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The Conformal Laplacian

Throughout this talk (Mn, g) will be a closed manifold of dimension n ≥ 3.
the conformal laplacian of g is

Lg = △g +
n − 2

4(n − 1)
Sg

where △g = −divg (∇·) and Sg is the scalar curvature.

This operator is conformally invariant: if u ∈ C∞(M), u > 0, and
gu = u

4
n−2 g ,

Lg (uf ) = u
n+2
n−2Lgu(f ) for any f ∈ C∞(M).

In particular: ∫
M
fLgu fdvgu =

∫
M
(uf )Lg (uf )dvg .
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Conformal eigenvalues

We will assume that (Mn, g) is of positive Yamabe type, which means that
Lg > 0. This is for instance the case if Sg > 0.

Denote the (discrete)
spectrum of Lg by:

0 < λ1(g) < λ2(g) ≤ λ3(g) ≤ · · · .

For k ≥ 1 we define the k-th conformal eigenvalue of Lg as:

Λk(M, [g ]) = inf
g̃∈[g ]

(
λk(g̃)Vol(M, g̃)

2
n

)
.

Write g̃ = u
4

n−2 g . Then Vol(M, g̃) =
∫
M u

2n
n−2 dvg and

Λk(M, [g ]) = inf
u∈C∞(M)

u>0

λk(gu)
(∫

M
u

2n
n−2 dvg

) 2
n
.
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Generalities

By [Ammann-Jammes ’08], for any k ≥ 1,

sup
u∈C∞(M)

u>0

λk(gu)Vol(M, gu)
2
n = +∞.

This is due to the conformal invariance of Lg that allows for asymptotically
cylindrical blow-up (Pinocchio metrics).

Our goal today: investigate under which conditions the second
conformal eigenvalue Λ2(M, [g ]) is attained (we will give a precise
definition of what its extremals are).

A remark: our Λk(M, [g ]) are an infimum, and this creates big conceptual
difference with the maximisation problem of conformal eigenvalues of the
Laplacian in dimensions n ≥ 2 ([Nadirashvili-Sire ’15], [Pétrides ’18, ’22],
[Karpukhin-Stern ’20, ’22]). We will restrict to the conformal case here.
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The Yamabe problem

Recall the definition of the Yamabe invariant of [g ]:

Y (M, [g ]) = inf
f ∈C∞(M)\{0}

∫
M f · Lg fdvg( ∫

M |f |
2n
n−2 dvg

) n−2
n

> 0.

Investigated by [Yamabe ’60], [Trudinger ’68], [Aubin ’76], [Schoen ’84]. It
turns out that the Yamabe invariant is equal to the first conformal
eigenvalue Λ1(M, [g ]):

Y (M, [g ]) = Λ1(M, [g ]).
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The Yamabe problem – proof that Y (M , [g ]) = Λ1(M , [g ]).
Proof.

Since dvgu = u
2n
n−2 dvg we have, letting h = uf ,

λ1(gu) = inf
f ∈C∞(M)\{0}

∫
M fLgu fdvgu∫
M f 2dvgu

= inf
h∈C∞(M)\{0}

∫
M hLghdvg∫

M u
4

n−2 h2dvg
.

Choose h = u in λ1(gu). Then

Λ1(M, [g ]) ≤ λ1(gu)
(∫

M
u

2n
n−2 dvg

) 2
n ≤

∫
M uLgudvg( ∫

M u
2n
n−2 dvg

) n−2
n

.

Taking the infimum over u yields Λ1(M, [g ]) ≤ Y (M, [g ]).
The other inequality follows from Hölder’s inequality:∫

M
u

4
n−2 f 2dvg ≤

(∫
M
u

2n
n−2 dvg

) 2
n
(∫

M
|f |

2n
n−2 dvg

) n−2
n
.
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The Yamabe problem - extremals

[Aubin ’76] showed that if

Λ1(M, [g ]) < Λ1(Sn, [g0]) (∗)

where g0 is the round metric, then Λ1(M, [g ]) is attained. He showed (∗)
when n ≥ 6 and (M, g) is not l.c.f.

[Schoen ’84] proved (∗) in dimensions
3 ≤ n ≤ 5 or when (M, g) is l.c.f.

