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Log-determinants on 2—manifolds

(M?, g) closed Riemannian 2—manifold, A, Laplace-Beltrami
operator, 0 = A\g < A1 < A» < ... eigenvalues of —A,

log det(— Zlogx\ = —('(0), C(S)ZZ/\J-_S (Res>1)

Polyakov formula: K, Gaussian curvature of g =
det(—Ag) 1
det(—Ag) 127
Based on Az = e 2YA,

log (\Vu@ + 2K u) dvg, & =e’g
M

Fact: c.p.'s on [g]1 = {& = e?“g | VoI(g) = 1} have Kz = cost.
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Log-determinants on 2—manifolds

(M?, g) closed Riemannian 2—manifold, A, Laplace-Beltrami
operator, 0 = A\g < A1 < A» < ... eigenvalues of —A,

log det(— Zlogx\ = —('(0), C(S)ZZ/\JTS (Res>1)
j=1

Polyakov formula: K, Gaussian curvature of g =
det(—Ag) 1
det(—Ag) 127
Based on Az = e 2YA,

log (\Vu\é + 2K u) dvg, & =e’g
M

Fact: c.p.'s on [g]1 = {& = e?“g | Vol(g) = 1} have K; = cost.
Application: compactness of isospectral domains/surfaces:

@ B. Osgood, R. Phillips, P. Sarnak, JFA '88

@ B. Osgood, R. Phillips, P. Sarnak, Ann. Math. '89
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Log-determinants on 4—manifolds

Ag conformally covariant: if g = e?“g then Ag1p = e PuA,(e1))

Branson-Orsted formula: (M*, g) closed Riemannian 4—manifold,
ker Ag = {0}, & = g =

det Az
Fa,[u] = log det A, = v l[u] + y2ll[u] + v3lll[u] (v € R)
Examples:
@ conformal Laplacian L, = —A, + 4((" 2))R

@ Paneitz operator P, = Az, = le(gRg — 2Ricg) o V
@ square of the Dirac operator l,Z)g%

where R,, Ricg are the scalar, Ricci curvature of g

Aim: study the log-determinant of L, and LDS,

= 7alLg) = 6(Ly), 72(PR) = or5(P3)
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Geometric content of /, I/ and /I

W,y Weyl tensor of g, & = elg =

I[u] = 4fM |Wg|§,udvg — (fM |Wg|§dvg) log JCM e4“dvg
Iu] = [}, uPgudvg + 4 [, Qgudvg — ([}, Qedvg)log f,, e*dv,
Mu] =12 f1,(Agu + [Vul2)?dvg — 4 [1,(ubgRe + Re|Vul2)dvg
Each functional <+ a natural curvature condition:
I'(uy=0 & |W,|?= const.
II'(uy=0 < Q= const.
//I’(u) =0 & AgRg =0
Based on
1 .
Pgu + 2Qg — 2Q§e4ua Qg = E(_AgRg + R; o 3|RICg‘§)
2
Gauss-Bonnet formula: 472y (M) = fM(M;g'g + Qg) dvg, where
X(M) Euler characteristic of M
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Euler-Lagrange equation for Fa_

Fj,(u) =0 Ug = const.,
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Euler-Lagrange equation for Fa_

Flﬁ\g(u) =06 Uz = const., Ug = 1| Wel3 +72Qg — 1305R,

Conformal invariant quantity: ks, = — fM Ugdvg
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- M
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E-L eqn: Ng(u) + Ug = _kAgf:%?dvg where
- M

Np(u) = %Pgu + 6730, (Agu + |Vul2)

—12ysdiv [(Agu + [Vul2)Vu] + 2y3div (RgVu)

Difficulty: Ng(u) = (% +673)A%u — 127304 gu+ ... is

quasi-linear operator of mixed orders

Existence of extremals: [A. Chang, P. Yang, Ann. Math. '95]

® 72,73 < 0 and ks, < 8m2(—2)
® 71 =73 =0: Pg >0 with kerP; =R and kp, < 872
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Euler-Lagrange equation for Fa_

