
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Our first analysis

~

Gleorem (Kozak, Becker, Tenorio, Doostan '20)
Assume: minimizer attained, gradient Lipschitz, stepsize 1r chosen appropriately.

1. If fis convex, IT

g — f*<2-—R*=
f®e) = f7 =257 R

O(k™1)

2. If fis not necessarily convex but satisfies the Polyak-Lojasiewicz inequality,

Ef () — < p"(f(mo) = f*) = O(p")

3. If fis strongly convex, statements of 2 above hold, and also

a.s.

and f(xr) — [~

T, —> argmin_ f(x)

4. If fis not convex (nor PL),

< QQL(f(wo) — [7)
— ! k+1

V(@)

min D

k'€{0,....,k}

\_

Oth, 1st and 2nd order optimization methods for learning problems

Stephen Becker (CU)

-

(Generic SSD

Q'Q=1,,,

K”:dL

David Kozak

d = ambient dimension

¢ = #£ directional derivs

d
7 = 1 is gradient descent

1 is PL constant

L is gradient Lipschitz constant
l1

IS stepsize

~

J
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Our first analysis

Our analysis is comparable to analysis of similar algorithms

Assume f obtains its minimum and V f is L-Lipschitz continuous.

ﬁ[‘heorem 1 (Kozak, Becker, Tenorio, Doostan '19, Thm. 2.4). The SSD algorithm with stepsize \
N = %g grves
E f(xp) — f* < 2L g
(kK
where SSD
R=  sup inf ||z — 27|
7| ()< f(wo) & Cargminf 1<¢<d

ue.g., f is coercive = R < o0). -
ﬁ‘heorem 2 (Nesterov, Spokoiny ’17, Thm. 8). Take stepsize n = T di L then the random gradient

AN

method with a Gaussian direction converges as
k—1 .
1 4(d +4)L Gaussian
I Ef) - < Ny
i=0 /=1
Kwhe're x* 15 any optimal solution. J

convex, not necessarily strongly convex, scenario
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Our first analysis

Our analysis is comparable to analysis of similar algorithms

Assume f obtains its minimum, V f is L-Lipschitz continuous, and f is u PL or strongly convex.

ﬁheorem 3 (Kozak, Becker, Tenorio, Doostan 19, Cor. 2.3). The SSD algorithm with stepsize SSD \

n = %2 grves

. ¢ </(<

o E f(ay) = f* < 0" (flao) = ) with p=|1—-5=] b=f=d y
ﬁheorem 4 (Nesterov, Spokoiny 17, Thm. 8). Take stepsize n = 7 di L then the random gradient \

method with a Gaussian direction converges as

L, , L1 Gaussian
E - fF< < — " th p=|1
flzw) = 7 = Spillwo — 27| with p L3+ 1) S

\where x* 1s any optimal solution. /

strongly convex or PL scenario
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but that theory doesn't capture the full story

0 ————

103- coordinate descent Observation: sometimes SSD (With Haar) drastically

102 outperforms randomized coordinate descent (CD)

10!
10V
0~ 1 = 55D - Haar, /=10 Both of them are valid instantiations of SSD

- = SS5D -CD, /=10

-

Objective Function
o

So, the details of Q matter!

0 200 400
Function Evaluations

/Algorithm: “Haar” SSD A

Draw the random matrix @) as follows:
{q1,...,q/} a basis for span{qi,...,qe}  q; s N(0,T1)
(or any uniformly random subspace)

Satisfies

Q'Q=Iixi, E (%QQT> ~ Luxa

Equivalently, draw from the Haar distribution
\_ Y but goes even further.
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.. but that theory doesn't capture the full story

fixed stepsize

~

fVVe can force it to happen by making a
problem with low “intrinsic” dimension, e.g.,

Nesterov's “worst function in1 the world”
fr’_

Par(@) = A2 + ) (20 —wig1)” +27)/2 — 11) /4,

1=1 j

uhis has intrinsic dimension of r

SSD drastically outperforms

randomized coordinate descent (CD)

r=20£=3

dimension 1,000 dimension 10,000

coordinate descent

dimension 100

1.00: 1.0 1.0; :

coordinate descent

---- Gradient Descent
0.75 0.8: 0.9
- R, coordinate descerft —— 55D - Haar
0.50 e —— 0.6 >SD - CD 0.8: new method
0.25 e S new method 0.7 \\\
0.00L. ~ ------ I e o 0.2 . _ \“_ """"" : 0.6 ' _ _ _ \‘_
0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000

Function Evaluations Function Evaluations Function Evaluations
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4 )

d = ambient dimension

Recall..

Improved theory (specialized to SSD-Haar)

ké — # directional derivi

Tighter analysis using concentration-of-measure:

Lemma 2 (Johnson-Lindenstrauss style embedding, from Kozak, Becker, Tenorio 19, Lemma 1).
Ve € (0,1), if £ > €72, Q ~ Haar(d x £), then Y0 # g € R,

1 —€< é HQTQHQ <1+ w/ pTOb. 5> 0.8 Note: coordinate descent style projections
14 HgH2 do not have similar nice embedding properties
, S is 10 x 100, error |[(S'S — I)el|s
_ 1 Gaussian
coordinate sampling
1.5

Frequency

O
o

o
|

15
Errors
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e )

d = ambient dimension

Recall..

