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The problem

(S) −∆ui + λi ui =
m∑

j=1
βij u

p+1
2

j u
p−1

2
i in Rn, ui > 0 in Rn, i = 1, . . . ,m,

• 1 < p ≤ 2∗ − 1, 2∗ := 2n
n−2 , n ≥ 3

• βij = βji ∈ R

• λi ∈ R

• m ∈ N



The Gross-Pitaevskii system

(S) −∆ui + λi ui =
m∑

j=1
βij u

p+1
2

j u
p−1

2
i in Rn, ui > 0 in Rn, i = 1, . . . ,m,

The complex valued function Φi (t , x) = eιλi t ui (x) is a solitary wave solution of

−ι∂t Φi = ∆Φi +
m∑

j=1
βij |Φj |

p+1
2 |Φi |

p−1
2 , i = 1, . . . ,m

• |ui | is the amplitude of the i−th density

• βii = µi describe the interaction between particles of the same component

• βij , i 6= j describe the interaction between particles of different components

βij > 0  attractive or cooperative interaction

βij < 0  repulsive or competive interaction



The critical case

(S) −∆ui + λi ui =
m∑

j=1
βij u

p+1
2

j u
p−1

2
i in Rn, i = 1, . . . ,m,

• We consider the case βii := µi > 0

• The subcritical case, i.e. p < n+2
n−2 has been widely studied:

Ambrosetti, Bartsch, Byeon, Clapp, Colorado, Dancer, Du, T-C Lin, Z. Liu, Wei, Maia,
Montefusco, Pellacci, Sato, Sirakov, Soave, Szulkin, Tavares, Terracini, Verzini, Z-Q Wang,
Weth, Z. Zhang, etc.

• We will focus on the critical case, i.e. p = n+2
n−2 .



Preliminaries



Different kind of solutions

(S) −∆ui =
m∑

j=1
βij u

p+1
2

j u
p−1

2
i in Rn, ui > 0 in Rn, i = 1, . . . ,m,

• A trivial solution has all trivial components, i.e. ui ≡ 0 for any i

• A non-trivial solution has some trivial components, i.e. ui ≡ 0 for some i
• For example, if u2 = · · · = um = 0 the system reduces to the critical equation

−∆u1 = µ11up
1 in Rn

• A fully non-trivial solution has all non-trivial components, i.e. ui 6≡ 0 for any i



Two kind of fully non-trivial solutions

If we look for fully non-trivial solutions to the system

(S) −∆ui =
m∑

j=1
βij u

p+1
2

j u
p−1

2
i in Rn, ui > 0 in Rn, i = 1, . . . ,m,

we can find two kind of solutions:

• synchronized solutions

• non-synchronized solutions



Synchronized solutions



The single equation

It is well known that the problem
−∆U = Up in Rn

has a infinitely many positive solutions, i.e. the so-called bubbles

Uδ,ξ(x) =
1

δ
n−2

2

U
(

x − ξ
δ

)
, U(x) = αn

1

(1 + |x |2)
n−2

2

.

U Uδ,ξ

ξ0

The bubbles U



Synchronized solutions

We say that u = (u1, . . . , um) is a synchronized solution to the system:

(S) −∆ui =
m∑

j=1

βij u
p+1

2
j u

p−1
2

i in Rn, i = 1, . . . ,m

if u = (s1U, . . . , smU) with si > 0 where U is a positive solution to the critical equation
−∆U = Up in Rn

The system (S) has a synchronized solution

m

The algebraic system

si =
m∑

j=1

βij s
p+1

2
j s

p−1
2

i , i = 1, . . . ,m

has a solution s1 > 0, . . . , sm > 0



Existence of synchronized solutions

(S) −∆ui =
m∑

j=1
βij u

p+1
2

j u
p−1

2
i in Rn, ui > 0 in Rn, i = 1, . . . ,m,

has a syncronized solution if

• p = 3 (i.e. n = 4) (∗): βij = β, for all i 6= j and β ∈ (−β∗,min{βii ) ∪ (maxβii ,+∞)