Flﬁ\g(u) =06 Uz = const., Ug = 1| Wel3 +72Qg — 1305R,

Conformal invariant quantity: ks, = — fM Ugdvg

E-L eqn: Ng(u) + Ug = _kAgf:%?dvg where
- M

Np(u) = %Pgu + 6730, (Agu + |Vul2)

—12ysdiv [(Agu + [Vul2)Vu] + 2y3div (RgVu)

Difficulty: Ng(u) = (% +673)A%u — 127304 gu+ ... is

quasi-linear operator of mixed orders

Existence of extremals: [A. Chang, P. Yang, Ann. Math. '95]

@ 72,73 < 0 and kAg < 87l'2(—’)/2)
° 71 =73 =0: Py > 0 with kerP; =R and kp, < 87
[M. Gursky, CMP '99] k;, < 3272 if Ry > 0 except on (S*, go)
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Main results

In general ks, < 872(—2) fails (products of negatively-curved
surfaces, hyperbolic manifolds)

Conformal metrics with @ = const. found as saddle points of // in

@ Z. Djadli, A. Malchiodi, Ann. Math. '08

Tools: min-max scheme, improved MT inequalities, compactness

Theorem 1 (P.E., A. Malchiodi, JDG ’24)

% > 6, w, blow-up sequence of Ng(wp) + Uy = p,e™ in M
Then f,, wadvy — —o0 and fine*n — 812y 3 6,

We find conformal metrics with U = const. as saddle points of Fa,:

Theorem 2 (P.E., A. Malchiodi, JDG ’24)

% > 6, M compact manifold s.t. ka, ¢ 87*(—72)N
Then 3 g € [g] with Ug = const.
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On the standard sphere

@ T. Branson, A. Chang, P. Yang, CMP '92 [“unique” maximizer for
FLgo and F[péol

@ M. Gursky, CMP '97 [“unique” c.p. for F;, and F@gzo]

@ M. Gursky, A. Malchiodi, CMP "12 [non-uniqueness for 75 < 0 < 73]
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@ M. Gursky, CMP '97 [“unique” c.p. for F;, and F@gzo]

@ M. Gursky, A. Malchiodi, CMP "12 [non-uniqueness for 75 < 0 < 73]

Via stereographic projection F[go(w) =0 on (S* go) equivalent to
3A2W + 2A(|VW?) — 4div [(AW + VW)V W] = 1672e*W

in R* with W ~ —2log || at infinity.
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On the standard sphere

@ T. Branson, A. Chang, P. Yang, CMP '92 [“unique” maximizer for
FLgo and F[péol

@ M. Gursky, CMP '97 [“unique” c.p. for F;, and F@gzo]

@ M. Gursky, A. Malchiodi, CMP "12 [non-uniqueness for 75 < 0 < 73]

Via stereographic projection F[go(w) =0 on (S* go) equivalent to
3A2W + 2A(|VW?) — 4div [(AW + VW)V W] = 1672e*W

in R* with W ~ —2log |x| at infinity. Solutions are classified as
translations and dilations of

2
Question: [, e*V' < +00 does it implies W ~ —2log |x| at co?
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Quasilinear PDEs in dimension n

Simplified problem: retain A4z in Nz and consider it in general

dimensions n > 2

Arises also in
—Apgu+|Vulg ?Ricg(Vu, Vu) = |Vu|]~?Ricg(Vu, Vu)e™

see

@ S. Ma, J. Qing, Calc. Var '21 & Adv. Math. '22

P. Esposito May 16, 2024 Analysis of Geometric Singularities



The n-Liouville equation

Consider the euclidean quasilinear PDE
—Apu=Ve"inQ, wu=0on0dQ (P)
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The n-Liouville equation

Consider the euclidean quasilinear PDE
—Apu=Ve"inQ, wu=0on0dQ (P)
Apu = div(|Vu|""2Vu) n—Laplace operator, 2 C R", n > 2 and
0<a<V<b<+oo, |VV|[<b (V)
Planar case n = 2: arises in conformal geometry, statistical and

fluid mechanics, Chern-Simons theories; well studied on Euclidean
domains or on closed Riemannian surfaces

