Exponential PDEs in high dimensions

Pierpaolo Esposito Department of Mathematics and Physics University of Roma Tre

P. Esposito May 16, 2024 Analysis of Geometric Singularities

イロト イヨト イヨト イヨト

 (M^2, g) closed Riemannian 2-manifold, Δ_g Laplace-Beltrami operator, $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \ldots$ eigenvalues of $-\Delta_g$

イロト イヨト イヨト イヨト 三日

 (M^2, g) closed Riemannian 2-manifold, Δ_g Laplace-Beltrami operator, $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \dots$ eigenvalues of $-\Delta_g$

$$\log \det(-\Delta_g) = \sum_{j=1}^{\infty} \log \lambda_j = -\zeta'(0), \quad \zeta(s) = \sum_{j=1}^{\infty} \lambda_j^{-s} \ (\text{Re } s > 1)$$

イロン スロン メヨン メヨン 三日

 (M^2, g) closed Riemannian 2-manifold, Δ_g Laplace-Beltrami operator, $0 = \lambda_0 < \lambda_1 \leq \lambda_2 \leq \ldots$ eigenvalues of $-\Delta_g$

$$\log \det(-\Delta_g) = \sum_{j=1}^{\infty} \log \lambda_j = -\zeta'(0), \quad \zeta(s) = \sum_{j=1}^{\infty} \lambda_j^{-s} \ (\text{\it Re } s > 1)$$

Polyakov formula: K_g Gaussian curvature of g

 (M^2, g) closed Riemannian 2-manifold, Δ_g Laplace-Beltrami operator, $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \ldots$ eigenvalues of $-\Delta_g$

$$\log \det(-\Delta_g) = \sum_{j=1}^{\infty} \log \lambda_j = -\zeta'(0), \quad \zeta(s) = \sum_{j=1}^{\infty} \lambda_j^{-s} \ (\text{Re } s > 1)$$

Polyakov formula: K_g Gaussian curvature of $g \Rightarrow$

$$\log \frac{\det(-\Delta_{\hat{g}})}{\det(-\Delta_g)} = -\frac{1}{12\pi} \int_M (|\nabla u|_g^2 + 2K_g u) \ dv_g, \quad \hat{g} = e^{2u}g$$

 (M^2, g) closed Riemannian 2-manifold, Δ_g Laplace-Beltrami operator, $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \ldots$ eigenvalues of $-\Delta_g$

$$\log \det(-\Delta_g) = \sum_{j=1}^{\infty} \log \lambda_j = -\zeta'(0), \quad \zeta(s) = \sum_{j=1}^{\infty} \lambda_j^{-s} \ (\text{Re } s > 1)$$

Polyakov formula: K_g Gaussian curvature of $g \Rightarrow$

$$\log \frac{\det(-\Delta_{\hat{g}})}{\det(-\Delta_g)} = -\frac{1}{12\pi} \int_M (|\nabla u|_g^2 + 2K_g u) \ dv_g, \quad \hat{g} = e^{2u}g$$

Based on $\Delta_{\hat{g}} = e^{-2u}\Delta_g$

 (M^2, g) closed Riemannian 2-manifold, Δ_g Laplace-Beltrami operator, $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \dots$ eigenvalues of $-\Delta_g$

$$\log \det(-\Delta_g) = \sum_{j=1}^{\infty} \log \lambda_j = -\zeta'(0), \quad \zeta(s) = \sum_{j=1}^{\infty} \lambda_j^{-s} \ (\text{Re } s > 1)$$

Polyakov formula: K_g Gaussian curvature of $g \Rightarrow$

$$\log \frac{\det(-\Delta_{\hat{g}})}{\det(-\Delta_g)} = -\frac{1}{12\pi} \int_{\mathcal{M}} (|\nabla u|_g^2 + 2K_g u) \ dv_g, \quad \hat{g} = e^{2u}g$$

Based on $\Delta_{\hat{g}} = e^{-2u} \Delta_g$

<u>Fact</u>: c.p.'s on $[g]_1 = \{\hat{g} = e^{2u}g \mid Vol(\hat{g}) = 1\}$ have $K_{\hat{g}} = cost$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

 (M^2, g) closed Riemannian 2-manifold, Δ_g Laplace-Beltrami operator, $0 = \lambda_0 < \lambda_1 \le \lambda_2 \le \ldots$ eigenvalues of $-\Delta_g$

$$\log \det(-\Delta_g) = \sum_{j=1}^{\infty} \log \lambda_j = -\zeta'(0), \quad \zeta(s) = \sum_{j=1}^{\infty} \lambda_j^{-s} \ (\text{Re } s > 1)$$

Polyakov formula: K_g Gaussian curvature of $g \Rightarrow$

$$\log \frac{\det(-\Delta_{\hat{g}})}{\det(-\Delta_g)} = -\frac{1}{12\pi} \int_M (|\nabla u|_g^2 + 2K_g u) \ dv_g, \quad \hat{g} = e^{2u}g$$

Based on $\Delta_{\hat{g}} = e^{-2u} \Delta_g$

<u>Fact</u>: c.p.'s on $[g]_1 = \{\hat{g} = e^{2u}g \mid Vol(\hat{g}) = 1\}$ have $K_{\hat{g}} = cost$.

Application: compactness of isospectral domains/surfaces:

- B. Osgood, R. Phillips, P. Sarnak, JFA '88
- B. Osgood, R. Phillips, P. Sarnak, Ann. Math. '89

 A_g conformally covariant: if $\hat{g} = e^{2u}g$ then $A_{\hat{g}}\psi = e^{-bu}A_g(e^{au}\psi)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

 A_g conformally covariant: if $\hat{g} = e^{2u}g$ then $A_{\hat{g}}\psi = e^{-bu}A_g(e^{au}\psi)$ <u>Branson-Orsted formula</u>: (M^4, g) closed Riemannian 4-manifold, ker $A_g = \{0\}, \ \hat{g} = e^{2u}g$

◆□ → ◆□ → ◆ 三 → ◆ □ → ◆ □ → ◆ □ →

$$\begin{split} A_g \text{ conformally covariant: if } \hat{g} &= e^{2u}g \text{ then } A_{\hat{g}}\psi = e^{-bu}A_g(e^{au}\psi)\\ \underline{\text{Branson-Orsted formula: }} (M^4,g) \text{ closed Riemannian 4-manifold,}\\ &\ker A_g = \{0\}, \, \hat{g} = e^{2u}g \Rightarrow\\ F_{A_g}[u] &= \log \frac{\det A_{\hat{g}}}{\det A_{\sigma}} = \gamma_1 I[u] + \gamma_2 II[u] + \gamma_3 III[u] \quad (\gamma_i \in \mathbb{R}) \end{split}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

 $\begin{array}{l} A_g \text{ conformally covariant: if } \hat{g} = e^{2u}g \text{ then } A_{\hat{g}}\psi = e^{-bu}A_g(e^{au}\psi) \\ \hline \\ \underline{\text{Branson-Orsted formula:}} & (M^4,g) \text{ closed Riemannian 4-manifold,} \\ \ker A_g = \{0\}, \ \hat{g} = e^{2u}g \Rightarrow \\ F_{A_g}[u] = \log \frac{\det A_{\hat{g}}}{\det A_e} = \gamma_1 I[u] + \gamma_2 II[u] + \gamma_3 III[u] \quad (\gamma_i \in \mathbb{R}) \end{array}$

Examples:

- conformal Laplacian $L_g = -\Delta_g + \frac{(n-2)}{4(n-1)}R_g$
- Paneitz operator $P_g = \Delta_g^2 \operatorname{div}(\frac{2}{3}R_gg 2Ric_g) \circ \nabla$
- square of the Dirac operator D_g^2

where R_g , Ric_g are the scalar, Ricci curvature of g

 $\begin{array}{l} A_g \text{ conformally covariant: if } \hat{g} = e^{2u}g \text{ then } A_{\hat{g}}\psi = e^{-bu}A_g(e^{au}\psi)\\ \hline \\ \underline{\text{Branson-Orsted formula:}} & (M^4,g) \text{ closed Riemannian 4-manifold,}\\ \ker A_g = \{0\}, \ \hat{g} = e^{2u}g \Rightarrow\\ F_{A_g}[u] = \log \frac{\det A_{\hat{g}}}{\det A_z} = \gamma_1 I[u] + \gamma_2 II[u] + \gamma_3 III[u] \quad (\gamma_i \in \mathbb{R}) \end{array}$

Examples:

- conformal Laplacian $L_g = -\Delta_g + \frac{(n-2)}{4(n-1)}R_g$
- Paneitz operator $P_g = \Delta_g^2 \operatorname{div}(\frac{2}{3}R_gg 2Ric_g) \circ \nabla$
- square of the Dirac operator p_g^2

where R_g , Ric_g are the scalar, Ricci curvature of g<u>Aim</u>: study the log-determinant of L_g and \mathcal{D}_g^2

 $\begin{array}{l} A_g \text{ conformally covariant: if } \hat{g} = e^{2u}g \text{ then } A_{\hat{g}}\psi = e^{-bu}A_g(e^{au}\psi)\\ \hline \\ \underline{\text{Branson-Orsted formula:}} & (M^4,g) \text{ closed Riemannian 4-manifold,}\\ \text{ker } A_g = \{0\}, \ \hat{g} = e^{2u}g \Rightarrow\\ \hline \\ F_{A_g}[u] = \log \frac{\det A_{\hat{g}}}{\det A_{\sigma}} = \gamma_1 I[u] + \gamma_2 II[u] + \gamma_3 III[u] \quad (\gamma_i \in \mathbb{R}) \end{array}$

Examples:

- conformal Laplacian $L_g = -\Delta_g + \frac{(n-2)}{4(n-1)}R_g$
- Paneitz operator $P_g = \Delta_g^2 \operatorname{div}(\frac{2}{3}R_gg 2Ric_g) \circ \nabla$
- square of the Dirac operator D_g^2

where R_g , Ric_g are the scalar, Ricci curvature of g<u>Aim</u>: study the log-determinant of L_g and \mathcal{D}_{σ}^2

$$\Rightarrow \gamma_2(L_g) = 6\gamma_3(L_g), \quad \gamma_2(\not\!\!D_g^2) = \frac{132}{7}\gamma_3(\not\!\!D_g^2)$$

 W_g Weyl tensor of g, $\hat{g} = e^{2u}g$

P. Esposito May 16, 2024

Analysis of Geometric Singularities

イロト イタト イヨト イヨト 三日

$$W_g$$
 Weyl tensor of g , $\hat{g} = e^{2u}g \Rightarrow$

 $I[u] = 4 \int_{M} |W_g|_g^2 u dv_g - \left(\int_{M} |W_g|_g^2 dv_g\right) \log f_M e^{4u} dv_g$

Analysis of Geometric Singularities

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● のへで

$$W_g$$
 Weyl tensor of g , $\hat{g} = e^{2u}g \Rightarrow$

 $I[u] = 4 \int_{M} |W_g|_g^2 u dv_g - \left(\int_{M} |W_g|_g^2 dv_g\right) \log f_M e^{4u} dv_g$ $II[u] = \int_{M} u P_g u dv_g + 4 \int_{M} Q_g u dv_g - \left(\int_{M} Q_g dv_g\right) \log f_M e^{4u} dv_g$

Analysis of Geometric Singularities

$$W_g$$
 Weyl tensor of g , $\hat{g} = e^{2u}g \Rightarrow$

 $I[u] = 4 \int_{M} |W_g|_g^2 u dv_g - \left(\int_{M} |W_g|_g^2 dv_g\right) \log f_M e^{4u} dv_g$ $II[u] = \int_{M} u P_g u dv_g + 4 \int_{M} Q_g u dv_g - \left(\int_{M} Q_g dv_g\right) \log f_M e^{4u} dv_g$ $III[u] = 12 \int_{M} (\Delta_g u + |\nabla u|_g^2)^2 dv_g - 4 \int_{M} (u \Delta_g R_g + R_g |\nabla u|_g^2) dv_g$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

$$W_g$$
 Weyl tensor of g , $\hat{g} = e^{2u}g \Rightarrow$

$$I[u] = 4 \int_{M} |W_{g}|_{g}^{2} u dv_{g} - (\int_{M} |W_{g}|_{g}^{2} dv_{g}) \log f_{M} e^{4u} dv_{g}$$

$$II[u] = \int_{M} u P_{g} u dv_{g} + 4 \int_{M} Q_{g} u dv_{g} - (\int_{M} Q_{g} dv_{g}) \log f_{M} e^{4u} dv_{g}$$

$$III[u] = 12 \int_{M} (\Delta_{g} u + |\nabla u|_{g}^{2})^{2} dv_{g} - 4 \int_{M} (u \Delta_{g} R_{g} + R_{g} |\nabla u|_{g}^{2}) dv_{g}$$

Each functional \leftrightarrow a natural curvature condition:

$$\begin{split} I'(u) &= 0 & \Leftrightarrow & |W_{\hat{g}}|^2 = const.\\ II'(u) &= 0 & \Leftrightarrow & Q_{\hat{g}} = const.\\ III'(u) &= 0 & \Leftrightarrow & \Delta_{\hat{g}}R_{\hat{g}} = 0 \end{split}$$

(日) (回) (E) (E) (E) (E)

$$W_g$$
 Weyl tensor of g , $\hat{g} = e^{2u}g \Rightarrow$

$$I[u] = 4 \int_{M} |W_{g}|_{g}^{2} u dv_{g} - (\int_{M} |W_{g}|_{g}^{2} dv_{g}) \log f_{M} e^{4u} dv_{g}$$

$$II[u] = \int_{M} u P_{g} u dv_{g} + 4 \int_{M} Q_{g} u dv_{g} - (\int_{M} Q_{g} dv_{g}) \log f_{M} e^{4u} dv_{g}$$

$$III[u] = 12 \int_{M} (\Delta_{g} u + |\nabla u|_{g}^{2})^{2} dv_{g} - 4 \int_{M} (u \Delta_{g} R_{g} + R_{g} |\nabla u|_{g}^{2}) dv_{g}$$

Each functional \leftrightarrow a natural curvature condition:

$$\begin{split} I'(u) &= 0 & \Leftrightarrow & |W_{\hat{g}}|^2 = const. \\ II'(u) &= 0 & \Leftrightarrow & Q_{\hat{g}} = const. \\ III'(u) &= 0 & \Leftrightarrow & \Delta_{\hat{g}}R_{\hat{g}} = 0 \end{split}$$

Based on

$$P_{g}u + 2Q_{g} = 2Q_{\hat{g}}e^{4u}, \quad Q_{g} = \frac{1}{12}(-\Delta_{g}R_{g} + R_{g}^{2} - 3|Ric_{g}|_{g}^{2})$$

・ロン ・回 と ・ヨン ・ヨン

$$W_g$$
 Weyl tensor of g , $\hat{g} = e^{2u}g \Rightarrow$

$$I[u] = 4 \int_{M} |W_{g}|_{g}^{2} u dv_{g} - (\int_{M} |W_{g}|_{g}^{2} dv_{g}) \log f_{M} e^{4u} dv_{g}$$

$$II[u] = \int_{M} u P_{g} u dv_{g} + 4 \int_{M} Q_{g} u dv_{g} - (\int_{M} Q_{g} dv_{g}) \log f_{M} e^{4u} dv_{g}$$

$$III[u] = 12 \int_{M} (\Delta_{g} u + |\nabla u|_{g}^{2})^{2} dv_{g} - 4 \int_{M} (u \Delta_{g} R_{g} + R_{g} |\nabla u|_{g}^{2}) dv_{g}$$

Each functional \leftrightarrow a natural curvature condition:

$$\begin{split} I'(u) &= 0 & \Leftrightarrow & |W_{\hat{g}}|^2 = const.\\ II'(u) &= 0 & \Leftrightarrow & Q_{\hat{g}} = const.\\ III'(u) &= 0 & \Leftrightarrow & \Delta_{\hat{g}}R_{\hat{g}} = 0 \end{split}$$

Based on

$$P_{g}u + 2Q_{g} = 2Q_{\hat{g}}e^{4u}, \quad Q_{g} = \frac{1}{12}(-\Delta_{g}R_{g} + R_{g}^{2} - 3|Ric_{g}|_{g}^{2})$$
Gauss-Bonnet formula: $4\pi^{2}\chi(M) = \int_{M}(\frac{|W_{g}|_{g}^{2}}{8} + Q_{g}) dv_{g}$, where
(*M*) Euler characteristic of *M*

P. Esposito May 16, 2024

Analysis of Geometric Singularities

 $F'_{A_g}(u) = 0 \Leftrightarrow U_{\tilde{g}} = const.,$

P. Esposito May 16, 2024

Analysis of Geometric Singularities

イロト イタト イヨト イヨト 三日

 $F'_{A_g}(u) = 0 \Leftrightarrow U_{\tilde{g}} = const., \ U_g = \gamma_1 |W_g|_g^2 + \gamma_2 Q_g - \gamma_3 \Delta_g R_g$