• p < 3 (i.e. n ≥ 5) (∗∗) : βij > 0 for all i, j

Proof.
• Solutions of the algebraic system

si =
m∑

j=1
βij s

p+1
2

j s
p−1

2
i , i = 1, . . . ,m

are critical points of the function

J(s) :=
1

2

m∑
i=1

s2
i −

1

p + 1

m∑
i,j=1
i 6=j

βij s
p+1

2
j s

p+1
2

i , s :=
(
s1, . . . , sm

)
∈ Rm

on the Nehari manifold
N :=

{
s ∈ Rm \ {0} : 〈∇J(s), s〉 = 0

}

• There exists a minimum point since

J(s) =
2

n

m∑
i=1

s2
i , s ∈ N

• if p < 3 and βij > 0 all the components of the minimum point are strictly positive, i.e. si > 0.

(∗) Bartsch (2013), (∗∗) Clapp & Pistoia (2020)



Cooperative systems can only have syncronized solutions!

In the cooperative case, i.e. β > 0, the only positive solution to the system
−∆u = up + βu

p−1
2 v

p+1
2 in Rn,

−∆v = vp + βu
p+1

2 v
p−1

2 in Rn,

u, v ∈ D1,2(Rn),

is radially symmetric and synchronized.

• Guo-Liu (2008)

The only positive solution to the system

−∆ui = (u2
1 + · · ·+ u2

m)
p−1

2 ui in Rn, ui ∈ D1,2(Rn), i = 1, . . . ,m,

is radially symmetric and synchronized.

• Druet & Hebey (2009), Druet, Hebey & Vetois (2010)

- If n = 4, p = 3 and system reduces to the cooperative system

−∆ui = (u2
1 + · · ·+ u2

m)ui in R4, i = 1, . . . ,m



Segregated solutions



Positive solutions to the system and sign-changing solutions to the equation

There is a strong relation between sign-changing solutions to the single equation

−∆w = |w |
4

n−2 w in Rn

and positive solutions to the system

(Sβ)


−∆u = up + βu

p−1
2 v

p+1
2 in Rn,

−∆v = vp + βu
p+1

2 v
p−1

2 in Rn,

u, v ∈ D1,2(Rn),

in the strongly competitive case, i.e. β → −∞:

u ∼ w+ and v ∼ w−



Example: the phase separation phenomenon when β → −∞

Let us consider the subcritical system on a bounded domain Ω ⊂ Rn (∗)

(Sβ)


−∆u = up + βu

p−1
2 u

p+1
2 in Ω,

−∆v = vp + βv
p−1

2 u
p+1

2 in Ω

u = v = 0 on ∂Ω

• there exists a least energy positive solution (uβ , vβ) which is the minimum of the energy

Eβ(u, v) =
1
2

∫
Ω

(
|∇u|2 + |∇v |2

)
−

1
p + 1

∫
Ω

(
|u|p+1 + |v |p+1 + 2β|u|

p+1
2 |v |

p+1
2

)
onto the the Nehari manifold

N := {(u, v) ∈ H1
0 (Ω)× H1

0 (Ω) : u, v 6= 0, ∂uEβ(u, v)u = 0, ∂v Eβ(u, v)v = 0},

• uβ ∼ u∞ & vβ ∼ v∞ as β → −∞ and

Eβ(uβ , vβ) ≤ c ⇒ −β︸︷︷︸
↓

+∞

∫
Rn
|uβ |

p+1
2 |vβ |

p+1
2︸ ︷︷ ︸

↓
0

≤ c ⇒ u∞ · v∞ ≡ 0 in Rn

• w := u∞ − v∞ is a least energy sign-changing solution to the single equation

−∆w = |w|p−1w in Ω, w = 0 on ∂Ω

• Ω1 := {x ∈ Ω : u∞(y) > 0} and Ω2 := {x ∈ Ω : v∞(y) > 0} are a partition of Ω.