@ H. Brézis, F. Merle, Comm. PDE '91

@ Y.Y. Li, |. Shafrir, Indiana Univ. Math. J. '94

@ Y.Y. Li, Comm. Math. Phys. '99

@ C.C. Chen, C.S. Lin, Comm. Pure Appl. Math. '02 & '03
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P. Esposito May 16, 2024 Analysis of Geometric Singularities



The asymptotic behavior

Question: n > 27 A concentration-compactness principle:
@ X. Ren, J. Wei, J. Differential Equations '95
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The asymptotic behavior

Question: n > 27 A concentration-compactness principle:
@ X. Ren, J. Wei, J. Differential Equations '95
@ J.A. Aguilar, I. Peral, Nonlinear Anal. '97

Theorem 3 (P.E., F. Morlando, JMPA ’15)

Let uy be solutions of (P) with Vj satisfying (V') and

sup/ e < 400 & suposcyoui < +oo
keN JQ keN
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If oscoquy = 0, (i)-(ii) do hold in Q with S C Q in case (ii).
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The asymptotic behavior

Question: n > 27 A concentration-compactness principle:
@ X. Ren, J. Wei, J. Differential Equations '95
@ J.A. Aguilar, I. Peral, Nonlinear Anal. '97

Theorem 3 (P.E., F. Morlando, JMPA ’15)

Let uy be solutions of (P) with Vj satisfying (V') and

sup/ e < 400 & suposcyoui < +oo
keN JQ keN

Up to subsequences, either (i) u," is uniformly bounded in L5 (2)
or (ii) 3 a finite blow-up set ) # S C Q s.t. u — —oc in
L (2\'S) and Vie' — cpwy Z dp in 2 as k — 400

pESNQ

If oscoquy = 0, (i)-(ii) do hold in Q with S C Q in case (ii).

n? )n—l

Notation: ¢, = n(-
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The quasi-linear MF equation

For A ¢ c,w,N Theorem 3 gives compactness for solutions of

u

Ve
AU = A
u )\fQ Veu

inQ, u=0o0n0dQ (P)x
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The quasi-linear MF equation

For A ¢ c,w,N Theorem 3 gives compactness for solutions of

VIJ
—Apu= )\fQT/e” inQ, u=00n0Q  (P)\

Theorem 4 (P.E., F. Morlando, JMPA ’15)

If B, _{Zt, : t,-EO,Zt,-zl, pi € Q} is non
i=1

contractible, then (P)x is solvable for A € chwn(m, m+ 1)
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The quasi-linear MF equation

For A ¢ c,w,N Theorem 3 gives compactness for solutions of

VIJ
—Apu= )\fQT/e” inQ, u=00n0Q  (P)\

Theorem 4 (P.E., F. Morlando, JMPA ’15)

If B, _{Zt, : t,-EO,Zt,-zl, pi € Q} is non
i=1

contractible, then (P)x is solvable for A € chwn(m, m+ 1)

@ W. Ding, J. Jost, J. Li, G. Wang, AIHP '99
@ Z. Djadli, A. Malchiodi, Ann. Math. '08
@ Z. Djadli, Commun. Contemp. Math. '08
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The quasi-linear MF equation

For A ¢ c,w,N Theorem 3 gives compactness for solutions of

VIJ
—Apu= )\fQT/e” inQ, u=00n0Q  (P)\

Theorem 4 (P.E., F. Morlando, JMPA ’15)

If B, _{Zt, : t,-EO,Zt,-zl, pi € Q} is non
i=1

contractible, then (P)x is solvable for A € chwn(m, m+ 1)

@ W. Ding, J. Jost, J. Li, G. Wang, AIHP '99
@ Z. Djadli, A. Malchiodi, Ann. Math. '08
@ Z. Djadli, Commun. Contemp. Math. '08