P. Esposito May 16, 2024

Analysis of Geometric Singularities

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ●

 $F_{A_g}'(u) = 0 \Leftrightarrow U_{\tilde{g}} = const., \ U_g = \gamma_1 |W_g|_g^2 + \gamma_2 Q_g - \gamma_3 \Delta_g R_g$

Conformal invariant quantity: $\kappa_{A_g} = -\int_M U_g dv_g$

$$F_{A_g}'(u) = 0 \Leftrightarrow U_{ ilde{g}} = const., \ U_g = \gamma_1 |W_g|_g^2 + \gamma_2 Q_g - \gamma_3 \Delta_g R_g$$

Conformal invariant quantity: $\kappa_{A_g} = -\int_M U_g dv_g$

<u>E-L eqn</u>: $\mathcal{N}_g(u) + U_g = -k_{A_g} \frac{e^{4u}}{\int_M e^{4u} dv_g}$ where

$$\mathcal{N}_{g}(u) = \frac{\gamma_{2}}{2} P_{g} u + 6\gamma_{3} \Delta_{g} (\Delta_{g} u + |\nabla u|_{g}^{2})$$

-12 γ_{3} div $[(\Delta_{g} u + |\nabla u|_{g}^{2}) \nabla u] + 2\gamma_{3}$ div $(R_{g} \nabla u)$

$$F'_{A_g}(u) = 0 \Leftrightarrow U_{\tilde{g}} = const., \ U_g = \gamma_1 |W_g|_g^2 + \gamma_2 Q_g - \gamma_3 \Delta_g R_g$$
Conformal invariant quantity: $\kappa_{A_g} = -\int_M U_g dv_g$
E-L eqn: $\mathcal{N}_g(u) + U_g = -k_{A_g} \frac{e^{4u}}{\int_M e^{4u} dv_g}$ where
$$\mathcal{N}_g(u) = \frac{\gamma_2}{2} P_g u + 6\gamma_3 \Delta_g (\Delta_g u + |\nabla u|_g^2) - 12\gamma_3 \text{div} [(\Delta_g u + |\nabla u|_g^2) \nabla u] + 2\gamma_3 \text{div} (R_g \nabla u)$$

<u>Difficulty</u>: $\mathcal{N}_g(u) = (\frac{\gamma_2}{2} + 6\gamma_3)\Delta_g^2 u - 12\gamma_3\Delta_{4,g}u + \dots$ is a quasi-linear operator of mixed orders

$$F_{A_g}'(u) = 0 \Leftrightarrow U_{ ilde{g}} = const., \ U_g = \gamma_1 |W_g|_g^2 + \gamma_2 Q_g - \gamma_3 \Delta_g R_g$$

Conformal invariant quantity: $\kappa_{A_g} = -\int_M U_g dv_g$

<u>E-L eqn</u>: $\mathcal{N}_{g}(u) + U_{g} = -k_{A_{g}} \frac{e^{4u}}{\int_{M} e^{4u} dv_{g}}$ where

$$\mathcal{N}_{g}(u) = \frac{\gamma_{2}}{2} P_{g} u + 6\gamma_{3} \Delta_{g} (\Delta_{g} u + |\nabla u|_{g}^{2})$$

-12 γ_{3} div $[(\Delta_{g} u + |\nabla u|_{g}^{2}) \nabla u] + 2\gamma_{3}$ div $(R_{g} \nabla u)$

<u>Difficulty</u>: $\mathcal{N}_g(u) = (\frac{\gamma_2}{2} + 6\gamma_3)\Delta_g^2 u - 12\gamma_3\Delta_{4,g}u + \dots$ is a quasi-linear operator of mixed orders

Existence of extremals: [A. Chang, P. Yang, Ann. Math. '95]

•
$$\gamma_2, \gamma_3 < 0$$
 and $k_{A_g} < 8\pi^2(-\gamma_2)$

• $\gamma_1 = \gamma_3 = 0$: $P_g \ge 0$ with ker $P_g = \mathbb{R}$ and $k_{P_g} < 8\pi^2$

$$F_{A_g}'(u) = 0 \Leftrightarrow U_{ ilde{g}} = const., \ U_g = \gamma_1 |W_g|_g^2 + \gamma_2 Q_g - \gamma_3 \Delta_g R_g$$

Conformal invariant quantity: $\kappa_{A_g} = -\int_M U_g dv_g$

<u>E-L eqn</u>: $\mathcal{N}_{g}(u) + U_{g} = -k_{A_{g}} \frac{e^{4u}}{\int_{M} e^{4u} dv_{g}}$ where

$$\mathcal{N}_{g}(u) = \frac{\gamma_{2}}{2} P_{g} u + 6\gamma_{3} \Delta_{g} (\Delta_{g} u + |\nabla u|_{g}^{2})$$

-12 γ_{3} div $[(\Delta_{g} u + |\nabla u|_{g}^{2}) \nabla u] + 2\gamma_{3}$ div $(R_{g} \nabla u)$

<u>Difficulty</u>: $\mathcal{N}_g(u) = (\frac{\gamma_2}{2} + 6\gamma_3)\Delta_g^2 u - 12\gamma_3\Delta_{4,g}u + \dots$ is a quasi-linear operator of mixed orders

Existence of extremals: [A. Chang, P. Yang, Ann. Math. '95]

•
$$\gamma_2, \gamma_3 < 0$$
 and $k_{\mathcal{A}_g} < 8\pi^2(-\gamma_2)$

• $\gamma_1 = \gamma_3 = 0$: $P_g \ge 0$ with ker $P_g = \mathbb{R}$ and $k_{P_g} < 8\pi^2$

[M. Gursky, CMP '99] $k_{L_g} < 32\pi^2$ if $R_g \ge 0$ except on (\mathbb{S}^4, g_0)

In general $k_{A_g} \leq 8\pi^2(-\gamma_2)$ fails (products of negatively-curved surfaces, hyperbolic manifolds)

イロン イロン イヨン イヨン 三日

In general $k_{A_g} \le 8\pi^2(-\gamma_2)$ fails (products of negatively-curved surfaces, hyperbolic manifolds)

Conformal metrics with Q = const. found as saddle points of II in

• Z. Djadli, A. Malchiodi, Ann. Math. '08

Tools: min-max scheme, improved MT inequalities, compactness

(本間) (本語) (本語) (二語)

In general $k_{A_g} \le 8\pi^2(-\gamma_2)$ fails (products of negatively-curved surfaces, hyperbolic manifolds)

Conformal metrics with Q = const. found as saddle points of *II* in

• Z. Djadli, A. Malchiodi, Ann. Math. '08

Tools: min-max scheme, improved MT inequalities, compactness

Theorem 1 (P.E., A. Malchiodi, JDG '24)

 $\frac{\gamma_2}{\gamma_3} \ge 6$, w_n blow-up sequence of $\mathcal{N}_g(w_n) + U_g = \mu_n e^{4w_n}$ in MThen $\int_M w_n dv_g \to -\infty$ and $\mu_n e^{4w_n} \rightharpoonup 8\pi^2 \gamma_2 \sum \delta_{p_i}$

In general $k_{A_g} \le 8\pi^2(-\gamma_2)$ fails (products of negatively-curved surfaces, hyperbolic manifolds)

Conformal metrics with Q = const. found as saddle points of II in

• Z. Djadli, A. Malchiodi, Ann. Math. '08

Tools: min-max scheme, improved MT inequalities, compactness

Theorem 1 (P.E., A. Malchiodi, JDG '24)

 $\frac{\gamma_2}{\gamma_3} \ge 6$, w_n blow-up sequence of $\mathcal{N}_g(w_n) + U_g = \mu_n e^{4w_n}$ in MThen $\int_M w_n dv_g \to -\infty$ and $\mu_n e^{4w_n} \rightharpoonup 8\pi^2 \gamma_2 \sum \delta_{p_i}$

We find conformal metrics with U = const. as saddle points of F_{A_g} :

Theorem 2 (P.E., A. Malchiodi, JDG '24)

 $\frac{\gamma_2}{\gamma_3} \ge 6$, *M* compact manifold s.t. $k_{A_g} \notin 8\pi^2(-\gamma_2)\mathbb{N}$ Then $\exists \ \tilde{g} \in [g]$ with $U_{\tilde{g}} = const$.