(∗) Conti-Terracini-Verzini (2002,2003), Caffarelli-Lin (2008), Noris-Tavares-Terracini-Verzini (2010), Soave-Zilio (2015), Chen-Zou (2012,2015)



An idea

Whenever there exists a sign-changing solutions to the single equation

−∆w = |w |p−1w in Rn

hopefully (using the same strategy) one could find a positive solution to the system−∆u = up + βu
p−1

2 v
p+1

2 in Rn,

−∆v = vp + βu
p+1

2 v
p−1

2 in Rn

in the competitive case, i.e. β < 0,



Sign-changing solutions to the
single equation



The single equation

(1) −∆u = |u|
4

n−2 u in Rn ⇐⇒ (2) −∆g0 u + n(n−2)
4 u = |u|

4
n−2 u in Sn

• The stereographic projection π : Rn → Sn \ {S}

π(y) =

(
2y

1 + |y|2
,

1− |y|2

1 + |y|2

)
is a local conformal diffeomorphism from the euclidean
space to the round sphere (Sn, go), i.e.

π
∗
go = φ

4
n−2 dy, φ(y) :=

(
2

1 + |y|2

) n−2
2
,

• Then the following formula holds

(Lgo u) ◦ π = φ
− n+2

n−2 ∆ (φ(u ◦ π)) , u ∈ H1(Sn),

• Then

U = φ(u ◦ π) solves (1) ⇔ u solves (2)

S

p(y)

y

Sn

Rn



Existence of positive solutions: Obata (1972), Aubin (1976), Talenti (1976)

• On the round sphere Sn all the positive solutions,
up to rotations, are

(uε ◦ π) (y) = cnε
n−2

2

(
1 + |y |2

ε2 + |y |2

) n−2
2

, ε > 0

• uε blows-up at the north pole as ε→ 0

• u1(x) ≡ cn :=
(

n(n−2)
4

) n−2
4 is a constant solution

• On the Euclidean space Rn all the positive solutions,
up to traslations, are

Uε(y) = φ(y) (uε ◦ π) (y) = αn
ε

n−2
2(

ε2 + |y |2
) n−2

2

, ε > 0

• Uε blows-up at the origin as ε→ 0

• U1(y) := αn
1

(1+|y|2)
n−2

2
, αn := (n(n − 2))

n−2
4

N

ue

Sn

0

Ue

Rn



Existence of sign changing solutions Ding (1986)

The problem

−∆g0 u +
n(n − 2)

4
u = |u|

4
n−2 u in Sn

has infinitely many sign-changing solutions, which are invariant under the
action of O(k)×O(n + 1− k), k = 2, . . . , n − 1.

Proof.

• The solutions are critical points of the energy E : H1(Sn) → Rn

E(u) = 1
2
∫
Sn

(
|∇u|2 +

n(n−2)
4 u2

)
dσ − 1

p+1
∫
Sn
|u|p+1dσ

• H1(Sn) ↪→ L
2n

n−2 (Sn) is not compact⇒ E does not satisfy the Palais-Smale condition.

• How to recover the compactness? We use the fact that SN enjoys a lot of simmetries!

• Let Γ = O(k) × O(n + 1 − k) ⊂ O(n + 1)

• Let H1
Γ (Sn):=

{
u ∈ H1(Sn) : u is Γ−invariant, i.e. u(γx) = u(x), ∀ γ ∈ Γ, x ∈ Sn

}
• The critical points of E restricted to H1

Γ (Sn) are Γ-invariant solutions to the equation

• The Γ-orbit Γx := {γx : γ ∈ Γ} is homeomorphic to Sk−1 × Sn−k or Sk−1 or Sn−k .

• 1 ≤ dim(Γx) ≤ n − 1⇒ H1
Γ (Sn) ↪→ L

2n
n−2 (Sn) is compact.