Improved theory (specialized to SSD-Haar)

¢ = # directional derivs

- J

Tighter analysis using concentration-of-measure:

Lemma 2 (Johnson-Lindenstrauss style embedding, from Kozak, Becker, Tenorio 19, Lemma 1).
Ve € (0,1), if £ > €2, Q ~ Haar(d x £), then V0 # g € RY,

T 112
47|

1 <
¢ lgl?

<14+¢€ w/ prob. 6 > 0.8

. in fact, we can have tight (dimension-dependent) bounds via standard probability facts

T 4112 B
Lemma Let Q ~ Haar(d x £), then Vg € R, % H?g\@ ~ Beta (g g 2 €>

and the CDF of the Beta distribution can be stably computed via the Beta function

E N
xample ;
: 0 = 99% 0 = 99.99%
-
Define 5~ (@79l > (1 - gl
¢ d / t/d / 0/d
1000 520 351.98% 755 T7547%
For an embedding of accuracy ¢ = 0.1 10,000 933 9.32% 2086 20.86%
100,000 1013 1.01% 2532  2.53%
1,000,000 1022  0.10% 2587  0.26%
10,000,000 1023  0.01% 2593  0.03%
\_ J
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Improved theory (specialized to SSD-Haar) -

Recall... R
d = ambient dimension
| | | \E — # directional derivi
Tighter analysis using cone- . F | | |
, I —99%, empirical, d=100
Lemma 2 (Johnson-Lj i || —99%. emgirica ' d=500
Ve e (0,1), if £ 2 e 2, ol | 99%, empirical, d=1000 _
— | ‘\ -------- 99%, theoretical bound, d=100
= T 99%, theoretical bound, d=500
o \ 99%, theoretical bound, d=1000
= 0.6 \\ —-—-99%, theoretical bound, d=1e+08 _
_in fact, we can have i ‘\\ --=-Dimensionless theoretical bound for 99%
E— \
Lemma Let Q ~ Ha | 0.47 1
A
| ——
and the CDF - S e e |

O | | | |
0 / 200 400 600 800 1000

Message: usual dimensionless Johnson-Lindenstrauss style results

are far from sharp in low dimensions (in fact, so loose that they can be meaningless)

\.  Only downside of tighter analysis is that we can’t write down a pretty formula y.

Stephen Becker (CU)
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Improved theory (specialized to SSD-Haar) [ R O

d = ambient dimension

\E — # directional derivs

Tighter analysis using concentration-of-measure: -

Lemma 2 (Johnson-Lindenstrauss style embedding, from Kozak, Becker, Tenorio 19, Lemma 1).
Ve € (0,1), if £ > €2, Q ~ Haar(d x £), then Y0 # g € R?,

T 112
)%

1 <
¢ lgl?

<1l4+¢€ w/ prob. 6 > 0.8

. in fact, we can have tight (dimension-dependent) bounds via standard probability facts

T 4112 B
Lemma Let @ ~ Haar(d x (), then Vg € R, % Hcﬁ TJQH e <§ - 2 €>
g

and the CDF of the Beta distribution can be stably computed via the Beta function

... and putting it all together

Theorem 3 (Kozak, Becker, Tenorio ’19, Thm. 1). If f is strongly convex and V f is Lipschitz

continuous, then for an appropriate stepsize ny, the sequence (xy) generated by SSD (with Q) ~
Haar), for k > 100, satisfies

Flop) — f* < (1+ (1 =)p)*2 (flxo) — f*)  with probability > 0.998,
where p < 1 depends on ¢, d and the Lipsch®z and strong convexity parameters.

due to possibility of failure of JL
error in JL embedding
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Extension: Variance Reduction
f /Qtrol variate

Algorithm SVRWG: Variance Rédl\lced SSD method, “VRSSD”
1: for k Az/lﬂ,/ ..do

> k is the “epoch”

2: 24 Vf(xg) > Expensive, but not done often
3: wo < Tk
4: fort=1,2,...,7T do > Typically T' = O(d)
5: Draw @) ~ Haar(d x ¢)

: _nl{200T _ 2007 _71) > '
6: Wit1 < Wy — N (EQQ V f(wy) — ag (KQQ I) z) > o, to be estimated

regular SSD term N _

7 Tht1 < WT 7

orthogonal projection
only use control variate in orthogonal subspace

(since we know gradient in main subspace)

Theorem 4 (Kozak, Becker, Tenorio, Doostan 2019; Thm. 2.7). If f is strongly convex and V f is
Lipschitz continuous, then for an appropriate stepsize ny, the sequence (xy) generated by VRSSD
converges almost surely to the (unique) minimizer of f and at a linear rate (the rate depends on n

d .
and ay) A We do not require the ERM structure!
J

\
fulx) ~ fla) - |
‘&enerlc (non-algorithmic) control variates
/control variate, coarse approximation, cheap to evaluate