P. Esposito May 16, 2024

- T. Branson, A. Chang, P. Yang, CMP '92 ["unique" maximizer for $F_{L_{g_0}}$ and $F_{D_{g_0}^2}$]
- M. Gursky, CMP '97 ["unique" c.p. for $F_{L_{g_0}}$ and $F_{\mathcal{D}_{g_0}^2}$]
- M. Gursky, A. Malchiodi, CMP '12 [non-uniqueness for $\gamma_2 < 0 < \gamma_3$]

イロン イヨン イヨン 一日

- T. Branson, A. Chang, P. Yang, CMP '92 ["unique" maximizer for $F_{L_{g_0}}$ and $F_{\mathcal{P}^2_{g_0}}$]
- M. Gursky, CMP '97 ["unique" c.p. for $F_{L_{g_0}}$ and $F_{p_{g_0}^2}$]
- M. Gursky, A. Malchiodi, CMP '12 [non-uniqueness for $\gamma_2 < 0 < \gamma_3$]

Via stereographic projection $F'_{L_{g_0}}(w) = 0$ on (\mathbb{S}^4, g_0) equivalent to

 $3\Delta^2 W + 2\Delta(|\nabla W|^2) - 4\text{div} \left[(\Delta W + |\nabla W|^2)\nabla W\right] = 16\pi^2 e^{4W}$

in \mathbb{R}^4 with $W \sim -2\log|x|$ at infinity.

- T. Branson, A. Chang, P. Yang, CMP '92 ["unique" maximizer for $F_{L_{g_0}}$ and $F_{\mathcal{D}^2_{g_0}}$]
- M. Gursky, CMP '97 ["unique" c.p. for $F_{L_{g_0}}$ and $F_{p_{g_0}^2}$]
- M. Gursky, A. Malchiodi, CMP '12 [non-uniqueness for $\gamma_2 < 0 < \gamma_3$]

Via stereographic projection $F'_{L_{g_0}}(w) = 0$ on (\mathbb{S}^4, g_0) equivalent to

 $3\Delta^2 W + 2\Delta(|\nabla W|^2) - 4\text{div} \left[(\Delta W + |\nabla W|^2)\nabla W\right] = 16\pi^2 e^{4W}$

in \mathbb{R}^4 with $W \sim -2 \log |x|$ at infinity. Solutions are classified as translations and dilations of

$$W = \log(rac{2}{1+|x|^2})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

- T. Branson, A. Chang, P. Yang, CMP '92 ["unique" maximizer for $F_{L_{g_0}}$ and $F_{\mathcal{D}^2_{g_0}}$]
- M. Gursky, CMP '97 ["unique" c.p. for $F_{L_{g_0}}$ and $F_{p_{g_0}^2}$]
- M. Gursky, A. Malchiodi, CMP '12 [non-uniqueness for $\gamma_2 < 0 < \gamma_3$]

Via stereographic projection $F'_{L_{g_0}}(w) = 0$ on (\mathbb{S}^4, g_0) equivalent to

$$3\Delta^2 W + 2\Delta(|\nabla W|^2) - 4 \text{div} \left[(\Delta W + |\nabla W|^2)\nabla W\right] = 16\pi^2 e^{4W}$$

in \mathbb{R}^4 with $W\sim -2\log|x|$ at infinity. Solutions are classified as translations and dilations of

$$W = \log(\frac{2}{1+|x|^2})$$

Question: $\int_{\mathbb{R}^4} e^{4W} < +\infty$ does it implies $W \sim -2\log|x|$ at ∞ ?

(日)
Simplified problem: retain $\Delta_{4,g}$ in \mathcal{N}_g and consider it in general dimensions $n\geq 2$

Simplified problem: retain $\Delta_{4,g}$ in \mathcal{N}_g and consider it in general dimensions $n \geq 2$

Arises also in

 $-\Delta_{n,g}u + |\nabla u|_g^{n-2}\operatorname{Ric}_g(\nabla u, \nabla u) = |\nabla u|_{\hat{g}}^{n-2}\operatorname{Ric}_{\hat{g}}(\nabla u, \nabla u)e^{nu}$

see

• S. Ma, J. Qing, Calc. Var '21 & Adv. Math. '22

The *n*-Liouville equation

Consider the euclidean quasilinear PDE

$$-\Delta_n u = V e^u \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega \tag{P}$$

Analysis of Geometric Singularities

イロン 人間 とくほ とくほとう

The *n*-Liouville equation

Consider the euclidean quasilinear PDE

$$-\Delta_n u = V e^u \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega \tag{P}$$

 $\Delta_n u = \operatorname{div}(|\nabla u|^{n-2}\nabla u) \ n-\text{Laplace operator, } \Omega \subset \mathbb{R}^n, \ n \ge 2 \text{ and} \\ 0 < a \le V \le b < +\infty, \quad |\nabla V| \le b$ (V)

The *n*-Liouville equation

Consider the euclidean quasilinear PDE

$$-\Delta_n u = V e^u \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega \tag{P}$$

$$\begin{split} \Delta_n u &= \operatorname{div}(|\nabla u|^{n-2}\nabla u) \ n-\text{Laplace operator}, \ \Omega \subset \mathbb{R}^n, \ n \geq 2 \text{ and} \\ 0 &< a \leq V \leq b < +\infty, \quad |\nabla V| \leq b \end{split} \tag{V}$$

<u>Planar case n = 2</u>: arises in conformal geometry, statistical and fluid mechanics, Chern-Simons theories;

- 日本 - 日本 - 日本

Consider the euclidean quasilinear PDE

$$-\Delta_n u = V e^u \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega \tag{P}$$

 $\Delta_n u = \operatorname{div}(|\nabla u|^{n-2}\nabla u) \ n-\text{Laplace operator}, \ \Omega \subset \mathbb{R}^n, \ n \ge 2 \text{ and} \\ 0 < a \le V \le b < +\infty, \quad |\nabla V| \le b$ (V)

<u>Planar case n = 2</u>: arises in conformal geometry, statistical and fluid mechanics, Chern-Simons theories; well studied on Euclidean domains or on closed Riemannian surfaces

- H. Brézis, F. Merle, Comm. PDE '91
- Y.Y. Li, I. Shafrir, Indiana Univ. Math. J. '94
- Y.Y. Li, Comm. Math. Phys. '99
- C.C. Chen, C.S. Lin, Comm. Pure Appl. Math. '02 & '03

イロト イヨト イヨト

Question: n > 2?

<ロ> <同> <同> < 同> < 同> < 同> < 同> = 三目

Question: n > 2? A concentration-compactness principle:

- X. Ren, J. Wei, J. Differential Equations '95
- J.A. Aguilar, I. Peral, Nonlinear Anal. '97

Question: n > 2? A concentration-compactness principle:

- X. Ren, J. Wei, J. Differential Equations '95
- J.A. Aguilar, I. Peral, Nonlinear Anal. '97

Theorem 3 (P.E., F. Morlando, JMPA '15)

Let u_k be solutions of (P) with V_k satisfying (V) and $\sup_{k \in \mathbb{N}} \int_{\Omega} e^{u_k} < +\infty \quad \& \quad \sup_{k \in \mathbb{N}} osc_{\partial\Omega} u_k < +\infty$

ヘロト ヘ回ト ヘヨト ヘヨト

Question: n > 2? A concentration-compactness principle:

- X. Ren, J. Wei, J. Differential Equations '95
- J.A. Aguilar, I. Peral, Nonlinear Anal. '97

Theorem 3 (P.E., F. Morlando, JMPA '15)

Let u_k be solutions of (P) with V_k satisfying (V) and $\sup_{k \in \mathbb{N}} \int_{\Omega} e^{u_k} < +\infty \qquad \& \qquad \sup_{k \in \mathbb{N}} osc_{\partial\Omega} u_k < +\infty$ Up to subsequences, either (i) u_k^+ is uniformly bounded in $L^{\infty}_{loc}(\Omega)$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Question: n > 2? A concentration-compactness principle:

- X. Ren, J. Wei, J. Differential Equations '95
- J.A. Aguilar, I. Peral, Nonlinear Anal. '97

Theorem 3 (P.E., F. Morlando, JMPA '15)

Let u_k be solutions of (P) with V_k satisfying (V) and $\sup_{k \in \mathbb{N}} \int_{\Omega} e^{u_k} < +\infty \qquad \& \qquad \sup_{k \in \mathbb{N}} osc_{\partial\Omega} u_k < +\infty$ Up to subsequences, either (i) u_k^+ is uniformly bounded in $L^{\infty}_{loc}(\Omega)$ or (ii) \exists a finite blow-up set $\emptyset \neq S \subset \overline{\Omega}$ s.t. $u_k \to -\infty$ in $L^{\infty}_{loc}(\Omega \setminus S)$ and $V_k e^{u_k} \rightharpoonup c_n \omega_n \sum_{p \in S \cap \Omega} \delta_p$ in Ω as $k \to +\infty$

イロト イポト イヨト イヨト

Question: n > 2? A concentration-compactness principle:

- X. Ren, J. Wei, J. Differential Equations '95
- J.A. Aguilar, I. Peral, Nonlinear Anal. '97

Theorem 3 (P.E., F. Morlando, JMPA '15)

Let u_k be solutions of (P) with V_k satisfying (V) and $\sup_{k \in \mathbb{N}} \int_{\Omega} e^{u_k} < +\infty \qquad \& \qquad \sup_{k \in \mathbb{N}} osc_{\partial\Omega} u_k < +\infty$ Up to subsequences, either (i) u_k^+ is uniformly bounded in $L^{\infty}_{loc}(\Omega)$ or (ii) \exists a finite blow-up set $\emptyset \neq S \subset \overline{\Omega}$ s.t. $u_k \to -\infty$ in $L^{\infty}_{loc}(\Omega \setminus S)$ and $V_k e^{u_k} \rightharpoonup c_n \omega_n \sum_{p \in S \cap \Omega} \delta_p$ in Ω as $k \to +\infty$

If $osc_{\partial\Omega}u_k = 0$, (i)-(ii) do hold in $\overline{\Omega}$ with $S \subset \Omega$ in case (ii).

