Geometry and physics Analysis and physics Triangle groups Elliptic Identity Hyperbolic Warp or not?

Black holes and warp travel

Julie Rowlett (with K. Fedosova & G. Zhang)

May 17, 2024 Analyse de singularités géométriques

Julie Rowlett (with K. Fedosova & G. Zhang) Black holes and warp travel Triangle grou

ps Elliptic Id

lentity Hyperbolic

Warp or not?

What's your favorite Star Trek? Please go to menti.com and enter code 5404 0478.

- Movie or series or character(s)?
- Enter never seen if you have never seen Star Trek. (really???)

Julie Rowlett (with K. Fedosova & G. Zhang) Black holes and warp travel

Geometry and physics Analysis and physics Triangle groups Elliptic Identity Hyperbolic

Hyperbolic orbifold surface

- Let Γ be a discrete subgroup.
- Quotient space $X = \Gamma \setminus \mathbb{H}$ is our hyperbolic orbifold surface.
- Assume X is compact.

Geometry and physics 00●0000			

Engage!

Theorem (Selberg)

If spacetime is a hyperbolic orbifold surface that is compact and smooth, then warp travel is possible.

Julie Rowlett (with K. Fedosova & G. Zhang) Black holes and warp travel

Good things come in 3s

- Since X is compact, the group Γ may have three types of elements.
- The identity element.
- Hyperbolic elements.
- Elliptic elements.

Hyperbolic elements and closed geodesics

• $P \in \Gamma$ is hyperbolic if it is $PSL_2(\mathbb{R})$ -conjugate to

Geometry and physics Analysis and physics Triangle groups Elliptic Identity Hyperbolic

$$egin{pmatrix} \mathsf{a}(P) & 0 \ 0 & \mathsf{a}(P)^{-1} \end{pmatrix}, \quad 1 < \mathsf{a}(P). \end{cases}$$

- *P* gives rise to a closed geodesic in $\Gamma \setminus \mathbb{H}$ with length $\ell_P = \log (|a(P)|^2)$.
- Largest k such that $P = P_0^k$ for some $P_0 \in \Gamma$; if k = 1, $P = P_0$ is a primitive hyperbolic element.
- Set of Γ-conjugacy classes of all hyperbolic elements, respectively primitive hyperbolic elements, by {P}, respectively {P}_p.

000000

Geometry and physics Analysis and physics Triangle groups Elliptic Identity Hyperbolic Warp or not?

Elliptic elements

- $R \in \Gamma$, is *elliptic* if it is of finite order (and not the identity).
- Any cyclic subgroup, \mathcal{R} of finite order in Γ is generated by a *primitive elliptic element* R_0 of order $m_{\mathcal{R}} \in \mathbb{N}$.
- This element be chosen in $\mathrm{PSL}_2(\mathbb{R})$ to be conjugate to

$$egin{pmatrix} \cos(\pi/m_{\mathcal{R}}) & -\sin(\pi/m_{\mathcal{R}}) \ \sin(\pi/m_{\mathcal{R}}) & \cos(\pi/m_{\mathcal{R}}) \end{pmatrix}$$

- The angle, $\theta_{\mathcal{R}} = \pi/m_{\mathcal{R}}$, is the smallest positive angle among all such angles determined by the elements of the group generated by R_0 .
- The set of all primitive elliptic elements of Γ is $\{\mathcal{R}\}_p$.

- If Γ has elliptic elements, then X has conical singularities.
- Cosmic strings and Schwarzschild black holes.
- These could make warp travel impossible.

Julie Rowlett (with K. Fedosova & G. Zhang)

Black holes and warp travel

Geometry and physics

Eigenvalues and spectrum

- X inherits the hyperbolic Riemannian metric.
- Laplace eigenfunctions $u \in H^2(X)$ and eigenvalues $\lambda \in \mathbb{C}$

$$\Delta u(x,y) = \lambda u(x,y), \quad \Delta = -y^2 (\partial_x^2 + \partial_y^2),$$

such that $u(\gamma z) = u(z)$ for all $z \in \mathbb{H}$, $\gamma \in \Gamma$.