Algorithm Proposed CoarWel variance reduced SSD/Random-Gradient

1: fork:1,2,...V

2: z < Vf(xr)
3: Draw @Q ~ Haar(d x ¢)

4 Tyl & Tk — Mk (%QQTVf(afk) T ag (%QQTZ B Z))

> Full coarse-grid gradient

@om the literature:
Algorithm SAGA (Defazio, Bach, Lacoste-Julien ’14) for solving the ERM model

1. Vi=1,....N, 20 = z4: store {Vfi(:v(i)) NV | in table
2: for k=1,2,... do

3: Draw j ~ Uniform([1,...,N])

4. Z % Z’fil sz(x(@))

5: Thtl < Tl — 1M (ij(a:k) — ij(a:(j)) + 5)
6 Re-define #1) +— 3, and update table with V f;(z())

> From table

our variant:

Algorithm SAGA-style Variance Reduced SSD method
1: Pre-compute z <— V f(xq)
2: for k=1,2,... do
3: Draw @) ~ Haar(p x r)
£ apn e o - ($QQTV f(wk) — $QQTE + 2)
5: Z4+ 24+ QQY(Vf(xy) —2z) v Update of z is low-memory, unlike original SAGA

Key idea: easy to do orthogonal projection

Stephen Becker (CU)

Oth, 1st and 2nd order optimization methods for learning problems

key: update control variate in the subspace

J

CRM Workshop: Optimization and learning: theory and applications 2025



r = 20, /=3 Gesterov's “worst function in the world" \

Extension: stepsize selection et
far(@) = M(@3 + D (@i = wi41)* +22)/2 = 21) /4,

1=1

uhis has intrinsic dimension of r J

dimension 100 dimension 1,000 dimension 10,000

coordinate descent

1.00: 1.0 1.0: _
) coordinate descent
N --=-- @Gradient Descent
N | g 0.9
:!)- 0.75 0.8 ——— SSD - Haar
2 0.50; 0.6 55D - CD 0.8: new method
Q
> 4 ‘ S
“= 0.25 0.4 S new method 0.7 e
0.00L. ‘ ~~~~~~ T 0.2 ' _ \-" “““““ : 0.6 ' _ _ ' \\"
0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000
Function Evaluations Function Evaluations Function Evaluations

Recall previous example
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Extension: stepsize selection

fixed stepsize

linesearch

1.00:

0.75:

0.50:

0.25;

0.00:

dimension 100

\~§
‘._-
-—----—_--
S—

T————

0O 2500 5000 7500 10000
Function Evaluations

- —
e
-
\ﬁ--\-
—\
-
-~

" -

new method .

T

0 25‘(_)0 5000 75'0(_) 10000
Function Evaluations

r=20, =23

Far(x) = )‘((x%

uhis has intrinsic dimension of r

Gesterov's “worst function in the world”

r—1

Z (CL‘z — il?z'+1)2

1=1

dimension 1,000

coordinate descent

1.0:

0.8

0.6

--=-- @Gradient Descent
—— SSD - Haar
—— SSD -CD

new method

\\
—~
- o
T

—
-‘~-
—
~—
---

0

2500 5000 7500 10000
Function Evaluations

-

0 25*(_)0 5000 75’0(_) 10000
Function Evaluations

dimension 10,000

1.0

0.9;

0.8

0.7

0.6

coordinate descent
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0

2500 5000 7500 10000
Function Evaluations

new method i

-

0 25’(_)0 5000 75'0(_) 10000
Function Evaluations
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r =20, { =23 ﬁ\lesterov s “worst function in the world

r—1

‘ Working hypothesis: SSD-Haar nicely exploits low-dimensional structure... J
s . if we have an aggressive stepsize )
1.00; 1
| So the main question is, how to choose the stepsize?
0.751 |
1 :
0.50] ! For DFO/0th order methods, line search traditionally considered too expensive :
(perhaps conventional wisdom is wrong) |
0.25{ N\ 3 =
0.00L. ,\ We'll provide two proposals: | e
0 2500 00 10000
Functio itions
100 (1) Polyak stepsize E
1 e
1071 N\~ |
10-2 (2) line search on surrogate created from low-fidelity model
3 rows with dimension!
10—3. J
10~4
107>
0 2500 5000 U TOUUT O SU00 O TOUUT po™sU00 7500 10000
Function Evaluations Functlon Evaluations Functlon Evaluations
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Joint project with Killian Wood,

Stepsize selection: Polyak stepsize Drons Khurans

Golyak stepsize for gradient descent (1983) \

Recently revisited a lot in literature

77Polya,k _ f(mk) o f* f* — ma%nf(w)
: IV f(ze)|?