Minimisers attaining Λ1(M, [g ]) (or Y (M, [g ])) are positive least-energy
solutions of the Yamabe equation:

Lgu = u
n+2
n−2 in M

with
Lg = △gu +

n − 2
4(n − 1)

Sg .
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Attaining Λ2(M , [g ]).
[Ammann-Humbert ’06] showed that if

Λ2(M, [g ])
n
2 < Λ1(M, [g ])

n
2 + Λ1(Sn, [g0])

n
2 (∗∗)

where g0 is the round metric in Sn, then Λ2(M, [g ]) is attained.

[Ammann-Humbert ’06] also prove by test-functions computations that

(∗∗) is satisfied if n ≥ 11 AND (M, g) is not l.c.f

and that the large inequality in (∗∗) is always satisfied. The proof uses
test-functions computations similar to the ones in the Yamabe problem.
The geometric meaning of inequality (∗∗) is the following:

Λ2(M, [g ]) < Λ2

(
M ⊔ Sn, [g ] ⊔ [g0]

)
.

We address here the low-dimensional case n ≤ 10. Our main result states
can (∗∗) can no longer be expected to hold in general.

Bruno Premoselli May 13th, 2024 11 / 25



Attaining Λ2(M , [g ]).
[Ammann-Humbert ’06] showed that if

Λ2(M, [g ])
n
2 < Λ1(M, [g ])

n
2 + Λ1(Sn, [g0])

n
2 (∗∗)

where g0 is the round metric in Sn, then Λ2(M, [g ]) is attained.
[Ammann-Humbert ’06] also prove by test-functions computations that

(∗∗) is satisfied if n ≥ 11 AND (M, g) is not l.c.f

and that the large inequality in (∗∗) is always satisfied.

The proof uses
test-functions computations similar to the ones in the Yamabe problem.
The geometric meaning of inequality (∗∗) is the following:

Λ2(M, [g ]) < Λ2

(
M ⊔ Sn, [g ] ⊔ [g0]

)
.

We address here the low-dimensional case n ≤ 10. Our main result states
can (∗∗) can no longer be expected to hold in general.

Bruno Premoselli May 13th, 2024 11 / 25



Attaining Λ2(M , [g ]).
[Ammann-Humbert ’06] showed that if

Λ2(M, [g ])
n
2 < Λ1(M, [g ])

n
2 + Λ1(Sn, [g0])

n
2 (∗∗)

where g0 is the round metric in Sn, then Λ2(M, [g ]) is attained.
[Ammann-Humbert ’06] also prove by test-functions computations that

(∗∗) is satisfied if n ≥ 11 AND (M, g) is not l.c.f

and that the large inequality in (∗∗) is always satisfied. The proof uses
test-functions computations similar to the ones in the Yamabe problem.

The geometric meaning of inequality (∗∗) is the following:

Λ2(M, [g ]) < Λ2

(
M ⊔ Sn, [g ] ⊔ [g0]

)
.

We address here the low-dimensional case n ≤ 10. Our main result states
can (∗∗) can no longer be expected to hold in general.

Bruno Premoselli May 13th, 2024 11 / 25



Attaining Λ2(M , [g ]).
[Ammann-Humbert ’06] showed that if

Λ2(M, [g ])
n
2 < Λ1(M, [g ])

n
2 + Λ1(Sn, [g0])

n
2 (∗∗)

where g0 is the round metric in Sn, then Λ2(M, [g ]) is attained.
[Ammann-Humbert ’06] also prove by test-functions computations that

(∗∗) is satisfied if n ≥ 11 AND (M, g) is not l.c.f

and that the large inequality in (∗∗) is always satisfied. The proof uses
test-functions computations similar to the ones in the Yamabe problem.
The geometric meaning of inequality (∗∗) is the following:

Λ2(M, [g ]) < Λ2

(
M ⊔ Sn, [g ] ⊔ [g0]

)
.

We address here the low-dimensional case n ≤ 10. Our main result states
can (∗∗) can no longer be expected to hold in general.