• The restriction of E to H1
Γ (Sn) has a sequence of critical points with increasing energy (via Ljusternik-Schnirelman category),

which are solutions of the unrestricted problem according to the principle of symmetric criticality (Palais 1979)

The level sets are tori



Existence of sign changing solutions: Del Pino, Musso, Pacard & Pistoia
(2011,2013)

The problem

−∆g0 u +
n(n − 2)

4
u = |u|

4
n−2 u in Sn

has infinitely many sign-changing solutions, which are the superposition of the constant
solution with a large number of negative bubbles which blow-up at points which in turn
are regularly arranged along some minimal submanifolds of Sn.

• These are not invariant under the action of O(2)×O(n − 1)⇒ They are different from
Ding’s solutions!

• The proof relies on a Ljapunov-Schmidt procedure: the parameter is the large number of
negative bubbles!



Concentration on a great circle (n ≥ 3) on Sn
Del Pino, Musso, Pacard & Pistoia (2013))

• Sn ⊂ C× Rn−1

• T1 := S1 × {0} is a great circle of Sn

There exists k0 > 0 such that for any k ≥ k0 there exists
uk solution to

−∆g0 u +
n(n − 2)

4
u = |u|

4
n−2 u in Sn

such that uk has the following invariances

• uk (z, x∗) = uk (z̄, x∗) = uk (z,−x∗) =

uk

(
e

iπ
k z, x∗

)
and as k →∞

• uk → cn uniformly on compact sets of Sn \ T1

• uk blow-up negatively at the 2k points

Pj :=
(

e
πj
k i , 0

)
∈ T1, j = 1, . . . , 2k

R n-1

C

(z,x*) (z,x*)

(z,-x*)

(eip/kz,x*)

T1

T1

Pj=(ei p j/k z,x*)



How this solution looks like in Rn
Del Pino, Musso, Pacard & Pistoia (2011)

The problem

−∆u = |u|
4

n−2 u in Rn

admits infinitely many sign-changing non-radial solutions which are invariant under the
action of Dk ×O(n − 1), where Dk is the dihedral group of R2 for k large enough.

More precisely, there exists k0 > 0 such that for any k ≥ k0

there exists a solution uk such that

uk (y) = U(y)−
k∑
`=1

δ
− n−2

2 U
(

y − ξ`
δ

)
+ φ(y)

where

• U(y) = αn
1

(1+|y|2)
n−2

2
solves −∆U = U

n+2
n−2 in Rn

• the concentration parameter δ ∼ 1
k2 if n ≥ 4, 1

(k log k)2 if n = 3

• the concentration points ξ` ∼
(

e
2π`

k i , 0
)
∈ S1 × Rn−2

• the remainder term φ is invariant under the action of a suitable
group of symmetries



R4 has a richer topology than R3: Hopf fibration

• S3 ⊂ C× C = R4 and S2 ⊂ C× R = R3

• h : S3 → S2, h(z1, z2) :=
(
2z1z̄2, |z1|2 − |z2|2

)
is

the Hopf map

• Each fiber over a point of S2 is a great circle in S3

• Fibers over different points are linked great circles
in S3, i.e. Hopf link

• Each fiber over a circle S1 ⊂ S2 is a torus in S3, i.e.
Clifford torus

Hopf link
Clifford Torus



Concentration on q great circles which are linked (n ≥ 4) Del Pino, Musso, Pacard & Pistoia (2013)

• Sn ⊂ C× C× Rn−3

• Λ0 :=
{

1√
2

(z, z, 0̂) : z ∈ S1
}

is a great circle of Sn

• for any q ≥ 1 let tq : Sn → Sn be tq(z1, z2, x∗) =

(
e−

iπ
q z1, e

iπ
q z2, x∗

)
• Λ := Λ0 ∪ tqΛ0 ∪ · · · ∪ tq−1

q Λ0 is the union of q great circles

• Any two such great circles are linked and correspond to a Hopf link

There exists k0 > 0 such that for any k ≥ k0 there exists a uk solution to

−∆g0 u +
n(n − 2)

4
u = |u|

4
n−2 u in Sn

such that as k →∞

• uk → cn uniformly on compact sets of Sn \ Λ

• uk blow-up negatively at the 2k × q points in Λ

2 linked great circles



How the solution when q = 2 looks like in Rn
Medina, Musso- & Wei (2018)

If n ≥ 4 then the problem

−∆u = |u|
4

n−2 u in Rn

admits infinitely many sign-changing non-radial solutions which are invariant under the
action of Dk ×Dh ×O(n − 3) for k and h large enough.