Polyak
K Tpt1 =Tk — 1, - Vf(xk) )
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Stepsize selection: Polyak stepsize

Inspired by recent analysis in literature

Golyak stepsize for gradient descent (1983) \ fOur extension to SSD case: \

Recently revisited a lot in literature
o _ J @)~ £ £+ = min f(@) s - S I = g T
" IV f(ze)|? :
Polyak Polyak-SSD T
K Tpr1 =T — N, ° V[f(xk) ) \ Tpi1 = Tk — 1), QQ Vf(xy) J
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Stepsize selection: Polyak stepsize

Inspired by recent analysis in literature

Polyak stepsize for gradient descent (1983) Our extension to SSD case:
Recently revisited a lot in literature
* * .
" o Polyak-SSD flxr) — f fr=  min f(x
nPolyak - f(mk) o f f o ma%nf(a:) 77k0 o : HQva( I;HZ ) TE{@p }+colQ ( )
k o 2 Lk
|V f(xw)]]
- Polyak - Polyak-SSD T
Tyl = T — 1), V f(xg) Tpi1 = Tk — 1), QQ Vf(xk)
Quadratic Rosenbrock Ackley
SSD : — D, | 10° [ — D
102 - ms SSD Polyak : mms SSD Polyak
= d = 100, ¢ =10 d = 500, ¢ =15 1071 15
= 2 101! 5 ]
: 102
% 100 - Powell Conjugate Directions o
’_L 10—3: 24 SD P.)iyalK T : |
g ' x = 1073
L~ < L~
101
10~ : 107 4
Powell's BOBYQA| 10723 ]
- E SSID Polyak '
| m—SSD ] 107
s _:_: er;:ggak 10-3’; Powell Conjugate Directions 1964
: ', : ‘ T T T -6
0 1000 2000 3000 4000 5000 6000 7000 0 2500 5000 7500 10000 12500 15000 17500 10 0 2000 4000 6000 8000 10000 12000
# calls # calls # calls

Works fine in practice, our analysis is ongoing
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Joint project with Nuojin (Noki) Cheng

Stepsize selection: bifidelity surrogate (Google
\ ideally would do line search

C on this but too expensive

gr = QQ "V f(x) /

*

n* = argming(n)  o(n) = f(zr —ngs)

kmk—l—l =T, — 17 gk J

lassic exact linesearch

i : : : low
Premise: suppose we have a cheap, inaccurate approximation [

data (function evaluations) surrogate model
* L .
Expensive o(n) = flzr —ngy,) {¢(0), p(Nmax) } " = argmin ()
co-kriging (1D) —> (n) > traditional line search
Inaccurate SOIOW(U) def flOW(mk —ng,) {Splovv(ni) ?21 on surrogate model

(computationally “free”)
e.g., calibrate low-fidelity model

Convergence analysis in our preprint “Stochastic Subspace Descent Accelerated via Bi-fidelity Line Search”
arxiv.org/abs/2505.00162, Nuojin Chen, Alireza Doostan, Stephen Becker
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ML bifidelity example 1 Context;

- black-box model

. . ! . low : : :
Premise: suppose we have a cheap, inaccurate approximation [ - high-dimensional, low accuracy

Example: black-box adversarial attack Carlini & Wagner "17, black-box extension Chen et al. 17

For a given sample, find a small perturbation such that the machine learning algorithm misclassifies it

particular training example

(features and true label)

// switching to ML notation!

mein _f(:ross—elrltropy(g(w]L - 6)7 yT) T THGHQ
« +—

——— encourages small perturbation

\

model output: vector with probability of different classes

yT “panda” noise Y “gibbon’

57.7% confidence 99.3% confidence

Image source: Explaining and Harnessing Adversarial Examples, Goodfellow et al, ICLR 2015
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ML bifidelity example 1 Context;

- black-box model

. . ! . low : : :
Premise: suppose we have a cheap, inaccurate approximation [ - high-dimensional, low accuracy

Example: black-box adversarial attack

For a given sample, find a small perturbation such that the machine learning algorithm misclassifies it

particular training example

(features and true label)

min _fcross—ent1"Opy(g(m]L T E)a yT) T THEHQ

€ .
encourages small perturbation

MNIST is 28 x 28 images so d = 784
model output: vector with probability of different classes

Train two models on MNIST data: (60k training, 10k test)

(f is output of large model, trained conventionally A
convolution (32 filters) -> convolution (64 filters) -> 119x larger
max-pooling/flatten, fully connected (1024 neurons) Large model Small model
-> 10 class output. RelLU activation, 5x5 kernels # arameters 3 274 634 27 562
\_ ) P : : :
~ R Test Accuracy  99.02% 82.21%
£°% is output of small model
trained not on MNIST but on output of large model
(knowledge distillation), 1000 samples In some scenarios, small model
convolution (2 filters) -> max-pooling/flatten, fully connected (16 neurons) IS not just cheap but “free”
\ -> 10 class output. RelLU activation, 2x3 kernels .
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ML bifidelity example 1: Results # HF fun calls: 2000 5000 7000
Test Case 1 AT T, S

mes - GD 1 €
CD
FS-SSD
SPSA
GS
HF-SSD
BF-SSD
VR-SSD _ SPSA

¢ =50

\ BF-SSD starts at 1000 GD (Gradient Descent)