Bruno Premoselli May 13th, 2024 11 / 25



Attaining Λ2(M , [g ]).
[Ammann-Humbert ’06] showed that if

Λ2(M, [g ])
n
2 < Λ1(M, [g ])

n
2 + Λ1(Sn, [g0])

n
2 (∗∗)

where g0 is the round metric in Sn, then Λ2(M, [g ]) is attained.
[Ammann-Humbert ’06] also prove by test-functions computations that

(∗∗) is satisfied if n ≥ 11 AND (M, g) is not l.c.f

and that the large inequality in (∗∗) is always satisfied. The proof uses
test-functions computations similar to the ones in the Yamabe problem.
The geometric meaning of inequality (∗∗) is the following:

Λ2(M, [g ]) < Λ2

(
M ⊔ Sn, [g ] ⊔ [g0]

)
.

We address here the low-dimensional case n ≤ 10. Our main result states
can (∗∗) can no longer be expected to hold in general.
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Nonexistence of extremals for Λ2(M , [g ]) when n ≤ 10

Our main result shows that, in dimensions n ≤ 10, metrics in Sn that are
close enough to the round metric do not attain Λ2:

Theorem (P.-Vétois, ’24)
Assume that 3 ≤ n ≤ 10. There exists m ∈ N∗ and δ > 0 such that for
every smooth metric g in Sn with ∥g − g0∥Cm < δ we have

Λ2(Sn, [g ])
n
2 = Λ1(Sn, [g ])

n
2 + Λ1(Sn, [g0])

n
2

and Λ2(Sn, [g ])
n
2 is not attained.
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Remarks on our main result

[Ammann-Humbert ’06] showed that Λ2(Sn, [g0])
n
2 = 2Λ1(Sn, [g0])

n
2

and that it is never attained.

Our Theorem has to be understood as a
stability result for the non-existence of extremals for Λ2 for g close to
the round metric g0 in Sn.
Our Theorem is also the first non-existence result of extremals for
conformal eigenvalues on manifolds that are not standard spheres (in
all contexts).
This result shows a striking difference with the n ≥ 11 case: when
n ≤ 10, one cannot guarantee anymore that Λ2(M, [g ]) is attained
solely by enforcing local conditions on g . New ideas are needed to
produce examples of manifolds of dimension n ≤ 10 where Λ2(M, [g ])
is attained, with or without equality for Λ2(M, [g ]).
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Variational characterisation of Λk(M , [g ])
For u ∈ C∞(M), u > 0 let gu = u

4
n−2 g . The classical variational

characterisation of λk(g) and conformal invariance show that:

λk(u) = λk(gu) = inf
dimV=k
V⊂H1(M)

sup
v∈V \{0}

∫
M vLguvdvgu∫
M v2dvgu

= inf
dimV=k
V⊂H1(M)

sup
v∈V \{0}

∫
M vLgvdvg∫

M u
4

n−2 v2dvg
.

The right-hand side still makes sense when u ∈ L
2n
n−2 (M)\{0}, u ≥ 0 a.e.

in M. This defines a quantity that we denote by λk(u) and that we call a
generalised eigenvalue. To a generalised eigenvalue λk(u) one can
associate one (or more) generalised eigenvectors φ ∈ H1(M) solving

Lgφ = λk(u)u
4

n−2φ in M,

∫
M
u

4
n−2φ2dvg = 1.
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Extremals for Λk(M , [g ])

Definition

We say that Λk(M, [g ]) is attained if there exists u ∈ L
2n
n−2 (M)\{0}, u ≥ 0

a.e. in M such that

Λk(M, [g ]) = λk(u)
(∫

M
u

2n
n−2 dvg

) 2
n
.

When k = 1, we saw that Λ1(M, [g ]) = Y (M, [g ]). But for k ≥ 2,
extremals of Λk(M, [g ]) cannot be attained at a positive function u
([Ammann-Humbert ’06]).

Λ2(M, [g ]) may only be attained at a generalised metric gu = u
4

n−2 g , which
are singular at {u = 0}.
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Euler-Lagrange equation for Λ2(M , [g ])

It is proven in [Ammann-Humbert ’06], [Gursky-Perez Ayala ’21] that IF
Λ2(M, [g ]) is attained at u ∈ L

2n
n−2 (M)\{0}, u ≥ 0 a.e. in M then λ2(u) is

simple, that is spanned by a single non-zero normalised eigenfunction φ
which satisfies

u = |φ|.