The solutions look like

u(y) = U(y)−
k∑
`=1

δ−
n−2

2 U
(

y − ξ`
δ

)
−

k∑
j=1

δ−
n−2

2 U
(

y − ηj

ε

)
+ φ(y)

where

• U(y) = αn
1

(1+|y|2)
n−2

2
solves −∆U = U

n+2
n−2 in Rn

• the concentration parameters δ ∼ dn
k2

• the concentration points ξ` ∼
(

e
2π`

k i , 0, 0
)
∈ S1 × R2 × Rn−4

• the concentration points ηj ∼
(

0, 0, e
2πj

h i
)
∈ R2 × S1 × Rn−4

• the remainder term φ is invariant
under the action of a suitable group of symmetries

S1

S1

Sn



Concentration on Clifford torus (n ≥ 5) Del Pino, Musso, Pacard & Pistoia (2013)

• Sn ⊂ C× C× Rn−3

• T2 := 1√
2

(
S1 × S1)× {0} is a Clifford torus of Sn

There exists k0 > 0 such that for any k ≥ k0 there exists
uk solution to

−∆g0 u +
n(n − 2)

4
u = |u|

4
n−2 u in Sn

such that and as k →∞

• uk → cn uniformly on compact sets of Sn \ T2

• uk blow-up negatively at the (2k)2 points of T2

T2: Clifford Torus

On top of 2k linked great circles we put 2k negative bubbles

Pjl=(ei p j/k z1,e
i p l/k z2,x*)

T2



Let us go back to the system...



...and remind

Whenever there exists a of sign-changing solutions to the single equation

−∆w = |w |p−1w in Rn

hopefully (using the same strategy) one could try to find a positive solution to the system

(S)


−∆ui =

m∑
j=1

βij u
p+1

2
j u

p−1
2

i in Rn, i = 1, . . . ,m

u1, . . . , um ∈ D1,2(Rn)

in the competitive case, i.e. βij < 0



Ding’s result

Ding found (via variational tools) infinitely many sign-changing symmetric solutions to

−∆u = |u|
4

n−2 u in Rn



Competitive systems Clapp & Pistoia (2018)

In the competitive case, i.e. β < 0, the system

(Sβ)


−∆u = µ1up + βu

p−1
2 v

p+1
2 in Rn,

−∆v = µ2vp + βu
p+1

2 v
p−1

2 in Rn,

u, v ∈ D1,2(Rn),

has a positive (symmetric) solution (uβ , vβ).

Moreover, it is a non-syncronized solution when β → −∞, since a phase separation
phenomenon occurs.

More precisely:

• uβ → u∞ and vβ → v∞ strongly in D1,2(Rn) as β → −∞

• The function w := u∞ − v∞ is a sign-changing solution to

−∆w = µ1

(
w+
)p
− µ2

(
w−
)p

in Rn ⇒ u∞v∞ ≡ 0 in Rn

• {u∞ > 0} ∼= Sk−1 × Bn+1−k and {v∞ > 0} ∪ {∞} ∼= Bk × Sn−k are a partition of Rn

The level sets are tori
{u∞ = v∞ = 0} is the green one



Some comments

Our results concerns competitive systems with only two components!
Clapp and Szulkin (2019), Clapp, Saldaña and Szulkin (2019) extended the result to
systems with an arbitrary number of components in a fully competitive regime, i.e. all
the βij ’s are negative.

The proof relies on a variational argument similar to the one used by Ding when he shows
the existence of sign-changing solutions to the single equation.



The proof: The variational setting

• Let D := D1,2(Rn)× D1,2(Rn). The solutions to the system (Sβ) are the critical points of
the C1-functional E : D→ R

E(u, v) =
1
2

∫
Rn

(
|∇u|2 + |∇v |2

)
−

1
2∗

∫
Rn

(
µ1|u|2

∗
+ µ2|v |2

∗
+ 2β|u|

2∗
2 |v |

2∗
2

)
.