HF Function value

0 1000 2000 3000 4000 5000 6000 7000
Equivalent HF Function Calls

(d) BF-SSD (Label=5, Predict=6)
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ML bifidelity example 2 Context;

- black-box model

. . ! . low : : :
Premise: suppose we have a cheap, inaccurate approximation [ - high-dimensional, low accuracy

Example: soft prompting black-box LLM
We want to fine-tune a LLM like BERT or GPT

Instead of modifying network, lightweight alternative is to learn embeddings that are prepended to input sequence
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ML bifidelity example 2 Context:

- black-box model

. . ! . low : : :
Premise: suppose we have a cheap, inaccurate approximation [ - high-dimensional, low accuracy

Example: soft prompting black-box LLM
We want to fine-tune a LLM like BERT or GPT

Instead of modifying network, lightweight alternative is to learn embeddings that are

Task: binary sentiment analysis (classify a movie review as positive or negative)

froken : Str — REt*4  tokenizer converts strings of any length to an embedding

Pretrained: { f.:RL+*d 5[0, 1]  classifier (we use small Dist11BERT, small version of BERT) =784

transformer

(z,y) € str x {0,1}  data from ac1IMDB database
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ML bifidelity example 2 Context:

- black-box model

. . ! . low : : :
Premise: suppose we have a cheap, inaccurate approximation [ - high-dimensional, low accuracy

Example: soft prompting black-box LLM
We want to fine-tune a LLM like BERT or GPT

Instead of modifying network, lightweight alternative is to learn embeddings that are prepended to input sequence

Task: binary sentiment analysis (classify a movie review as positive or negative)
froken : Str — REt*4  tokenizer converts strings of any length to an embedding

Pretrained: < f.: R™*% — [0, 1] classifier (we use small D1st1 1BERT, small version of BERT)

(z,y) € str x {0,1}  data from ac1IMDB database

cross-entropy loss

. /
[ x* € argmin 4:(z,y) [C.E(fc(cat[w, ftoken(z)])v y)])

xrcR A

\ risk, replaced by empirical risk for training

< 10
F(2) = 55 3 CB(fuleat(, fuoken(z0)), )
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ML bifidelity example 2 Context:

- black-box model

. . ! . low : : :
Premise: suppose we have a cheap, inaccurate approximation [ - high-dimensional, low accuracy

Example: soft prompting black-box LLM
We want to fine-tune a LLM like BERT or GPT

Instead of modifying network, lightweight alternative is to learn embeddings that are prepended to input sequence

Task: binary sentiment analysis (classify a movie review as positive or negative)
froken : Str — REt*4  tokenizer converts strings of any length to an embedding

Pretrained: < f.: R™*% — [0, 1] classifier (we use small D1st1 1BERT, small version of BERT)

(z,y) € str x {0,1}  data from ac1IMDB database

cross-entropy loss

. /
[ x* € argmin 4:(z,y) [C.E(fc(cat[w, ftoken(z)])v y)])

xrcRd

f uses a sample size of 10  High-Fidelity A

1 : g
f o Uses a sample size of 2 LOW—FIde|Ity \ risk, replaced by empirical risk for training

< 10
F(2) = 55 3 CB(fuleat(, fuoken(z0)), )
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ML bifidelity example 2: Results

6.825 x 1071 -
[O)
E ‘.
S 6.824 x 1071 -
>
g Spall's SPSA
o o -1
t; 6.823 x 10 HF-SSD uses
g “perfect” linesearch
"= 6.822x107!-
—
LL
I
~  6.821x 1071 { === GD
é’ s CD
o 6.82 x 10°L - FS-55D BF-SSD
= | s SPSA
o  819%x10°1{ - HF-SSD
L v BF-SSD ¢ = 50

] VR— D
6.818 x 107! - 55
0 200 400 600 800 1000 1200 1400 1600

Equivalent High-Fidelity (HF) function calls
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Joint project with Cooper Simpson (U Washington) ,

Part 2: 2nd order methods

Learning objectives of this talk

» Oth order optimization / “derivative-free optimization”
® |ntroduce a class of Oth order optimization methods
* Argue that stepsize selection is a key issue

* Show some ML examples where these methods make sense

® 2nd order optimization
® Introduce a variant of Newton's method
® Demonstrate why non-convexity has to be taken more seriously

® Argue that linear algebra is a key issue

Stephen Becker (CU) Oth, 1st and 2nd order optimization methods for learning problems



2nd Order methOdS fOr maCh|ne |earning K Example: knowledge distillation \

or sketching
(to enable streaming training)
with Implicit Neural Representation

like SIRENs, NeRF..

joint with C. Simpson, A. Doostan

Traditionally, 2nd order methods not considered for ML tasks like training neural nets:

® for models with billions of parameters, the linear algebra per step is too expensive

® harder (not impossible) to do standard ML tricks like mini batch sampling Hypernet

® sometimes perceived as converging to less desirable solutions (less generalizability??)