Alternative approaches: via degree (blow-up analysis misses)
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The quasi-linear MF equation

For A ¢ c,w,N Theorem 3 gives compactness for solutions of

VIJ
Anu= /\er\l/e” inQ, u=0onaQ (P),

Theorem 4 (P.E., F. Morlando, JMPA ’15)

IfB,, —{Zt, : t,-ZO,Zt,-zl, pi € Q} is non
i=1
contractible, then (P)x is solvable for A € chwn(m, m+ 1)

@ W. Ding, J. Jost, J. Li, G. Wang, AIHP '99
@ Z. Djadli, A. Malchiodi, Ann. Math. '08
@ Z. Djadli, Commun. Contemp. Math. '08

Alternative approaches: via degree (blow-up analysis misses); via

perturbative methods (difficult due to nonlinearity of A,)
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The limiting problem

Aim: classify solutions of

~A,U=¢eYinR", / eV < (P)so
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The limiting problem

Aim: classify solutions of
—A U= eV inR", / eV < 0 (P)o

Scaling and translation invariance = explicit solutions U ,:

ch\"

(14 A7 [x — p|7=1)7

U p(x) = log A>0, peR”
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The limiting problem

Aim: classify solutions of
—A U= eV inR", / eV < 0 (P)o

Scaling and translation invariance = explicit solutions U ,:

ch\"

7 0 A>0, peR”
(1+ A7 = ple) ’

U p(x) = log

Quantization: [5, eBrr = cwp
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The limiting problem

Aim: classify solutions of
—A U= eV inR", / eV < 0 (P)o

Scaling and translation invariance = explicit solutions U ,:

ch\"

7 0 A>0, peR”
(1+ A7 = ple) ’

U p(x) = log

Quantization: [5, eBrr = cwp

Theorem 5 (P.E., AIHP '18)

Any solution U of (P)s has the form U, . In particular

Jgo eV = c,w,
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The semilinear case n = 2

Classification known since a long ago, proved in different ways:
@ J. Liouville, J. de Math. 1853 [via complex analysis]
@ W. Chen, C. Li, Duke Math. J. '91 [via moving planes]

P. Esposito May 16, 2024 Analysis of Geometric Singularities



The semilinear case n = 2

Classification known since a long ago, proved in different ways:
@ J. Liouville, J. de Math. 1853 [via complex analysis]
@ W. Chen, C. Li, Duke Math. J. '91 [via moving planes]

Liouville approach: integrability & the Liouville theorem in C
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Classification known since a long ago, proved in different ways:
@ J. Liouville, J. de Math. 1853 [via complex analysis]
@ W. Chen, C. Li, Duke Math. J. '91 [via moving planes]

Liouville approach: integrability & the Liouville theorem in C

Chen-Li approach: integral representation of U to deduce

logarithmic behavior of U at oo in terms of fR2 eV

& [go eV > 8x via an isoperimetric argument
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The semilinear case n = 2

Classification known since a long ago, proved in different ways:
@ J. Liouville, J. de Math. 1853 [via complex analysis]
@ W. Chen, C. Li, Duke Math. J. '91 [via moving planes]

Liouville approach: integrability & the Liouville theorem in C

Chen-Li approach: integral representation of U to deduce

logarithmic behavior of U at oo in terms of fR2 eV
& [go eV > 8x via an isoperimetric argument
= enough decay to carry out a simple MP approach
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The quasilinear case n > 2

Several difficulties:

@ no integral representation for a solution U of (P)x
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Several difficulties:
@ no integral representation for a solution U of (P)x

@ the lack of comparison/maximum principles on thin strips

makes difficult the moving plane method
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The quasilinear case n > 2

Several difficulties:
@ no integral representation for a solution U of (P)x

@ the lack of comparison/maximum principles on thin strips

makes difficult the moving plane method

@ (P)o is not invariant under Kelvin transform

An alternative approach: via Pohozev identity in

@ P.-L. Lions, Appl. Anal. '81
@ S. Kesavan, F. Pacella, Appl. Anal. '94

@ S. Chanillo, M. Kiessling, Geom. Funct. Anal. '95
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Quantization and classification issues