• The fully non-trivial solutions lie on the set

N := {(u, v) ∈ D : u 6= 0, v 6= 0, ∂uE(u, v)u = 0, ∂v E(u, v)v = 0},

called the Nehari manifold. N has the following properties:
• N is a closed C1-submanifold of codimension 2 of D.
• It is a natural constraint for E , i.e. a critical point of the restriction of E toN is a critical point of E .
• Every (u, v) inN is fully non-trivial.

• D ↪→ L2∗ (Rn)× L2∗ (Rn) is not compact⇒ inf
(u,v)∈N

E(u, v) is not attained!



The proof: How to recover the compactness

• Let Γ = O(k)×O(n + 1− k) ⊂ O(n + 1) for 2 ≤ k ≤ n − 1.

• Γ acts isometrically on the unit sphere Sn ⊂ Rn+1.

• Γ acts conformally on Rn via the stereographic projection π : Sn r {S} → Rn.

• A function u ∈ D1,2(Rn) is Γ-invariant if su = u. Set

DΓ := {(u, v) ∈ D : u and v are Γ-invariant}.

• The Γ-orbit Γx := {sx : s ∈ Γ} ∼= Sk−1 × Sn−k or ∼= Sk−1 or ∼= Sn−k .

• 1 ≤ dim(Γx) ≤ n − 1 ⇒ DΓ ↪→ L2∗ (Rn)× L2∗ (Rn) is compact

• E : N Γ → R satisfies the Palais-Smale condition, where

N Γ := {(u, v) ∈ N : u and v are Γ-invariant}

• The critical points of E : N Γ → R are Γ-invariant solutions to the system (Sβ).

• E has infinitely many critical points and a positive minimizer onN Γ

(via a refined Ljusternik-Schnirelmann category result due to Szulkin (1988))

• The system (Sβ) has infinitely many Γ−invariant solutions and a least energy positive solution.

The level sets are tori



The proof: Phase separation

For β → −∞, let (uβ , vβ) ∈ N Γ
β satisfy uβ ≥ 0, vβ ≥ 0 and Eβ(uβ , vβ) = minN Γ

β
Eβ .

Then, after passing to a subsequence,

• uβ → u∞ and vβ → v∞ strongly in D1,2(Rn)Γ,

•

Eβ(uβ , vβ) is bounded ⇒ β︸︷︷︸
↓
−∞

∫
Rn
|uβ |

2∗
2 |vβ |

2∗
2︸ ︷︷ ︸

↓
0

is bounded ⇒ u∞ · v∞ ≡ 0 in Rn

• w := u∞ − v∞ is a Γ−invariant least energy sign-changing solution to the single equation

−∆w = µ1(w+)p − µ2(w−)p in Rn.

• The domains
{y ∈ Rn : u∞(y) > 0} ∼= Sk−1 × Bn+1−k

and
{y ∈ Rn : v∞(y) > 0} ∪ {∞} ∼= Bk × Sn−k

are a Γ-invariant partition of Rn

• The interface
{u∞ = v∞ = 0} ∼= Sk−1 × Sn−k

The level sets are tori



Del Pino, Musso, Pacard & Pistoia’s result

We built (via a Ljapunov-Schmidt procedure) infinitely many sign-changing solutions to

−∆u = |u|
4

n−2 u in Rn

which are the superposition of one positive bubble and a large number of negative
bubbles which blow-up at points which in turn are regularly arranged along one or more
(linked) great circles of Rn.



Competitive systems in 3D Guo, Li & Wei (2014)

In the competitive case, i.e. β < 0, the system in R3{
−∆u = u5 + βu2v3 in R3,

−∆v = v5 + βu3v2 in R3

admits infinitely many positive non-radial and non-syncronized solutions.