Question: n > 2? A concentration-compactness principle:

- X. Ren, J. Wei, J. Differential Equations '95
- J.A. Aguilar, I. Peral, Nonlinear Anal. '97

Theorem 3 (P.E., F. Morlando, JMPA '15)

Let u_k be solutions of (P) with V_k satisfying (V) and $\sup_{k \in \mathbb{N}} \int_{\Omega} e^{u_k} < +\infty \qquad \& \qquad \sup_{k \in \mathbb{N}} osc_{\partial\Omega} u_k < +\infty$ Up to subsequences, either (i) u_k^+ is uniformly bounded in $L^{\infty}_{loc}(\Omega)$ or (ii) \exists a finite blow-up set $\emptyset \neq S \subset \overline{\Omega}$ s.t. $u_k \to -\infty$ in $L^{\infty}_{loc}(\Omega \setminus S)$ and $V_k e^{u_k} \rightharpoonup c_n \omega_n \sum_{p \in S \cap \Omega} \delta_p$ in Ω as $k \to +\infty$

If $osc_{\partial\Omega}u_k = 0$, (i)-(ii) do hold in $\overline{\Omega}$ with $S \subset \Omega$ in case (ii).

<u>Notation</u>: $c_n = n(\frac{n^2}{n-1})^{n-1}$

P. Esposito May 16, 2024

Analysis of Geometric Singularities

イロン スロン スロン スロン 一日

For $\lambda \notin c_n \omega_n \mathbb{N}$ Theorem 3 gives compactness for solutions of

$$-\Delta_n u = \lambda \frac{V e^u}{\int_{\Omega} V e^u} \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega \qquad (P)_{\lambda}$$

(日) (回) (E) (E) (E) (E)

For $\lambda \notin c_n \omega_n \mathbb{N}$ Theorem 3 gives compactness for solutions of

$$-\Delta_n u = \lambda \frac{V e^u}{\int_{\Omega} V e^u} \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega \qquad (P)_{\lambda}$$

Theorem 4 (P.E., F. Morlando, JMPA '15)

If
$$\mathfrak{B}_m(\Omega) = \{\sum_{i=1}^m t_i \delta_{p_i} : t_i \ge 0, \sum_{i=1}^m t_i = 1, p_i \in \Omega\}$$
 is non contractible, then $(P)_{\lambda}$ is solvable for $\lambda \in c_n \omega_n(m, m+1)$

イロン 人間 とくほ とくほとう

For $\lambda \notin c_n \omega_n \mathbb{N}$ Theorem 3 gives compactness for solutions of

$$-\Delta_n u = \lambda \frac{V e^u}{\int_{\Omega} V e^u} \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega \qquad (P)_{\lambda}$$

Theorem 4 (P.E., F. Morlando, JMPA '15)

If
$$\mathfrak{B}_m(\Omega) = \{\sum_{i=1}^m t_i \delta_{p_i} : t_i \ge 0, \sum_{i=1}^m t_i = 1, p_i \in \Omega\}$$
 is non contractible, then $(P)_{\lambda}$ is solvable for $\lambda \in c_n \omega_n(m, m+1)$

- W. Ding, J. Jost, J. Li, G. Wang, AIHP '99
- Z. Djadli, A. Malchiodi, Ann. Math. '08
- Z. Djadli, Commun. Contemp. Math. '08

(4回) (1日) (日)

For $\lambda \notin c_n \omega_n \mathbb{N}$ Theorem 3 gives compactness for solutions of

$$-\Delta_n u = \lambda \frac{V e^u}{\int_{\Omega} V e^u} \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega \qquad (P)_{\lambda}$$

Theorem 4 (P.E., F. Morlando, JMPA '15)

If
$$\mathfrak{B}_m(\Omega) = \{\sum_{i=1}^m t_i \delta_{p_i} : t_i \ge 0, \sum_{i=1}^m t_i = 1, p_i \in \Omega\}$$
 is non contractible, then $(P)_{\lambda}$ is solvable for $\lambda \in c_n \omega_n(m, m+1)$

- W. Ding, J. Jost, J. Li, G. Wang, AIHP '99
- Z. Djadli, A. Malchiodi, Ann. Math. '08
- Z. Djadli, Commun. Contemp. Math. '08

Alternative approaches: via degree (blow-up analysis misses)

イロト イヨト イヨト

For $\lambda \notin c_n \omega_n \mathbb{N}$ Theorem 3 gives compactness for solutions of

$$-\Delta_n u = \lambda \frac{V e^u}{\int_{\Omega} V e^u} \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega \qquad (P)_{\lambda}$$

Theorem 4 (P.E., F. Morlando, JMPA '15)

If
$$\mathfrak{B}_m(\Omega) = \{\sum_{i=1}^m t_i \delta_{p_i} : t_i \ge 0, \sum_{i=1}^m t_i = 1, p_i \in \Omega\}$$
 is non contractible, then $(P)_{\lambda}$ is solvable for $\lambda \in c_n \omega_n(m, m+1)$

- W. Ding, J. Jost, J. Li, G. Wang, AIHP '99
- Z. Djadli, A. Malchiodi, Ann. Math. '08
- Z. Djadli, Commun. Contemp. Math. '08

<u>Alternative approaches</u>: via degree (blow-up analysis misses); via perturbative methods (difficult due to nonlinearity of Δ_n)

P. Esposito May 16, 2024

Analysis of Geometric Singularities

Aim: classify solutions of

$$-\Delta_n U = e^U$$
 in \mathbb{R}^n , $\int_{\mathbb{R}^n} e^U < \infty$ $(P)_{\infty}$

P. Esposito May 16, 2024

Analysis of Geometric Singularities

イロン イヨン イヨン イヨン

Ξ

Aim: classify solutions of

$$-\Delta_n U = e^U$$
 in \mathbb{R}^n , $\int_{\mathbb{R}^n} e^U < \infty$ $(P)_\infty$

Scaling and translation invariance \Rightarrow explicit solutions $U_{\lambda,p}$:

$$U_{\lambda,p}(x) = \log rac{c_n \lambda^n}{(1+\lambda^{rac{n}{n-1}}|x-p|^{rac{n}{n-1}})^n} \qquad \lambda>0, \ p\in \mathbb{R}^n$$

イロト イヨト イヨト イヨト

Aim: classify solutions of

$$-\Delta_n U = e^U$$
 in \mathbb{R}^n , $\int_{\mathbb{R}^n} e^U < \infty$ $(P)_\infty$

Scaling and translation invariance \Rightarrow explicit solutions $U_{\lambda,p}$:

$$U_{\lambda,p}(x) = \log rac{c_n \lambda^n}{(1+\lambda^{rac{n}{n-1}}|x-p|^{rac{n}{n-1}})^n} \qquad \lambda>0, \ p\in \mathbb{R}^n$$

Quantization: $\int_{\mathbb{R}^n} e^{U_{\lambda,p}} = c_n \omega_n$

(日) (回) (E) (E) (E) (E)

Aim: classify solutions of

$$-\Delta_n U = e^U$$
 in \mathbb{R}^n , $\int_{\mathbb{R}^n} e^U < \infty$ $(P)_\infty$

Scaling and translation invariance \Rightarrow explicit solutions $U_{\lambda,p}$:

$$U_{\lambda,p}(x) = \log rac{c_n \lambda^n}{(1+\lambda^{rac{n}{n-1}}|x-p|^{rac{n}{n-1}})^n} \qquad \lambda>0, \ p\in \mathbb{R}^n$$