• $0 = \lambda_0 < \lambda_1 \leq \cdots \nearrow \infty$, with λ_n on the order of n.

The set of all eigenvalues is the spectrum.

Casimir energy

Julie Rowlett (with K. Fedosova & G. Zhang)

Mathematically...

Casimir energy is calculated through the spectral zeta function

$$\zeta(s) := \sum_{n \ge 1} \lambda_n^{-s},$$

- Casimir energy is $\zeta(-1/2)$.
- What's wrong with this? (Please answer in menti.com 5404 0478)

Reformulation of the spectral zeta function

Theorem (K. Fedosova, JR & G. Zhang 2024)

For $s \in \mathbb{C} \setminus \mathbb{N}_{>1}$

$$\begin{aligned} \zeta(s) &= \frac{\operatorname{vol}(\Gamma \setminus \mathbb{H})}{8(s-1)} 4^s \pi^{s-1} \Gamma(2-s) \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(n+1)(-1)^k}{2^{n+3/2+s}} \binom{n}{k} \\ &\times \frac{\mathbf{K}_{3/2-s}(\pi + \pi k)}{(1+k)^{3/2-s}} \\ &+ \dots \end{aligned}$$

Julie Rowlett (with K. Fedosova & G. Zhang)

Analysis and physics			

Continued

Theorem (continued)

$$+\frac{(4\pi)^{-1/2}}{\Gamma(s)}\sum_{\{\mathcal{P}\}_{\rho}}\sum_{n=1}^{\infty} (\ell_{\gamma}/n)^{1/2} \operatorname{csch}(\frac{n\ell_{\gamma}}{2})(n\ell_{\gamma})^{s} \mathcal{K}_{1/2-s}(\frac{n\ell_{\gamma}}{2}).$$

$$+\sum_{\{\mathcal{R}\}_{p}}\sum_{\ell=1}^{m_{\mathcal{R}}-1}\frac{2^{s-5/2}\sqrt{\pi}\Gamma(1-s)}{m_{\mathcal{R}}\sin(\frac{\pi\ell}{m_{\mathcal{R}}})}\sum_{n=0}^{\infty}2^{-n-1}\sum_{k=0}^{n}\binom{n}{k}\times\frac{(-1)^{k}\boldsymbol{K}_{-s+1/2}(\frac{\pi\ell}{m_{\mathcal{R}}}+\pi k)}{(\frac{\pi\ell}{m_{\mathcal{R}}}+\pi k)^{-s+1/2}}$$

Julie Rowlett (with K. Fedosova & G. Zhang)

Consequences

- ζ extends meromorphically to C with a single simple pole at 1. (Removable singularities at N≥2.)
- \blacksquare The Casimir energy is $\zeta(-1/2)$ is well defined and equals

$$\frac{\operatorname{vol}(\Gamma \setminus \mathbb{H})}{\pi} \sum_{n=0}^{\infty} \frac{n+1}{2^{n+6}} \sum_{k=0}^{n} (-1)^{k+1} \binom{n}{k} \frac{\mathbf{K}_2 \left[\pi (1+k)\right]}{(1+k)^2}$$

$$-\frac{1}{4\pi}\sum_{\{\mathcal{P}\}_{p}}\sum_{n=1}^{\infty}\frac{1}{n}\operatorname{csch}(\frac{n\ell_{\gamma}}{2})K_{1}(\frac{n\ell_{\gamma}}{2})$$

$$+\sum_{\{\mathcal{R}\}_p}\sum_{\ell=1}^{m_{\mathcal{R}}-1}\frac{1}{8m_{\mathcal{R}}\sin(\frac{\pi\ell}{m_{\mathcal{R}}})}\sum_{n=0}^{\infty}\frac{1}{2^{n+1}}\sum_{k=0}^{n}(-1)^k\binom{n}{k}\frac{\boldsymbol{K}_1\left[(k+\frac{\ell}{m_{\mathcal{R}}})\pi\right]}{k+\frac{\ell}{m_{\mathcal{R}}}}$$