Target INR

... but they have their place:
Criginal Reconstructed

® quasi-Newton variants are common for training physics-informed neural networks

® there are plenty of tasks that are smaller
® e.g., knowledge distillation of many small networks

 for compression tasks, neural networks must be small (by design)

(a) Streamwise velocity INR reconstruction at 0.94% relative
error and 42.1dB PSNR at 1,982x compression rate.

CRM Workshop: Optimization and learning: theory and applications 2025
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2nd order min ()
p - (N 's method A
rototype: ewton's metho .. but Newton's method need not converge, or for non
—1 2
\fl? «—x—nH "Vf(x) where H=YV f(a:)) convex problems, may converge to the wrong point
1 2, 2y, 2
K non convex example flz,y) = 9 (932 — 92) e WY o
initial point

Zo, yo| = [.3,.1]

A
' /
o

/ “s‘:; 517
'(
““‘41./' \
SN /'@WN \\t /
TR O‘\‘ \’&M(\\\f &
AKX
\ ‘\(\\/’\’A‘// \

% XS XN YA
QLK ‘«\s\,'/!/

N\

b
(RS

.. converges to a local max!

initial point

® Gradient Descent
B Newton's Method

.. converges to a saddle point

thanks to Michael McCabe for assistance with graphicj
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2nd order method: Saddle-Free Newton

Prototype: 'Newton’s method A )E)l )(\)
2
r+—x—nH 'Vi(x) where H = V?f(x) H=V|. . v’
N J : 0
. . 0 A,
How to prevent convergence to bad stationary points? - -
In addition to a line search, a common strategy is to|replace H with |H | |0 -
.
0 |Aq] N
Sometimes called “Saddle-Free Newton" (SFN) H|=V| S |4
_ 0 [Anl.

It's a heuristic, and simpler/cheaper than a proper* treatment of nonconvexity

* e.g., trust-region methods or cubic regularization

Research question: can we modify SFN to make it work well,

and analyze rigorously as well? Can we quantify how it avoids saddle points?

See "ldentifying and attacking the saddle point problem in high-dimensional non-convex optimization", by Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio (NIPS 2014)
and Nocedal and Wright (2004)
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https://www.google.com/url?q=https%3A%2F%2Farxiv.org%2Fabs%2F1406.2572

Our proposed method: Regularized Saddle-Free Newton (RSFN)

H = V*f(x)
s B |
Newton <« %m—nH_1Vf(:B) | 2!

_ Y |
~ A : g bl

1 (Z - 1) g

Saddle-Free Newton x <+ x—n|H| "V f(x) | B
\_ _J
1 0 1 2 3 & 5 6 7/2
( 1 h b 1 ‘
Regularized Saddle-Free Newton < x —n(H”+XI) >V f(x)| since |H|= >l\in% (H” +\I)*

. y K

why regularize? easier linear algebra (smoother) and needed for analysis
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Our method (and context

—

Method H n A Global Convergence Non-convex Fast Impl. Comments
Newton Vif(x) 1 0 X — v —
Reg. Newton [3], [5] VZ?f(x) + Al 1 VM|V f(x)] v X v o
AICN [4] Vif(x) s el 0 v X v G is a local smoothness constant
SFN [2] Vif(x) (0,1] 0 X v X —
LRSFN [7] Vaf(x)| + Al 0,1 0, 1 X v v Rank-r approximation
r y L )
Cubic Newton [6, 1]  V2f(x) + AI 1 M||x — x| v v v Requires solving complicated sub-problem
NCN [8] }VQ f(x) ‘m 1 0 v v X Small eigenvalues replaced by m, requires complex perturbations
1/2
2 . .
RSFN (Ours) ((VQf(az)) + )\I) (0, 00) M|V f(x)] v v v Linesearch when M is unknown
[1] Coralia Cartis, Nicholas IM Gould, and Philippe L Toint. “Adaptive cubic regularisation methods for uncon-
strained optimization. Part I: motivation, convergence and numerical results”. In: Mathematical Programming
127.2 (2011), pp. 245-295.
[2] Yann N Dauphin et al. “Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization”. In: Advances in neural information processing systems 27 (2014).
/H-\_ 1 v [3] Nikita Doikov and Yurii Nesterov. “Gradient regularization of Newton method with Bregman distances”. In:
L < L — 77 f (w) Mathematical Programming (2023), pp. 1-25.
[4] Slavomir Hanzely et al. “A Damped Newton Method Achieves Global O(1/k?) and Local Quadratic Conver-
gence Rate”. In: Advances in Neural Information Processing Systems 35 (2022), pp. 25320-25334.
[5] Konstantin Mishchenko. “Regularized Newton Method with Global O(1/k?) Convergence”. In: SIAM Journal
on Optimization 33.3 (2023), pp. 1440-1462.
[6] Yurii Nesterov and B.T. Polyak. “Cubic Regularization of Newton Method and its Globabl Performance”. In:
Mathematical Programming 108.1 (2006), pp. 177-205. DOI1: 10.1007/s10107-006-0706-8.
[7] Thomas O’Leary-Roseberry, Nick Alger, and Omar Ghattas. “Low rank saddle free Newton: A scalable method
for stochastic nonconvex optimization™. In: arXiv (2020). DOI: 10.48550/arXiv.2002.02881.
[8] Santiago Paternain, Aryan Mokhtari, and Alejandro Ribeiro. “A Newton-based method for nonconvex optimiza-
M is the Hessian Li pSCh itz constant tion with fast evasion of saddle points™. In: SIAM Journal on Optimization 29.1 (2019), pp. 343-368.
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Theory results: it avoids saddle points s
Definition: Strict Saddle Point "'z""z""““\“
\./‘