If U is a solution of (P)s = the Kelvin transform U satisfies

A0 e’ R \ {0} / e’
— — in n 0 3 < +OO
! |x|2n R |X[27
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Quantization and classification issues

If U is a solution of (P)s = the Kelvin transform U satisfies
0 0
e e
—— in R"\ {0 — <
2n In \ { }7 /Rn ’XP" +OO

[x]

~A,U =

The description of singularities in
@ J. Serrin, Acta Math. '64 and '65
@ S. Kichenassamy, L. Veron, Math. Ann. '86

fails in the limiting situation F € L1
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Quantization and classification issues

If U is a solution of (P)s = the Kelvin transform U satisfies

" el N el
—AnU:WInR \{0}, /R,,’X2"<+OO
The description of singularities in

@ J. Serrin, Acta Math. '64 and '65
@ S. Kichenassamy, L. Veron, Math. Ann. '86

fails in the limiting situation F € ! = ~AU = |x|2" (fR" )
& U log. behavior at 0
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Quantization and classification issues

If U is a solution of (P)s = the Kelvin transform U satisfies

" el N el
—AnU:WInR \{0}, /R,,’X2"<+OO
The description of singularities in

@ J. Serrin, Acta Math. '64 and '65
@ S. Kichenassamy, L. Veron, Math. Ann. '86

fails in the limiting situation F € [1 = —AU = |x|2n — (fgneY) oo
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Quantization and classification issues

If U is a solution of (P)s = the Kelvin transform U satisfies

" el N el
—AnU:WInR \{0}, /R,,’X2"<+OO
The description of singularities in

@ J. Serrin, Acta Math. '64 and '65
@ S. Kichenassamy, L. Veron, Math. Ann. '86

fails in the limiting situation F € [1 = —AU = |x|2n — (fgneY) oo
& U log. behavior at 0 = classification by Pohozaev identity

Mass quantization for singular n—Liouville equation:
—AU=¢Y— ~vdg in R", / eV < +o00

e P. E., Calc. Var. PDE '21 [if n > 2]
@ J. Prajapat, G. Tarantello, Proc. Edinburgh '01 [if n = 2]
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Interior blow-up

Dropping sup oscoqui < 400, in general concentration masses
_ keN
satisfy ap > n"w,
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Interior blow-up

Dropping sup oscoqui < 400, in general concentration masses
keN

satisfy ap > n"w,

If 0 < Vi — Vin Cpe(Q), then ap > chwp thanks to mass

quantization for the limiting problem
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Interior blow-up

Dropping sup oscoqui < 400, in general concentration masses
satisfy a, kzeNn”w,,
If 0 < Vi — Vin Cpe(Q), then ap > chwp thanks to mass
quantization for the limiting problem
In the two-dimensional case a, € 87N is shown in

@ Y.Y. Li, I. Shafrir, Indiana Univ. Math. J. '94
based on a Harnack inequality of sup + inf type

@ |. Shafrir, C.R.A.S. '92
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sup + inf Inequalities

The main point comes from the “linear theory”, see also
F. Robert, Proc. Edinburgh '07:
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The main point comes from the “linear theory”, see also
F. Robert, Proc. Edinburgh '07: —Aj,u=1f >0in Q D Bys(x) =

J L dt
— 1 > —
u(x) Igf h= Cl/o [/Bt(x) f} t
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sup + inf Inequalities

The main point comes from the “linear theory”, see also
F. Robert, Proc. Edinburgh '07: —Aj,u=1f >0in Q D Bys(x) =

J L dt
— 1 > —
u(x) Igf h= Cl/o [/Bt(x) f} t

1 () L
If c1 = (nwp) 71, set ux = e~ T with uk(xx) = maxg ug:
1

. 1 = )
ug(xi) — inf ug > V) el log ——
e Q “ = [”W" /BRMk(Xk) ‘ } ¢ R
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sup + inf Inequalities