Julie Rowlett (with K. Fedosova & G. Zhang)

K and K

Definition

 K_i is the modified Bessel function of the second kind of order j. K_i is the j-th Struve function of the second kind,

$$\boldsymbol{K}_j(z) = \boldsymbol{H}_j(z) - Y_j(z).$$

Here, H_i is the *j*-th Struve function of the first kind, and Y_i the Bessel function of the second kind, a.k.a. the Weber Bessel function (for various expressions of these see Watson, DLMF, NIST).

Julie Rowlett (with K. Fedosova & G. Zhang)

- This expression converges rapidly (exponentially).
- The Struve functions can be evaluated with systems of computer algebra to arbitrary precision.
- We prove the formula using the Selberg trace formula, together with new calculations of the elliptic orbital integrals (♡ Ksenia).

Geometry and physics Analysis and physics

000000000

- For warp travel one needs Casimir energy to be negative.
- The first and second terms (identity and hyperbolic) are negative.
- The elliptic term is positive.

Analysis and physics

Which sign dominates?

Julie Rowlett (with K. Fedosova & G. Zhang) Black holes and warp travel

Triangle groups

- Fix $p, q, r \in \mathbb{N}$ with $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1$.
- Define a (p, q, r)-triangle group as in (Definition 10.6.3, Beardon), denoted Γ(p, q, r).
- $\Gamma(p, q, r)$ is a discrete subgroup of $PSL_2(\mathbb{R})$.
- The area (volume) of $\Gamma(p,q,r) \setminus \mathbb{H}$ is

$$2\pi \left(1 - \left(\frac{1}{p} + \frac{1}{q} + \frac{1}{r}\right)\right). \tag{1}$$

00

Specify to $\Gamma(2,3,7) \setminus \mathbb{H}$. In general, (and on this surface) for $s \neq 1$

Geometry and physics Analysis and physics Triangle groups Elliptic Identity Hyperbolic Warp or not?

$$\begin{aligned} \zeta(s) &= \frac{\operatorname{vol}(\Gamma \setminus \mathbb{H})}{8(s-1)} \int_{\mathbb{R}} (\frac{1}{4} + r^2)^{1-s} \operatorname{sech}^2(\pi r) dr \\ &+ \frac{(4\pi)^{-1/2}}{\Gamma(s)} \sum_{\{\mathcal{P}\}_p} \sum_{n=1}^{\infty} (\ell_{\gamma}/n)^{1/2} \operatorname{csch}(\frac{n\ell_{\gamma}}{2}) (n\ell_{\gamma})^s \mathcal{K}_{1/2-s}(\frac{n\ell_{\gamma}}{2}) \end{aligned}$$

$$+\sum_{\{\mathcal{R}\}_{p}}\sum_{\ell=1}^{m_{\mathcal{R}}-1}\frac{1}{2m_{\mathcal{R}}\sin(\frac{\pi\ell}{m_{\mathcal{R}}})}\int_{\mathbb{R}}\frac{e^{-2r\frac{\pi\ell}{m_{\mathcal{R}}}}}{1+e^{-2\pi r}}(\frac{1}{4}+r^{2})^{-s}dr.$$

Julie Rowlett (with K. Fedosova & G. Zhang)

Elliptic energy

Lemma

The contribution of elliptic elements to the Casimir energy is equal to

$$\sum_{\{\mathcal{R}\}_p}\sum_{\ell=1}^{m_{\mathcal{R}}-1}\frac{1}{8m_{\mathcal{R}}\sin(\frac{\pi\ell}{m_{\mathcal{R}}})}\sum_{n=0}^{\infty}\frac{1}{2^{n+1}}\sum_{k=0}^{n}(-1)^k\binom{n}{k}\frac{\boldsymbol{K}_1\left[(k+\frac{\ell}{m_{\mathcal{R}}})\pi\right]}{k+\frac{\ell}{m_{\mathcal{R}}}}.$$

Julie Rowlett (with K. Fedosova & G. Zhang)

Elliptic energy estimate

Lemma

The elliptic contribution to the Casimir energy of $\Gamma(2,3,7) \setminus \mathbb{H}$ rounded to six decimal places is equal to 0.875676.