A strict saddle point «x is a critical point, i.e.,Vf(x) = 0 , where there is at least one direction of negative curvatu ‘

so the smallest eigenvalue of V f%(x) is strictly less than 0.
\

If all saddle points are strict, then all second-order stationary points are local minima

(Theorem: Saddle Avoidance )

Under some assumptions, the RSFN iteration avoids strict saddle points with probability 1, assuming the initial point

is chosen randomly according to any absolutely continuous distribution
\— 4

Proof sketch:
At a strict saddle point, fixed point map is a local diffeomorphism and has at least one eigenvalue strictly larger than 1
Use stable manifold theorem to guarantee not converging to any particular strict saddle (i.e., probability 0)

Use Lindelof's lemma to guarantee countable set of manifolds covering all such manifolds

(and measure of countable union of measure zero sets is zero)
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Theory results: it converges

~

Theorem: Global Convergence

Under some assumptions, the RSFN iteration converges to a first-order stationary point

\—
~

Theorem: Convex Convergence Rate

 \___

Under some assumptions, the RSFN iteration converges to an e-optimal point in O(v/¢) iterations

~

~

nder some assumptions, the RSFN iteration will converge super-linearly in the neighborhood of a second-order stationary point

W

heorem: Local Super-Linear Convergence

c
U
\—
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Computing the Newton step

Solve (HZ+ )™ /% g where H = V2f(x)

We do this “matrix free”

Oracle: Hessian Vector Product (HVP)

v— Ho

e, Vif(x)v=—o(t) where ¢ :R! - R” so this can be done efficiently via automatic differentiation

p(t) = Vf(z +iv)

Dagréou, Ablin, Vaiter, Moreau '24: https://iclr-blogposts.github.io /2024 /blog/bench-hvp/

Forward-over-reverse, reverse-over-reverse, reverse-over-forward

Long history of “matrix-free” Newton, “Newton-CG",

“Newton-Krylov"”, “inexact Newton"”, etc.

Good (and constantly improving) implementations exist in Python (PyTorch /jax), julia, ..
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Method 1: Shifted Lanczos Quadrature

(H2 . )\I)_l/Qg _ %/OO ((t2 X )\) I H2)_1g 4¢  Via Cauchy integral representation
0

cf. N. Higham, Functions of matrices: theory and computation (SIAM, 2008)

comment: Newton-Schulz (cf. N. Higham) doesn’t seem to be applicable
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Method 1: Shifted Lanczos Quadrature

1 2 . . .
(HQ 4 )\I / _~ / t2 4 )\ I+ H2) g dt via Cauchy integral representation
cf. N. Higham, Functions of matrices: theory and computation (SIAM, 2008)

1 -1
Solve via quadrature rule, like Gauss-Laguerre; or, make Cayley transformation s = 61 7

/ 1
(20 g =20 [ ) (- 8+ o )T () B?) g
70 ] N ———
w(s)

and use Gauss-Chebyshev weights (of the first kind), with standard nodes and weights s;,w; Vi=1,..., N

(want weights non-negative to guarantee descent direction)
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Method 1: Shifted Lanczos Quadrature

(H2 4 )\I)_1/2g _ 3 /OO ((t2 4 )\) I+ H2)_1g di Via Cauchy integral representation
0

T cf. N. Higham, Functions of matrices: theory and computation (SIAM, 2008)

1 —1
Solve via quadrature rule, like Gauss-Laguerre; or, make Cayley transformation s = —5—1 n

/2 ol
(B2 40) g = 2 [ 192149 (- )5+ )T (1)) g ds
70 ] —
w(s)

and use Gauss-Chebyshev weights (of the first kind), with standard nodes and weights s;,w; Vi=1,..., N

(want weights non-negative to guarantee descent direction)

Setting (i = (A — B)s; + (A + B) gives

(- )
_ 281/2 X _
(H” + A\I) 1/29 ~ b wi (I + (14 s;)H?) ! g We have a sequence of shifted matrices, so can re-use computations!
(s .
- =1 // y Ki(H,v) = span {’U,H’U,H2’v,...,Hk_1’U}
solve with Krylov-subspace method Shift invariance of subspaces:

Kk(SH + /LI,’U) — ]Ck(Hav)

Use Krylov. 1 (Montoison and Orban), inspired by Dussault, Migot and Orban's ARC code
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Method 2: Nystrom sketching / randomized linear algebra

Step 1: draw random matrix Q€ R%*P p >  orthonormal columns, isotropic column space
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Method 2: Nystrom sketching / randomized linear algebra

Step 1: draw random matrix Q€ R%*P p >  orthonormal columns, isotropic column space

Step 2: compute sketch Y = HO via p HVPs
Step 3: linear algebra HY =Y (QTY)Jr Y (careful numerical
nostprocessing o — HﬁNySH implementation not shown)
_ __ ~1/2
(H2+)\I) UZg%(H?—FAI) g

cheap

cf. Tropp, Yurtsever, Udell, Cevher '17
(and Frangella, Rathore, Zhao, Martinsson...)

Downside: approximates Hessian only, ignores RHS

Hybrid variant: use this as preconditioner for Krylov subspace based method g1thub.com/tjdiamandis/RandomizedPreconditioners.]|

CRM Workshop: Optimization and learning: theory and applications 2025
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Method 3: Lanczos Function Approximation

The Lanczos algorithm builds a tridiagonal approximation of a symmetric matrix using matrix-vector multiplies

closely related to

- T : : -
H ~ Q.T.0Q)., most commonly used to find eigenvalue decompositions . .
conjugate gradient
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Method 3: Lanczos Function Approximation

The Lanczos algorithm builds a tridiagonal approximation of a symmetric matrix using matrix-vector multiplies

closely related to

H~ Q,T,Q. ind ei Iti
QrT:Q), most commonly used to find eigenvalue decompositions conjugate gradient

We want to apply this function spectrally f(z) = (2% + )\)_1/2

So our approximation is (H? + )\I)_l/2 g~ Quf(Th)Qrg

$

f(Ty) done via eigenvalue decomposition of T}.(cheap, since tri-diagonal)

Of all 3 methods, this gives us the best results
— possibly related to avoiding squaring the condition number?

We have some preliminary theory to suggest accuracy is similar to that of solving equation (with Lanczos)

cf. recent work by Chen, Tyler, Amsel, Greenbaum, Musco, Musco
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Experiments: Rosenbrock

d—1
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2.0 >
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Y10 =
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DO .‘_.-"’ -5
’\\\ e~ -1.0

-15
https://en.wikipedia.org/wiki/File:Rosenbrock_function.svg

Results: RSFN usually similar to ARC and SFN

Code: Julia package
https://github.com/rs-coop/QuasiNewton.jl

and experiment code at .../rs-coop/R-SFN

10

10—10

d = 100

SEN
(heuristic)
SFN
R-SFN (heuristic)
Newton (Line-search) Newton
ARC R-SFN
SFN (Fixed Rank) ARC
SFN (Adaptive Rank)
R-SFN (Fixed Rank)
R-SFN (Adaptive Rank)
| | I | | |
0 50 100 150 200 550

lteration

ARC implementation modified from:

Jean-Pierre Dussault, Tangi Migot, and Dominique Orban. “Scalable adaptive cubic regularization methods”.
In: Mathematical Programming (2023), pp. 1-35.
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https://github.com/rs-coop/QuasiNewton.jl

Michalewicz Function

Experiments: Michalewicz function

d 9
’L"I; , . . .
Z sin(z s1n20 ( z) Very non convex, d! local minima 3 M}Tm ' ” Wﬂf f;
=1 " q}f%{ﬂm{fr{rﬂfm:m:f”””! '
Sometimes we do much better than ARC
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Appropriate subset of CUTEst test suite performance profile

Quantity: relative distance to best minimum

1.00
wn
-
% 0.75
Results: ARC is usually a little better O
(depending on the exact metric) &
but RSFN is comparable ©
C 0.50
@
S
-
@
O
Performance Profile (Time) 8
a 0.25 SFN (Adaptive Rank)
1.00 | SFN (Fixed Rank)
ARC
e - R-SFN (Fixed Rank)
Loorst R-SFN (Adaptive Rank)
§ 0.00 ' ' '
S oso ) 20 220 240 260
s Within this factor of the best (log scale)
ne_ 0.25 SFN (Adaptive Rank)
SFN (Fixed Rank)
ARC
R-SFN (Fixed Rank)
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0.00 . : : .
20 25 210 215 220
Within this factor of the best (log scale) CUTEst.jl: Julia’s CUTEst interface. https://github.com/JuliaSmoothOptimizers/CUTEst.jl
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Conclusion

® Oth and 2nd order methods have their roles
® stepsize selection (and/or line search) is important

® multi fidelity is useful

Code: Julia package

https://github.com/rs-coop/QuasiNewton.jl
and experiment code at .../rs-coop/R-SFN
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