The main point comes from the “linear theory”, see also
F. Robert, Proc. Edinburgh '07: —Aj,u=1f >0in Q D Bys(x) =

J L dt
— 1 > —
u(x) Igf h= Cl/o [/Bt(x) f} t

1 () L
If c1 = (nwp) 71, set ux = e~ T with uk(xx) = maxg ug:
1

. 1 = )
ug(xi) — inf ug > V) el log ——
e Q “ = [”W" /BRMk(Xk) ‘ } ¢ R

! - — )uila) + C

n—

= Uk(Xk) = i?zf ug > (

Vel ~ cpwn

for all § small in view of fBR (%)
Hk
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sup + inf Inequalities

The main point comes from the “linear theory”, see also

F. Robert, Proc. Edinburgh '07: —Aj,u=1f >0in Q D Bys(x) =

5 i
=1 dt
u(x)—infchl/ [/ f}
Q 0 LJ/Bi(x) t
_ 1 o)
If c1 = (nwp) 71, set ux =€~ with ug(xx) = maxk ug:
1

. 1 = )
ug(xi) — inf ug > V) el log ——
e Q “ = [”W" /BRMk(Xk) ‘ } ¢ R

= Uk(Xk) = i?zf ug > (

n
] = 5)uk(xk) + C

Ve ~ cpw, yielding

for all § small in view of fBRu (%)
k

Theorem 6 (P.E., M. Lucia, preprint)

Given K C Q compact and C; < -1, there exists C, > 0 so that

n—1’
Cimaxuy +infu, < G
X U+ 1AF Uk =
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1
The constant ¢; is not explicit but 0 < ¢ < (nw,) "1, see

o T. Kilpeldinen, J. Maly, Ann. SNS Pisa '92
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1
The constant ¢; is not explicit but 0 < ¢ < (nw,) "1, see

o T. Kilpeldinen, J. Maly, Ann. SNS Pisa '92
If f > 0is radial in Bs(x), then by comparison

1

) n—1
1
u(x) —infu > u(x) — inf uZ/ / f ﬂ
Q Bs(x) 0 nwp Bi(x) t
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1
The constant ¢; is not explicit but 0 < ¢ < (nw,) "1, see

o T. Kilpeldinen, J. Maly, Ann. SNS Pisa '92
If f > 0is radial in Bs(x), then by comparison

1

) n—1
1
u(x) —infu > u(x) — inf uZ/ / f ﬂ
Q Bs(x) 0 nwp Bi(x) t

n = 2: by Green's representation formula for all y € Bs(x)

1
u(y)— inf u> — —loglz—y|+ H(z,y)|f(z)dz
)=tz [ [ 5 sz =y + HED]AG)
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1
The constant ¢; is not explicit but 0 < ¢ < (nw,) "1, see

o T. Kilpeldinen, J. Maly, Ann. SNS Pisa '92
If f > 0is radial in Bs(x), then by comparison

1

) n—1
1
u(x) — |nfu>u(x)—B|n(f)u>/ ( / f) %
5 0 \ Wn JB(x)

n = 2: by Green's representation formula for all y € Bs(x)

1
u(y)— inf u> — —loglz—y|+ H(z,y)|f(z)dz
)=tz [ [ 5 sz =y + HED]AG)

1z = x|

= u(x)— |nfu>—i/ log 5 f(z)dz
)

27
:——/ dH/ tlog — ft9+x)
27
/ /rfr9+x //
Be(x) t
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General case

1
Since in general ¢; < (nw,)” 7-1, we need to fill the gap via a

blow-up approach:
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blow-up approach:

@ linear theory still implies finite mass for the limiting profiles
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General case

1
Since in general ¢; < (nw,)” 7-1, we need to fill the gap via a

blow-up approach:
@ linear theory still implies finite mass for the limiting profiles

. u .
@ since fBRuk(Xk) Vielk ~ cpwp, use uk(x) — |gf ux > wy, where

—Apwy = VkeukXBR#k(Xk) in Bs(xk)
wr =0 on 9Bs(xk)
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General case