Elliptic

Julie Rowlett (with K. Fedosova & G. Zhang) Black holes and warp travel

		Identity ●00	

Identity energy

Lemma

We have

$$\frac{\operatorname{vol}(\Gamma \setminus \mathbb{H})}{8(s-1)} \int_{\mathbb{R}} (\frac{1}{4} + r^2)^{1-s} \operatorname{sech}^2(\pi r) dr \bigg|_{s=-1/2}$$
$$= -\frac{\operatorname{vol}(\Gamma \setminus \mathbb{H})}{\pi} \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(n+1)(-1)^k}{2^{n+6}} \binom{n}{k} \frac{\mathbf{K}_2(\pi + \pi k)}{(1+k)^2}.$$

Julie Rowlett (with K. Fedosova & G. Zhang)

Identity energy estimate

Lemma

The identity contribution to the Casimir energy is at least

 $-\frac{2\operatorname{vol}(\Gamma \setminus \mathbb{H})}{45\pi}.$

Observe:

$$\frac{\operatorname{vol}(\Gamma \setminus \mathbb{H})}{8(s-1)} \int_{-\infty}^{\infty} (\frac{1}{4} + r^2)^{1-s} \operatorname{sech}^2(\pi r) dr \bigg|_{s=-1/2}$$
$$= -\frac{\operatorname{vol}(\Gamma \setminus \mathbb{H})}{12} \int_{-\infty}^{\infty} (\frac{1}{4} + r^2)^{\frac{3}{2}} \operatorname{sech}^2(\pi r) dr.$$

Julie Rowlett (with K. Fedosova & G. Zhang)

Identity energy estimate continued

$$\begin{split} & -\frac{\mathrm{vol}(\Gamma\backslash\mathbb{H})}{12} \int_{-\infty}^{\infty} (\frac{1}{4} + r^2)^{\frac{3}{2}} \operatorname{sech}^2(\pi r) dr \geq \\ & -\frac{\mathrm{vol}(\Gamma\backslash\mathbb{H})}{96} \int_{-\infty}^{\infty} (1 + 4r^2)^2 \operatorname{sech}^2(\pi r) dr. \\ & \text{By Gradshteyn & Rizhik 3.527.3.12} \\ & \int_{0}^{\infty} \frac{x^{b-1}}{\cosh^2 x} dx = 2^{2-b} (1 - 2^{2-b}) \Gamma(b) \zeta_R(b-1), \quad \operatorname{Re}(b) > 0, \quad b \neq 2, \\ & \Longrightarrow \\ & \int_{-\infty}^{\infty} (4r^2 + 1)^2 \operatorname{sech}^2(\pi r) dr = 2 \int_{0}^{\infty} (16r^4 + 8r^2 + 1) \operatorname{sech}^2(\pi r) dr = \\ & 2 \left(\int_{0}^{\infty} \left(\frac{16s^4}{\pi^4} \operatorname{sech}^2(s) + \frac{8s^2}{\pi^2} \operatorname{sech}^2(s) + \operatorname{sech}^2(s) \right) \frac{ds}{\pi} \right) = \\ & 2 \left(\frac{16}{\pi^5} 2^{2-5} (1 - 2^{2-5}) \Gamma(5) \zeta(4) + \frac{8}{\pi^3} 2^{2-3} (1 - 2^{2-3}) \Gamma(3) \zeta(2) + \frac{1}{\pi} \right) = \\ & 2 \left(\frac{7}{15\pi} + \frac{2}{3\pi} + \frac{1}{\pi} \right) = \frac{64}{15\pi}. \implies \text{ lower bound} \\ & - \frac{\operatorname{vol}(\Gamma\backslash\mathbb{H})}{96} \cdot \frac{64}{15\pi} = -\frac{2 \operatorname{vol}(\Gamma\backslash\mathbb{H})}{45\pi} > -0.00211640. \end{split}$$