Quantization: $\int_{\mathbb{R}^n} e^{U_{\lambda,p}} = c_n \omega_n$

Theorem 5 (P.E., AIHP '18)

Any solution U of $(P)_{\infty}$ has the form $U_{\lambda,p}$. In particular $\int_{\mathbb{R}^n} e^U = c_n \omega_n$

P. Esposito May 16, 2024

Analysis of Geometric Singularities

イロト イポト イヨト イヨト

- J. Liouville, J. de Math. 1853 [via complex analysis]
- W. Chen, C. Li, Duke Math. J. '91 [via moving planes]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- J. Liouville, J. de Math. 1853 [via complex analysis]
- W. Chen, C. Li, Duke Math. J. '91 [via moving planes]

Liouville approach: integrability & the Liouville theorem in $\mathbb C$

(1日) (1日) (日)

- J. Liouville, J. de Math. 1853 [via complex analysis]
- W. Chen, C. Li, Duke Math. J. '91 [via moving planes]

Liouville approach: integrability & the Liouville theorem in $\mathbb C$

<u>Chen-Li approach</u>: integral representation of U to deduce logarithmic behavior of U at ∞ in terms of $\int_{\mathbb{R}^2} e^U$

- J. Liouville, J. de Math. 1853 [via complex analysis]
- W. Chen, C. Li, Duke Math. J. '91 [via moving planes]

Liouville approach: integrability & the Liouville theorem in $\mathbb C$

<u>Chen-Li approach</u>: integral representation of U to deduce logarithmic behavior of U at ∞ in terms of $\int_{\mathbb{R}^2} e^U$ & $\int_{\mathbb{R}^2} e^U \ge 8\pi$ via an isoperimetric argument

- 日本 - 日本 - 日本

- J. Liouville, J. de Math. 1853 [via complex analysis]
- W. Chen, C. Li, Duke Math. J. '91 [via moving planes]

Liouville approach: integrability & the Liouville theorem in $\mathbb C$

<u>Chen-Li approach</u>: integral representation of U to deduce logarithmic behavior of U at ∞ in terms of $\int_{\mathbb{R}^2} e^U$ & $\int_{\mathbb{R}^2} e^U \ge 8\pi$ via an isoperimetric argument \Rightarrow enough decay to carry out a simple MP approach

(1日) (1日) (日)

• no integral representation for a solution U of $(P)_{\infty}$

(日) (回) (E) (E) (E) (E)

- no integral representation for a solution U of $(P)_{\infty}$
- the lack of comparison/maximum principles on thin strips makes difficult the moving plane method

- 日本 - 日本 - 日本

- no integral representation for a solution U of $(P)_{\infty}$
- the lack of comparison/maximum principles on thin strips makes difficult the moving plane method
- $(P)_{\infty}$ is not invariant under Kelvin transform

・ロット (四) (山) (日) (日)

- no integral representation for a solution U of $(P)_{\infty}$
- the lack of comparison/maximum principles on thin strips makes difficult the moving plane method
- $(P)_{\infty}$ is not invariant under Kelvin transform

An alternative approach: via Pohozev identity in

- P.-L. Lions, Appl. Anal. '81
- S. Kesavan, F. Pacella, Appl. Anal. '94
- S. Chanillo, M. Kiessling, Geom. Funct. Anal. '95

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

If U is a solution of $(P)_{\infty} \Rightarrow$ the Kelvin transform \hat{U} satisfies

$$-\Delta_n \hat{U} = \frac{e^{\hat{U}}}{|x|^{2n}} \text{ in } \mathbb{R}^n \setminus \{0\}, \ \int_{\mathbb{R}^n} \frac{e^{\hat{U}}}{|x|^{2n}} < +\infty$$

P. Esposito May 16, 2024

Analysis of Geometric Singularities

イロン イロン イヨン イヨン 三日

If U is a solution of $(P)_{\infty} \Rightarrow$ the Kelvin transform \hat{U} satisfies

$$-\Delta_n \hat{U} = \frac{e^{\hat{U}}}{|x|^{2n}} \text{ in } \mathbb{R}^n \setminus \{0\}, \ \int_{\mathbb{R}^n} \frac{e^{\hat{U}}}{|x|^{2n}} < +\infty$$

The description of singularities in

- J. Serrin, Acta Math. '64 and '65
- S. Kichenassamy, L. Veron, Math. Ann. '86

fails in the limiting situation $F \in L^1$

・ 同 ト ・ ヨ ト ・ ヨ ト

If U is a solution of $(P)_{\infty} \Rightarrow$ the Kelvin transform \hat{U} satisfies

$$-\Delta_n \hat{U} = \frac{e^{\hat{U}}}{|x|^{2n}} \text{ in } \mathbb{R}^n \setminus \{0\}, \ \int_{\mathbb{R}^n} \frac{e^{\hat{U}}}{|x|^{2n}} < +\infty$$

The description of singularities in

- J. Serrin, Acta Math. '64 and '65
- S. Kichenassamy, L. Veron, Math. Ann. '86

fails in the limiting situation $F \in L^1 \Rightarrow -\Delta \hat{U} = \frac{e^{\hat{U}}}{|x|^{2n}} - \left(\int_{\mathbb{R}^n} e^{U}\right) \delta_0$ & \hat{U} log. behavior at 0

If U is a solution of $(P)_{\infty} \Rightarrow$ the Kelvin transform \hat{U} satisfies

$$-\Delta_n \hat{U} = \frac{e^{\hat{U}}}{|x|^{2n}} \text{ in } \mathbb{R}^n \setminus \{0\}, \ \int_{\mathbb{R}^n} \frac{e^{\hat{U}}}{|x|^{2n}} < +\infty$$

The description of singularities in

- J. Serrin, Acta Math. '64 and '65
- S. Kichenassamy, L. Veron, Math. Ann. '86

fails in the limiting situation $F \in L^1 \Rightarrow -\Delta \hat{U} = \frac{e^{\hat{U}}}{|x|^{2n}} - \left(\int_{\mathbb{R}^n} e^{U}\right) \delta_0$ & \hat{U} log. behavior at $0 \Rightarrow$ classification by Pohozaev identity

If U is a solution of $(P)_{\infty} \Rightarrow$ the Kelvin transform \hat{U} satisfies

$$-\Delta_n \hat{U} = \frac{e^{\hat{U}}}{|x|^{2n}} \text{ in } \mathbb{R}^n \setminus \{0\}, \ \int_{\mathbb{R}^n} \frac{e^{\hat{U}}}{|x|^{2n}} < +\infty$$

The description of singularities in

- J. Serrin, Acta Math. '64 and '65
- S. Kichenassamy, L. Veron, Math. Ann. '86

fails in the limiting situation $F \in L^1 \Rightarrow -\Delta \hat{U} = \frac{e^{\hat{U}}}{|\mathbf{x}|^{2n}} - \left(\int_{\mathbb{R}^n} e^{U}\right) \delta_0$ & \hat{U} log. behavior at $0 \Rightarrow$ classification by Pohozaev identity Mass quantization for singular *n*-Liouville equation:

$$-\Delta_n U = e^U - \gamma \delta_0 ext{ in } \mathbb{R}^n, \quad \int_{\mathbb{R}^n} e^U < +\infty$$

• P. E., Calc. Var. PDE '21 [if $n \ge 2$]

• J. Prajapat, G. Tarantello, Proc. Edinburgh '01 [if $\underline{n} = 2$]
Dropping $\sup_{k \in \mathbb{N}} \operatorname{osc}_{\partial \Omega} u_k < +\infty$, in general concentration masses satisfy $\alpha_p \ge n^n \omega_n$

(日) (回) (E) (E) (E) (E)

Dropping $\sup_{k \in \mathbb{N}} \operatorname{osc}_{\partial \Omega} u_k < +\infty$, in general concentration masses satisfy $\alpha_p \geq n^n \omega_n$

If $0 \leq V_k \rightarrow V$ in $C_{loc}(\Omega)$, then $\alpha_p \geq c_n \omega_n$ thanks to mass quantization for the limiting problem

Dropping $\sup_{k \in \mathbb{N}} \operatorname{osc}_{\partial \Omega} u_k < +\infty$, in general concentration masses satisfy $\alpha_p \ge n^n \omega_n$

If $0 \leq V_k \rightarrow V$ in $C_{loc}(\Omega)$, then $\alpha_p \geq c_n \omega_n$ thanks to mass quantization for the limiting problem