1
Since in general ¢; < (nw,)” 7-1, we need to fill the gap via a

blow-up approach:
@ linear theory still implies finite mass for the limiting profiles

. u .
@ since fBRuk(Xk) Vielk ~ cpwp, use uk(x) — |gf ux > wy, where

—Apwy = VkeukXBR#k(Xk) in Bs(xk)
Wy = 0 on 835(Xk)

: U1, . : :
@ since Vie'  ~ V(p)e “k * in Bry, (xk) with p = lim x,
k—4o00

further compare wy from below with the radial case where
1
c1 = (nwp) "1
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Quantization for mass concentration

By sup + inf inequalities one gets decay estimates on Ve :

pi

Vielk < C———F —
k - ’X—Xk|"+a

in B%k (k) \ Bru, (x«)

for some o« > 0, where dy is the distance of x; from other blow-up

sequences
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Quantization for mass concentration

By sup + inf inequalities one gets decay estimates on Ve :

pi

Vielk < C———F —
k - ’X—Xk|"+a

in B%k (k) \ Bru, (x«)

for some o« > 0, where dy is the distance of x; from other blow-up

sequences

Uk ~, 1
By fBRuk(Xk) Ve chwp and decay estimates one gets that

Vel ~
Bdk (Xk) ke Can
2
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Quantization for mass concentration

By sup + inf inequalities one gets decay estimates on Ve :

pi

Vielk < C———F —
k - ’X—Xk|"+a

in B%k (k) \ Bru, (x«)

for some o« > 0, where dy is the distance of x; from other blow-up

sequences

Uk ~, 1
By fBRuk(Xk) Ve chwp and decay estimates one gets that

U
dek () Ve CnWn
2

Following clusters by clusters, rather standard to show that

Theorem 7 (P.E., M. Lucia, preprint)

op € ChwnN

extending the two-dimensional result in

@ Y.Y. Li, |. Shafrir, Indiana Univ. Math. J. '94
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Optimal sup + inf inequality

The decay exponent « is in general o < -“5. When blow-up is

simple, is it possible to reach a = %5

n

n—1
vkeuk S C"Ulkin2 in B(s(P) \ BRMk(Xk)

|x — X[
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Optimal sup + inf inequality

The decay exponent « is in general a < —“5. When blow-up is

simple, is it possible to reach o = —“57 Equivalent to

n
n—1

vkeuk é C"Ulkin2 in B(s(P) \ BRMk(Xk)

|x — X[

The answer is related to the following fundamental expansion

u—U 1 =0(1) in Bs(p)

Py 5%k
and optimal constant C; = ﬁ in the sup + inf inequality, see
@ D. Bartolucci, C.C. Chen, C.S. Lin, G. Tarantello, Comm. PDE '04
@ H. Brézis, Y.Y. Li, I. Shafrir, JFA '93
@ Y.Y. Li, Comm. Math. Phys. '99
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Work in progress

In coIIaboration with M. Lucia: optimal sup + inf inequality (i.e.

with G, = ) when sup oscyg; () Uk < +00
keEN
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Work in progress

In coIIaboration with M. Lucia: optimal sup + inf inequality (i.e.

with G, = ) when sup oscyg; () Uk < +00
keN
Not complete yet. However uy = i, + O(1), ( der () Uk

When n = 2 i satisfies —Aix = f@Br(xk) Vie'  in Bs(xk).
When n > 2 solve

—Apvi :][ Ve  in Bs(xx), vk = ix(0) on OBs(xx)
OB (xx)

Fundamental fact: ux — vk = O(1)
Crucial property: —Apux + Apvie = Vel — faB,(xk) Ve
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Open questions

@ optimal sup + inf inequality without boundary control

@ more precise asymptotic expansion of uy towards the case
A € cpw,N

@ blow-up solutions as A — c,w,N. Via Lyapunov-Schmidt
reduction: Pistoia, Premoselli, Vétois, ...

@ multiplicity results via Morse theory
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Thanks for your attention
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