Julie Rowlett (with K. Fedosova & G. Zhang)

Hyperbolic contribution

$$\begin{aligned} &\frac{(4\pi)^{-1/2}}{\Gamma(-1/2)} \sum_{\{\mathcal{P}\}_{\rho}} \sum_{n=1}^{\infty} (\ell_{\gamma}/n)^{1/2} \operatorname{csch}(\frac{n\ell_{\gamma}}{2}) (n\ell_{\gamma})^{-1/2} \mathcal{K}_{1}(\frac{n\ell_{\gamma}}{2}) \\ &= -\frac{1}{4\pi} \sum_{\{\mathcal{P}\}_{\rho}} \sum_{n=1}^{\infty} (\ell_{\gamma}/n)^{1/2} \operatorname{csch}(\frac{n\ell_{\gamma}}{2}) (n\ell_{\gamma})^{-1/2} \mathcal{K}_{1}(\frac{n\ell_{\gamma}}{2}) \\ &= -\frac{1}{4\pi} \sum_{\{\mathcal{P}\}_{\rho}} \sum_{n=1}^{\infty} \frac{1}{n} \operatorname{csch}(\frac{n\ell_{\gamma}}{2}) \mathcal{K}_{1}(\frac{n\ell_{\gamma}}{2}). \end{aligned}$$

Julie Rowlett (with K. Fedosova & G. Zhang)

Hyperbolic elements and closed geodesics

The rotations of order 3 and 7 that generate the triangle group $\Gamma(2,3,7)$ are represented as elements of $PSL_2(\mathbb{R})$ using

Hyperbolic

$$b = \frac{1}{3} \left(\sqrt{3(\cot^2(\frac{\pi}{7}) - 3)} + \sqrt{3}\cot(\frac{\pi}{7}) \right),$$

$$A = \begin{pmatrix} \cos(\frac{\pi}{3}) & \sin(\frac{\pi}{3}) \\ -\sin(\frac{\pi}{3}) & \cos(\frac{\pi}{3}) \end{pmatrix}, \quad B = \begin{pmatrix} \cos(\frac{\pi}{7}) & b\sin(\frac{\pi}{7}) \\ -b^{-1}\sin(\frac{\pi}{7}) & \cos(\frac{\pi}{7}) \end{pmatrix},$$

$$R = A^{-1}B, \quad L = B.$$

Each hyperbolic element γ is represented as a matrix M_{γ} that is a product of R and L. The length of the corresponding closed geodesic is

$$2\cosh^{-1}|\operatorname{Tr}(M_{\gamma}))/2|$$
.

Julie Rowlett (with K. Fedosova & G. Zhang)

Multiplicities

- Let γ be a primitive hyperbolic element and denote the length of the corresponding closed geodesic by ℓ_γ.
- γ^{-1} is also a hyperbolic element with $\ell_{\gamma^{-1}} = \ell_{\gamma}$.
- Changing the *R*'s and *L*'s in the representation of *γ*, one obtains a hyperbolic element *γ*^{*} with *ℓ*_{*γ*^{*}} = *ℓ*_{*γ*}.
- $s(\gamma)$ is the number of distinct conjugacy classes among $\{\gamma\}, \{\gamma^{-1}\}, \{\gamma^*\}$ and $\{(\gamma^*)^{-1}\}$.