More precisely, there exists k0 > 0 such that for any k ≥ k0

there exists a solution (uk , vk ) such that

uk (y) = U(y) + φ(y)

vk (y) =
k∑
`=1

1
√
δ

U
(

y − ξ`
δ

)
+ ψ(y)

where
• U(y) = α3

1(
1+|y|2

) 1
2

solves−∆U = U5 in R3

• the concentration parameter δ = δ(k) → 0

• the concentration points ξ` ∼
(

e
2π`

k i
, 0

)
∈ S1 × R

• the remainder terms φ,ψ are invariant under the action of a suitable group of symmetries

u
k

v
k



Look!

Guo, Li & Wei constructed positive solutions to
the competitive system, i.e. β < 0{

−∆u = u5 + βu2v3 in R3,

−∆v = v5 + βu3v2 in R3

u
k

v
k

Del Pino, Musso, Pacard and Pistoia
constructed sign-changing solutions to the
equation

−∆w = w5 in R3



A couple of questions

Q1: is it possible to find solutions to systems in higher dimensions n ≥ 4?

Q2: is it possible to find solutions to systems with more than 2 components?

Partial positive answers: Chen, Medina & Pistoia (2023)
• Q1: Yes!

• Q2: Yes!



Our results



A system with 2 components in R4
Chen, Medina & Pistoia (2021)

If β < 0 small enough the system{
−∆u = u3 + βuv2 in R4,

−∆v = v3 + βvu2 in R4

admits an arbitrary large number of non-radial and non-syncronized solutions.

More precisely, for any even integer k ≥ 2 there exists βk < 0 such that
for any β ∈ (βk , 0) there exists a solution

u(y) = U(y) + φ(y)

v(y) =
k∑
`=1

1
δ

U
(

y − ξ`
δ

)
+ ψ(y)

where
• U(y) = α4

1
1+|y|2

solves−∆U = U3 in R4

• the concentration parameter δ ∼ e
− d
|β| as |β| → 0 (for some d > 0)

• the k concentration points ξ1, . . . ξk belong to a great circle S1 and are the vertices of a
regular polygon

• the remainder terms φ,ψ are invariant under the action of a suitable group of symmetries

u
k

v
k



A system with q + 1 components in R4
Chen, Medina & Pistoia (2021)

For any α ∈ R, if β < 0 small enough the system
−∆u = u3 + βu

q∑
j=1

v2
j in R4

−∆vi = v3
i + βvi u2 + αvi

q∑
j 6=i

v2
j in R4, i = 1, . . . , q

admits an arbitrary large number of non-radial and non-syncronized solutions.

More precisely, for any even integer k ≥ 2 there exists βk < 0 such that for any β ∈ (βk , 0) there exists a
solution

• u(y) = U(y) + φ, U(y) = α4
1

1+|y|2
solves −∆U = U3 in R4

• vi (x) = v(Si x), if i = 1, . . . , q, v(y) =
k∑̀
=1

1
δU
(

y−ξ`
δ

)
+ ψ

• Si :=


R
(

2(i−1)π
qk

)
0

0 R
(
− 2(i−1)π

qk

)
 , S1 = Identity whereR(θ) =

cos θ − sin θ

sin θ cos θ

 ,

• the concentration parameter δ ∼ e
− d
|β| as |β| → 0 (for some d > 0)

• the k concentration points ξ1, . . . ξk belong to a great circle S1 and are the vertices of a regular polygon

• the remainder terms φ, ψ are invariant under the action of a suitable group of symmetries
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k∑̀
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δU
(

y−ξ`
δ
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+ ψ

• Si :=
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2(i−1)π
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0
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(
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If q = 1 ...

the system {
−∆u = u3 + βuv2 in R4,

−∆v = v3 + βvu2 in R4

has a solution (u, v) such that
u ∼ U

and

v blows-up at k points regularly arranged long the great circle S1 :=
{

x2
1 + x2

2 = x2
3 + x2

4 = 1
}

R2
R2

S1

The peaks of v



If q ≥ 2 ...

the system 
−∆u = u3 + βu

q∑
j=1

v2
j in R4

−∆vi = v3
i + βvi u2 + αvi

q∑
j 6=i

v2
j in R4, i = 1, . . . , q

has a solution (u, v1, . . . , vq) such that

• u ∼ U

• each component vi blows-up at k points regularly arranged along the great circle Si

• Si with Sj (i 6= j) is an Hopf link.