Up to rescaling φ, the eigenvalue equation shows that φ is a least-energy
sign-changing solution of the Yamabe equation in M attaining Λ2(M, [g ]):

Lgφ = |φ|
4

n−2φ,

∫
M
|φ|

2n
n−2 dvg = Λ2(M, [g ])

n
2 .

Λ2(M, [g ]) is thus a natural generalisation of the Yamabe problem:
attaining it provides sign-changing solutions of least energy, whereas
attaining Λ1(M, [g ]) provided solutions of least-energy (thus positive).
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Reduction to a PDE proof

Theorem (The result we want to prove)
Assume that 3 ≤ n ≤ 10. There exists m ∈ N and δ > 0 such that for
every smooth metric g in Sn with ∥g − g0∥Cm < δ we have

Λ2(Sn, [g ])
n
2 = Λ1(Sn, [g ])

n
2 + Λ1(Sn, [g0])

n
2

and Λ2(Sn, [g ])
n
2 is not attained.

By contradiction: assume that there exists a sequence (gk)k≥0 of smooth
metrics in Sn, converging to g0 in Cm, for which every Λ2(Sn, [gk ]) is
attained. Euler-Lagrange for Λ2: there are sign-changing (φk)k such that

Lgkφk = |φk |
4

n−2φk in M and
∫
M
|φk |

2n
n−2 dvgk = Λ2(Sn, [gk ])

n
2 .

We find a contradiction using the minimality of φk .
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Weak convergence towards a union of two spheres
By definition of φk and since gk → g0 in Cm,∫

M
|φk |

2n
n−2 dvgk = Λ2(Sn, [gk ])

n
2

= Λ2(Sn, [g0])
n
2 + o(1) = 2Λ1(Sn, [g0])

n
2 + o(1)

as k → +∞. Classical compactness results in H1 [Struwe ’86] show that

φk = B1,k − B2,k + o(1) in H1(M)

where
∫
Sn B

2n
n−2
i ,k dvg0 = Λ1(Sn, [g0])

n
2 ,

Bi ,k(x) ≈
µ

n−2
2

i ,k(
µ2
i ,k + dg (xi ,k , x)2

) n−2
2

, x ∈ M, µi ,k ≤ 1

and
Lg0Bi ,k = B

n+2
n−2
i ,k in Sn.
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Strong convergence towards a union of spheres
The equality

φk = B1,k − B2,k + o(1) in H1(M) (5.1)

is a weak bubble-tree convergence and only reformulates the quantisation
Λ2(Sn, [gk ])

n
2 = 2Λ1(Sn, [g0])

n
2 + o(1).

The first ingredient in our proof consists in turning (5.1) into smooth
convergence at the scale of each sphere Bi ,k . We first prove that

φk = B1,k − B2,k + o(B1,k) + o(B2,k) in Cm(M).

We then prove quantitative estimates on each sphere: something like

∣∣∣φk −
(
B1,k − B2,k

)∣∣∣ ≲ ( [ n−2
2 ]∑

α=2

εα,kdg0(xi ,k , ·)2α
)
Bi ,k ,

in a neighbourhood of xi ,k , where εα,k ∼ ∥∇α(gk − g0)∥2
∞. Adaptation of

the techniques in [P. ’22], [P.-Vétois ’22], [Khuri-Marques-Schoen ’08].
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Strong convergence towards a union of spheres II

The previous estimates show that the “metric” |φk |
4

n−2 g converges towards
the disjoint union of two round spheres, smoothly outsides of the centers.

The contradiction in our proof will come from a fine analysis of the glueing
region between the two spheres, which is the neck region B1,k ≈ B2,k . It is
also the nodal region of φk . We show that when 3 ≤ n ≤ 10 it is
impossible to deform B1,k − B2,k into a proper solution of the Yamabe
equation for gk , regardless of the nature of gk .

The assumption n ≤ 10 is crucial here: it forces each profile Bi ,k to
concentrate as k → +∞ as follows:

Bi ,k(x) ≈
µ

n−2
2

i ,k(
µ2
i ,k + dg (xi ,k , x)2

) n−2
2

, x ∈ M, µi ,k → 0

for i = 1, 2. Follows from the techniques in [P. ’22], [P.-Vétois ’22].
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End of the proof when 3 ≤ n ≤ 5

When 3 ≤ n ≤ 5 the proof follows from a Pohozaev identity applied to φk

in the sphere defined by B2,k , inside the neck region B1,k ≈ B2,k .