Computing lengths \heartsuit Vogeler

$$A(\gamma) := -\frac{1}{4\pi} \sum_{n=1}^{\infty} \frac{s(\gamma)}{n} \operatorname{csch}\left(\frac{n\ell_{\gamma}}{2}\right) K_1\left(\frac{n\ell_{\gamma}}{2}\right).$$

$\ell_{\gamma} \approx$	$s(\gamma)$	γ	$A(\gamma) pprox A(\gamma) \prox A($
0.98399	1	R.L	-0.288955
1.73601	1	R.R.L.L	-0.064746
2.13111	2	R.L.R.L.L	-0.069526
2.66193	2	R.L.R.R.L.L	-0.032848
2.89815	2	R.L.L.R.R.L.L	-0.024028
3.15482	2	R.L.R.L.R.L.L	-0.017289
3.54271	1	R.L.R.R.L.R.L.L	-0.0053429
3.62732	2	R.L.R.L.R.R.L.L	-0.0096416
3.80470	2	R.L.R.R.L.R.R.L.L	-0.0077879

Julie Rowlett (with K. Fedosova & G. Zhang)

Hyperbolic 0000●00000000

Continued

$\ell_\gamma \approx$	$s(\gamma)$	γ	$A(\gamma) pprox$
3.93595	2	R.L.R.L.L.R.R.L.L	-0.0066608
4.15197	2	R.L.R.L.R.L.R.L.L	-0.0051635
4.20181	1	R.L.L.R.R.L.R.R.L.L	-0.0024355
4.39146	2	R.L.R.R.L.L.R.R.L.L	-0.0039068
4.48926	2	R.L.R.L.R.R.L.R.L.L	-0.0034894
4.60473	2	R.L.R.L.R.L.R.R.L.L	-0.0030555
4.65401	2	R.L.L.R.R.L.L.R.R.L.L	-0.0028877
4.76043	2	R.L.R.L.R.R.L.R.R.L.L	-0.0025571
4.84180	4	R.L.R.L.L.R.L.R.R.L.L	-0.0046617
4.93876	2	R.L.R.L.R.L.L.R.R.L.L	-0.0020879
5.01322	2	R.L.R.L.L.R.L.L.R.R.L.L	-0.0019192
5.14068	2	R.L.R.L.R.L.R.L.R.L.L	-0.0016622

Julie Rowlett (with K. Fedosova & G. Zhang)

		Hyperbolic ○○○○○●○○○○○○○	

Continued

$\ell_{\gamma} \approx$	$s(\gamma)$	γ	$A(\gamma) pprox A(\gamma)$
5.20802	2	R.L.R.L.L.R.R.L.R.R.L.L	-0.0015409
5.28890	2	R.L.R.L.R.L.L.R.L.R.L.L	-0.0014072
5.28890	2	R.L.R.R.L.R.L.L.R.R.L.L	-0.0014072
5.35146	2	R.L.R.L.R.R.L.L.R.R.L.L	-0.0013120
5.42680	1	R.L.R.L.R.R.L.R.L.R.L.L	-0.00060298
5.45943	2	R.L.R.L.R.L.R.R.L.R.L.L	-0.0011628

Table: The first several lengths of primitive hyperbolic closed geodesics of the (2, 3, 7)-triangle group orbifold together with their representations and their contribution to the Casimir energy.

Hyperbolic

Hyperbolic contribution from the first 50

Lemma

The contribution to the Casimir energy from the first 50 primitive geodesics rounded to six decimal places is equal to -0.5680851.

Julie Rowlett (with K. Fedosova & G. Zhang)

What about the rest?

- $\mathcal{N}_L = \#\{\ell_\gamma \leq L\}$ the number of primitive hyperbolic geodesics γ (counted with multiplicity) of length ℓ_γ less or equal than L.
- Prime geodesic theorem says $\lim_{L\to\infty} \frac{N_L(L)}{e^L} = 1$.
- Enumerate lengths (counting multiplicity) $\ell_j \implies$

$$\lim_{j\to\infty}\frac{\ell_j}{\log(j)+\log\log(j)}=1.$$

• For all j < 51 the inequality holds: $\ell_j \ge \log(j) + \log \log(j)$.