Si

R2
R2

The peaks of vi

Sj

R2

R2

The peaks of vj



The proof



Reducing the system to a non-local system via symmetries
−∆u = u3 + βu

q∑
j=1

v2
j in R4

−∆vi = v3
i + βvi u2 + αvi

q∑
j 6=i

v2
j in R4, i = 1, . . . , q

We look for a symmetric solution

u(x) = u(Si x) and vi (x) = v(Si x) if i = 1, . . . , q

where

Si :=


R
(

2(i−1)π
qk

)
0

0 R
(
− 2(i−1)π

qk

)
 , R(θ) =

cos θ − sin θ

sin θ cos θ


where (u, v) solves the non-local system (with only 2 equations)

−∆u = u3 + βu
q∑

j=1

v2(Sj x)

︸ ︷︷ ︸
non-local term

in R4

−∆v = v3 + βvu2 + αv
q∑

j=2

v2(Sj x)

︸ ︷︷ ︸
non-local term

in R4,



Finding a solution to the non-local system


−∆u = u3 + βu

q∑
j=1

v2(Sj x) in R4

−∆v = v3 + βvu2 + αv
q∑

j=2

v2(Sj x) in R4,

Using a Ljapunov-Schmidt procedure, for any even integer k we build a solution

u(x) = U(x) + φ and v(x) =
k∑
`=1

1
δ

U
(

x − ξ`
δ

)
+ ψ

where

• the concentration parameter δ ∼ e−
d
|β| for some d > 0 as β → 0

• the k concentration points ξ1, . . . , ξk ∈ S1 :=
{

x2
1 + x2

2 = x2
3 + x2

4 = 1
}

and

ξ` ∼
√

2
(

cos
2(`− 1)π

k
, sin

2(`− 1)π

k
, cos

2(`− 1)π

k
, sin

2(`− 1)π

k

)
as β → 0

• the remainder terms φ, ψ are invariant under the action of a suitable group of symmetries



Some remarks

−∆ui = βii u
p
i +

∑
j 6=i

βij u
p−1

2
i u

p+1
2

j︸ ︷︷ ︸
coupling term

in Rn,

We can build solutions using the Ljapunov-Schmidt procedure only when n = 3 or n = 4.

• n = 3⇒ p = 5⇒ u3
j u2

i is superlinear in both uj and ui

Guo, Li & Wei constructed infinitely many solutions for any coupling parameter β < 0 using
the large number k of peaks as a parameter.

• n = 4⇒ p = 3⇒ u2
j ui is superlinear in uj and linear in ui

This is an obstacle to the contraction property that is needed in the fixed point theory. This
is why we need to take βij ’s as a small parameter and to fix the number k of bubbles.
However, we strongly believe that this assumption is due to technical reasons!

• n ≥ 5⇒ p < 3⇒ u
p+1

2
j u

p−1
2

i is sublinear in both uj and ui

The linearized problem becomes singular and new ideas are needed!



Open problems

What happens in higher dimension, i.e. n ≥ 5?

What happens if β < 0 is not small and we take as a parameter the large
number of peaks?
Work in progress with Antonio Fernandez & Maria Medina.

Can we find this kind of solutions in a more general setting, without as-
suming the full symmetry?



A final remark

• Pinwheel solutions, i.e. solutions which have the property that each component is obtained
from the previous one by a rotation,
have been found (using variational arguments) for competitive subcritical (i.e.
1 < p < n+2

n−2 ) systems in the presence of an external radial trapping potential by Clapp &
Pistoia (2023)

−∆ui + V (x)ui = up
i + β

∑
j 6=i

u
p−1

2
i u

p+1
2

j in Rn,

• The critical case p = n+2
n−2 is open!
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