In the two-dimensional case $\alpha_p \in 8\pi\mathbb{N}$ is shown in

• Y.Y. Li, I. Shafrir, Indiana Univ. Math. J. '94

based on a Harnack inequality of $\sup + \inf type$

• I. Shafrir, C.R.A.S. '92

(日本) (日本) (日本)

The main point comes from the "linear theory", see also F. Robert, Proc. Edinburgh '07:

イロト 不良 ト 不良 ト 不良 ト 一時

The main point comes from the "linear theory", see also F. Robert, Proc. Edinburgh '07: $-\Delta_n u = f \ge 0$ in $\Omega \supset B_{2\delta}(x) \Rightarrow$

$$u(x) - \inf_{\Omega} u \ge c_1 \int_0^{\delta} \left[\int_{B_t(x)} f \right]^{\frac{1}{n-1}} \frac{dt}{t}$$

Analysis of Geometric Singularities

イロン スロン イヨン イヨン 三日

The main point comes from the "linear theory", see also F. Robert, Proc. Edinburgh '07: $-\Delta_n u = f \ge 0$ in $\Omega \supset B_{2\delta}(x) \Rightarrow$

$$u(x) - \inf_{\Omega} u \ge c_1 \int_0^{\delta} \left[\int_{B_t(x)} f \right]^{\frac{1}{n-1}} \frac{dt}{t}$$

If
$$c_1 = (n\omega_n)^{-\frac{1}{n-1}}$$
, set $\mu_k = e^{-\frac{u_k(x_k)}{n}}$ with $u_k(x_k) = \max_K u_k$:
 $u_k(x_k) - \inf_{\Omega} u_k \ge \left[\frac{1}{n\omega_n}\int_{B_{R\mu_k}(x_k)} V_k e^{u_k}\right]^{\frac{1}{n-1}}\log\frac{\delta}{R\mu_k}$

(日) (回) (E) (E) (E) (E)

The main point comes from the "linear theory", see also F. Robert, Proc. Edinburgh '07: $-\Delta_n u = f \ge 0$ in $\Omega \supset B_{2\delta}(x) \Rightarrow$

$$u(x) - \inf_{\Omega} u \ge c_1 \int_0^{\delta} \left[\int_{B_t(x)} f \right]^{\frac{1}{n-1}} \frac{dt}{t}$$

If
$$c_1 = (n\omega_n)^{-\frac{1}{n-1}}$$
, set $\mu_k = e^{-\frac{u_k(x_k)}{n}}$ with $u_k(x_k) = \max_K u_k$:
 $u_k(x_k) - \inf_{\Omega} u_k \ge \left[\frac{1}{n\omega_n}\int_{B_{R\mu_k}(x_k)} V_k e^{u_k}\right]^{\frac{1}{n-1}}\log\frac{\delta}{R\mu_k}$
 $\Rightarrow u_k(x_k) - \inf_{\Omega} u_k \ge \left(\frac{n}{n-1} - \delta\right)u_k(x_k) + C$

for all δ small in view of $\int_{\mathcal{B}_{R\mu_k}(x_k)} V_k e^{u_k} \sim c_n \omega_n$

(日) (回) (E) (E) (E) (E)

The main point comes from the "linear theory", see also F. Robert, Proc. Edinburgh '07: $-\Delta_n u = f \ge 0$ in $\Omega \supset B_{2\delta}(x) \Rightarrow$

$$u(x) - \inf_{\Omega} u \ge c_1 \int_0^{\delta} \left[\int_{B_t(x)} f \right]^{\frac{1}{n-1}} \frac{dt}{t}$$

If
$$c_1 = (n\omega_n)^{-\frac{1}{n-1}}$$
, set $\mu_k = e^{-\frac{u_k(x_k)}{n}}$ with $u_k(x_k) = \max_K u_k$:
 $u_k(x_k) - \inf_{\Omega} u_k \ge \left[\frac{1}{n\omega_n}\int_{B_{R\mu_k}(x_k)} V_k e^{u_k}\right]^{\frac{1}{n-1}}\log\frac{\delta}{R\mu_k}$
 $\Rightarrow u_k(x_k) - \inf_{\Omega} u_k \ge (\frac{n}{n-1} - \delta)u_k(x_k) + C$

for all δ small in view of $\int_{B_{R\mu_k}(x_k)} V_k e^{u_k} \sim c_n \omega_n$ yielding

Theorem 6 (P.E., M. Lucia, preprint)

Given $K \subset \Omega$ compact and $C_1 < \frac{1}{n-1}$, there exists $C_2 > 0$ so that $C_1 \max_K u_k + \inf_\Omega u_k \le C_2$

The constant c_1 is not explicit but $0 < c_1 \le (n\omega_n)^{-\frac{1}{n-1}}$, see

• T. Kilpeläinen, J. Malý, Ann. SNS Pisa '92

Analysis of Geometric Singularities

(4回) (1日) (日)

Ξ

The constant c_1 is not explicit but $0 < c_1 \le (n\omega_n)^{-\frac{1}{n-1}}$, see

• T. Kilpeläinen, J. Malý, Ann. SNS Pisa '92

If $f \ge 0$ is radial in $B_{\delta}(x)$, then by comparison

$$u(x) - \inf_{\Omega} u \ge u(x) - \inf_{B_{\delta}(x)} u \ge \int_{0}^{\delta} \left(\frac{1}{n\omega_{n}} \int_{B_{t}(x)} f\right)^{\frac{1}{n-1}} \frac{dt}{t}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

The constant c_1 is not explicit but $0 < c_1 \le (n\omega_n)^{-\frac{1}{n-1}}$, see

• T. Kilpeläinen, J. Malý, Ann. SNS Pisa '92

If $f \ge 0$ is radial in $B_{\delta}(x)$, then by comparison

$$u(x) - \inf_{\Omega} u \ge u(x) - \inf_{B_{\delta}(x)} u \ge \int_{0}^{\delta} \left(\frac{1}{n\omega_{n}} \int_{B_{t}(x)} f\right)^{\frac{1}{n-1}} \frac{dt}{t}$$

<u>n=2</u>: by Green's representation formula for all $y \in B_{\delta}(x)$

$$u(y) - \inf_{B_{\delta}(x)} u \geq \int_{B_{\delta}(x)} \Big[-\frac{1}{2\pi} \log |z-y| + H(z,y) \Big] f(z) dz$$

The constant c_1 is not explicit but $0 < c_1 \le (n\omega_n)^{-\frac{1}{n-1}}$, see

• T. Kilpeläinen, J. Malý, Ann. SNS Pisa '92

If $f \ge 0$ is radial in $B_{\delta}(x)$, then by comparison

$$u(x) - \inf_{\Omega} u \ge u(x) - \inf_{B_{\delta}(x)} u \ge \int_{0}^{\delta} \left(\frac{1}{n\omega_{n}} \int_{B_{t}(x)} f\right)^{\frac{1}{n-1}} \frac{dt}{t}$$

<u>n=2</u>: by Green's representation formula for all $y \in B_{\delta}(x)$

$$u(y) - \inf_{B_{\delta}(x)} u \ge \int_{B_{\delta}(x)} \left[-\frac{1}{2\pi} \log |z-y| + H(z,y) \right] f(z) dz$$

$$\Rightarrow \quad u(x) - \inf_{\Omega} u \ge -\frac{1}{2\pi} \int_{B_{\delta}(x)} \log \frac{|z-x|}{\delta} f(z) dz$$
$$= -\frac{1}{2\pi} \int_{0}^{2\pi} d\theta \int_{0}^{\delta} t \log \frac{t}{\delta} f(t\theta + x) dt$$
$$= \frac{1}{2\pi} \int_{0}^{2\pi} d\theta \int_{0}^{\delta} \frac{dt}{t} \int_{0}^{t} rf(r\theta + x) dr = \frac{1}{2\pi} \int_{0}^{\delta} [\int_{B_{\delta}(x)} f] \frac{dt}{t}$$

Since in general $c_1 < (n\omega_n)^{-\frac{1}{n-1}}$, we need to fill the gap via a blow-up approach:

Analysis of Geometric Singularities

イロト イタト イヨト イヨト 三日

General case

Since in general $c_1 < (n\omega_n)^{-\frac{1}{n-1}}$, we need to fill the gap via a blow-up approach:

• linear theory still implies finite mass for the limiting profiles

(日) (回) (E) (E) (E) (E)

General case

Since in general $c_1 < (n\omega_n)^{-\frac{1}{n-1}}$, we need to fill the gap via a blow-up approach:

• linear theory still implies finite mass for the limiting profiles

• since $\int_{B_{R\mu_k}(x_k)} V_k e^{u_k} \sim c_n \omega_n$, use $u_k(x) - \inf_{\Omega} u_k \geq w_k$, where

$$\begin{cases} -\Delta_n w_k = V_k e^{u_k} \chi_{B_{R\mu_k}(x_k)} & \text{in } B_{\delta}(x_k) \\ w_k = 0 & \text{on } \partial B_{\delta}(x_k) \end{cases}$$

ヘロン 人間 とくほ とくほ とうほ

General case

Since in general $c_1 < (n\omega_n)^{-\frac{1}{n-1}}$, we need to fill the gap via a blow-up approach:

• linear theory still implies finite mass for the limiting profiles

• since $\int_{B_{R\mu_k}(x_k)} V_k e^{u_k} \sim c_n \omega_n$, use $u_k(x) - \inf_{\Omega} u_k \geq w_k$, where

$$\begin{cases} -\Delta_n w_k = V_k e^{u_k} \chi_{B_{R\mu_k}(x_k)} & \text{in } B_{\delta}(x_k) \\ w_k = 0 & \text{on } \partial B_{\delta}(x_k) \end{cases}$$

• since $V_k e^{u_k} \sim V(p) e^{\bigcup_{\mu_k^{-1}, x_k}}$ in $B_{R\mu_k}(x_k)$ with $p = \lim_{k \to +\infty} x_k$, further compare w_k from below with the radial case where $c_1 = (n\omega_n)^{-\frac{1}{n-1}}$

Quantization for mass concentration

By sup + inf inequalities one gets decay estimates on $V_k e^{u_k}$:

$$V_k e^{u_k} \leq C rac{\mu_k^lpha}{|x-x_k|^{n+lpha}} \qquad ext{in } B_{rac{d_k}{2}}(x_k) \setminus B_{R\mu_k}(x_k)$$

for some $\alpha > 0$, where d_k is the distance of x_k from other blow-up sequences

(日本) (日本) (日本)

Quantization for mass concentration

By sup + inf inequalities one gets decay estimates on $V_k e^{u_k}$:

$$V_k e^{u_k} \leq C rac{\mu_k^{lpha}}{|x-x_k|^{n+lpha}} \quad \text{in } B_{rac{d_k}{2}}(x_k) \setminus B_{R\mu_k}(x_k)$$

for some $\alpha > 0$, where d_k is the distance of x_k from other blow-up sequences

By $\int_{B_{R\mu_k}(x_k)} V_k e^{u_k} \sim c_n \omega_n$ and decay estimates one gets that $\int_{B_{\frac{d_k}{2}}(x_k)} V_k e^{u_k} \sim c_n \omega_n$

(4回) (1日) (日) 日

Quantization for mass concentration

By sup + inf inequalities one gets decay estimates on $V_k e^{u_k}$:

$$V_k e^{u_k} \leq C rac{\mu_k^{lpha}}{|x-x_k|^{n+lpha}} \qquad ext{in } B_{rac{d_k}{2}}(x_k) \setminus B_{R\mu_k}(x_k)$$

for some $\alpha > 0$, where d_k is the distance of x_k from other blow-up sequences

By $\int_{B_{R\mu_k}(x_k)} V_k e^{u_k} \sim c_n \omega_n$ and decay estimates one gets that $\int_{B_{\frac{d_k}{2}}(x_k)} V_k e^{u_k} \sim c_n \omega_n$

Following clusters by clusters, rather standard to show that

Theorem 7 (P.E., M. Lucia, preprint) $lpha_{p} \in c_{n}\omega_{n}\mathbb{N}$

extending the two-dimensional result in

• Y.Y. Li, I. Shafrir, Indiana Univ. Math. J. '94

Optimal sup + inf inequality

The decay exponent α is in general $\alpha < \frac{n}{n-1}$. When blow-up is simple, is it possible to reach $\alpha = \frac{n}{n-1}$? Equivalent to

$$V_k e^{u_k} \le C rac{\mu_k^{rac{n}{n-1}}}{|x-x_k|^{rac{n^2}{n-1}}}$$

in
$$B_{\delta}(p) \setminus B_{R\mu_k}(x_k)$$

(日) (回) (E) (E) (E) (E)

Optimal sup + inf inequality

The decay exponent α is in general $\alpha < \frac{n}{n-1}$. When blow-up is simple, is it possible to reach $\alpha = \frac{n}{n-1}$? Equivalent to

$$V_k e^{u_k} \leq C rac{\mu_k^{rac{n}{n-1}}}{|x-x_k|^{rac{n^2}{n-1}}} \hspace{1cm} ext{in} \hspace{1cm} B_{\delta}(p) \setminus B_{R\mu_k}(x_k)$$

The answer is related to the following fundamental expansion

$$u_k - U_{\mu_k^{-1}, \mathsf{x}_k} = O(1)$$
 in $B_\delta(p)$

and optimal constant $C_1 = \frac{1}{n-1}$ in the sup + inf inequality, see

- D. Bartolucci, C.C. Chen, C.S. Lin, G. Tarantello, Comm. PDE '04
- H. Brézis, Y.Y. Li, I. Shafrir, JFA '93
- Y.Y. Li, Comm. Math. Phys. '99

イロン イヨン イヨン 一日

Not complete yet. However $u_k = \bar{u}_k + O(1)$, $\bar{u}_k(r) = \int_{\partial B_r(x_k)} u_k$

In collaboration with M. Lucia: optimal sup + inf inequality (i.e. with $C_1 = \frac{1}{n-1}$) when $\sup_{k \in \mathbb{N}} \operatorname{osc}_{\partial B_{\delta}(x_k)} u_k < +\infty$ Not complete yet. However $u_k = \bar{u}_k + O(1)$, $\bar{u}_k(r) = \int_{\partial B_r(x_k)} u_k$

When $n = 2 \ \bar{u}_k$ satisfies $-\Delta \bar{u}_k = \int_{\partial B_r(x_k)} V_k e^{u_k}$ in $B_{\delta}(x_k)$.

Not complete yet. However $u_k = \bar{u}_k + O(1)$, $\bar{u}_k(r) = \int_{\partial B_r(x_k)} u_k$

When $n = 2 \ \bar{u}_k$ satisfies $-\Delta \bar{u}_k = \int_{\partial B_r(x_k)} V_k e^{u_k}$ in $B_{\delta}(x_k)$. When n > 2 solve

 $-\Delta_n v_k = \oint_{\partial B_r(x_k)} V_k e^{u_k} \text{ in } B_\delta(x_k), \quad v_k = \bar{u}_k(\delta) \text{ on } \partial B_\delta(x_k)$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・ 日

Not complete yet. However $u_k = \bar{u}_k + O(1)$, $\bar{u}_k(r) = \int_{\partial B_r(x_k)} u_k$

When $n = 2 \ \bar{u}_k$ satisfies $-\Delta \bar{u}_k = \int_{\partial B_r(x_k)} V_k e^{u_k}$ in $B_{\delta}(x_k)$. When n > 2 solve

 $-\Delta_n v_k = \oint_{\partial B_r(x_k)} V_k e^{u_k} \text{ in } B_\delta(x_k), \quad v_k = \bar{u}_k(\delta) \text{ on } \partial B_\delta(x_k)$

イロト イヨト イヨト イヨト 三日

<u>Fundamental fact</u>: $u_k - v_k = O(1)$

Not complete yet. However $u_k = \bar{u}_k + O(1)$, $\bar{u}_k(r) = \int_{\partial B_r(x_k)} u_k$

When $n = 2 \ \bar{u}_k$ satisfies $-\Delta \bar{u}_k = \int_{\partial B_r(x_k)} V_k e^{u_k}$ in $B_{\delta}(x_k)$. When n > 2 solve

 $-\Delta_n v_k = \oint_{\partial B_r(x_k)} V_k e^{u_k} \text{ in } B_\delta(x_k), \quad v_k = \bar{u}_k(\delta) \text{ on } \partial B_\delta(x_k)$

<u>Fundamental fact</u>: $u_k - v_k = O(1)$ <u>Crucial property</u>: $-\Delta_n u_k + \Delta_n v_k = V_k e^{u_k} - \int_{\partial B_r(x_k)} V_k e^{u_k}$

イロン イヨン イヨン 一日

- optimal sup + inf inequality without boundary control
- more precise asymptotic expansion of u_k towards the case $\lambda \in c_n \omega_n \mathbb{N}$
- blow-up solutions as $\lambda \to c_n \omega_n \mathbb{N}$. Via Lyapunov-Schmidt reduction: Pistoia, Premoselli, Vétois, ...
- multiplicity results via Morse theory

(日)

Thanks for your attention

P. Esposito May 16, 2024

Analysis of Geometric Singularities

イロト イヨト イヨト イヨト 三日