Good things come in 3s

$$B_{1} = \sum_{j=51}^{10^{7}} \frac{1}{4\pi} \operatorname{csch}\left(\frac{\ell_{j}}{2}\right) \mathcal{K}_{1}\left(\frac{\ell_{j}}{2}\right),$$

$$B_{2} = \sum_{j=10^{7}+1}^{\infty} \frac{1}{4\pi} \operatorname{csch}\left(\frac{\ell_{j}}{2}\right) \mathcal{K}_{1}\left(\frac{\ell_{j}}{2}\right),$$

$$B_{3} = \sum_{n=2}^{\infty} \sum_{j=51}^{\infty} \frac{1}{4\pi n} \operatorname{csch}\left(\frac{n\ell_{j}}{2}\right) \mathcal{K}_{1}\left(\frac{n\ell_{j}}{2}\right).$$

Julie Rowlett (with K. Fedosova & G. Zhang)

The estimate of B_1

• csch and K_1 are decreasing on $(0, \infty)$.

Thus
$$\operatorname{csch}\left(\frac{n\ell_j}{2}\right) \mathcal{K}_1\left(\frac{n\ell_j}{2}\right) \leq \operatorname{csch}\left(\frac{n(\log j + \log \log j)}{2}\right) \mathcal{K}_1\left(\frac{n(\log j + \log \log j)}{2}\right).$$

• We use this to obtain the explicit estimate $B_1 \leq 0.138415$.

• We prove that for all $j \geq 16$ and $n \in \mathbb{N}$

 $j^n \log^{n+1/2} j \le (j^n \log^n j - 1)(\log j + \log \log j)^{1/2}.$

Hyperbolic

By G&R for any $j \ge 10^7$ we may replace K_1 by $K_{\frac{3}{2}}$.

Observe:

$$\operatorname{csch}(z)\mathcal{K}_{3/2}(z) = \sqrt{rac{2\pi}{z}} rac{1+z}{ze^{2z}-z}$$

Julie Rowlett (with K. Fedosova & G. Zhang)

The estimates of B_2 and B_3

• Setting $z = n(\log j + \log \log j)/2$ and dividing by $4\pi n$

$$\frac{\operatorname{csch}\left[\frac{\log(j) + \log\log(j)}{2}n\right] K_{\frac{3}{2}}\left[\frac{\log(j) + \log\log(j)}{2}n\right]}{4\pi n} = \frac{n(\log(j) + \log\log(j)) + 2}{2\sqrt{\pi}n(j^n\log^n(j) - 1)n^{3/2}(\log(j) + \log\log(j))^{3/2}}.$$
 (2)

■ With a bit more calculations (including the good old integral-sum comparison from calculus!) we obtain B₂ ≤ 0.155402 and B₃ ≤ 0.000224.

Julie Rowlett (with K. Fedosova & G. Zhang)

Hyperbolic tail estimate

We therefore obtain the tail estimate for all but the first 50 hyperbolic elements.

Lemma

Under the assumption that $\ell_j \ge \log(j) + \log \log(j)$ holds also for $j \ge 51$, the contribution from all but the first 50 hyperbolic elements is greater than or equal to -0.293867.

Summing the terms

- The contribution of the elliptic elements is, up to six decimal places, 0.875676.
- The identity contribution to the Casimir energy is at least -0.0022.
- The contribution from the first 50 primitive hyperbolic geodesics is, up to six decimal places, -0.5680851.
- The contribution from all but the first 50 hyperbolic elements is at least -0.293867.
- Can we engage (warp travel) or not? Please go to menti.com 5404 0478.

Geometry and physics Analysis and physics Triangle groups Elliptic Identity Hyperbolic Warp or not?

Merci!

Julie Rowlett (with K. Fedosova & G. Zhang) Black holes and warp travel