It gives
the following compatibility condition:

µ1,kµ2,k

µ2
1,k + dg0(x1,k , x2,k)2

= o
(
µ2

2,k
)
,

which is impossible since µ2,k ≤ µ1,k . The l.h.s is an obstruction for
B1,k − B2,k to being an exact solution of the Yamabe equation for gk ;
similarly, the r.h.s is an obstruction for B2,k to being a solution.
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End of the proof when 6 ≤ n ≤ 10
When 6 ≤ n ≤ 10 the convergence Λ2(Sn, [gk ])

n
2 → 2Λ1(Sn, [g0])

n
2 and the

smooth pointwise estimates on φk allow us to estimate:

Λ1(Sn, [gk ])− Λ1(Sn, [g0]) ≥ −C

[ n−2
2 ]∑

α=2

εα,kµ
2α
1,k (†)

for some C > 0 independent of k , where εα,k ∼ ∥∇α(gk − g0)∥2
∞.

The contradiction follows from finding a better competitor for Λ1(Sn, [gk ]).
Replace µ1,k by θµ1,k , θ > 1 in B1,k . Involved test-function computations
based on [Khuri-Marques-Schoen ’08] show that

Λ1(Sn, [gk ])− Λ1(Sn, [g0]) ≤ −C ′
[ n−2

2 ]∑
α=2

εα,k(θµ1,k)
2α

which contradicts (†) for θ >> 1.

This argument crucially uses that µ1,k → 0, which is only guaranteed when
3 ≤ n ≤ 10 [P.-Vétois, ’22].
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Thank you for your attention.
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Euler-Lagrange equation for Λ2(M , [g ])

Let

F (u) = λ2(gu)
(∫

M
u

2n
n−2 dvg

) 2
n
.

If ut = u(1 + th) for |t| small enough we have

d

dt |t=0+
F (u) = inf

φ∈E2(u)

(
− (2∗ − 2)λ2(gu)

∫
M u2∗−2hφ2dvg∫
M u2∗−2φ2dvg

)

+ (2∗ − 2)λ2(gu)

∫
M
u2∗hdvg

d

dt |t=0−
F (u) = sup

φ∈E2(u)

(
− (2∗ − 2)λ2(gu)

∫
M u2∗−2hφ2dvg∫
M u2∗−2φ2dvg

)

+ (2∗ − 2)λ2(gu)

∫
M
u2∗hdvg

The fact that u is a minimiser and λ2(gu) > 0 implies dimE2(u) = 1.
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Euler-Lagrange equation for Λk(M , [g ]), k ≥ 2

Let

F (u) = λk(gu)
(∫

M
u

2n
n−2 dvg

) 2
n

and assume u attains infu>0 F (u).

Then there exists φ1, . . . , φk generalised eigenvectors associated to λk(u)
and d1, . . . , dk nonnegative numbers with

∑k
i=1 di = 1 such that

u2 =
k∑

i=1

diφ
2
i in M.
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Conformal eigenvalues in different contexts

That minimisers of Λ2(M, [g ]) have one-dimensional eigenspaces is deeply
related to the minimisation problem and to the fact that there is a spectral
gap.

The situation is very different from the maximisation of the eigenvalues of
the laplacian in [Nadirashvili-Sire ’15], [Pétrides ’18, ’22], [Karpukhin-Stern
’20, ’22]. There extremals in a conformal class yield in general harmonic
maps into some sphere by eigenfunctions and extremals over all metrics (in
dimension 2) yield minimal immersions into some sphere. This is likely to
be the case for extremals of Λk(M, [g ]), k ≥ 3.

On manifolds with negative Yamabe invariant (so Λ1(M, [g ]) < 0):
the second negative eigenvalue of Lg can be maximised in a conformal class
[Gursky-Pérez Ayala ’21]. Extremals u yield either a sign-changing solutions
of Yamabe or harmonic mappings from M\{u = 0} into a sphere.
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