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Introduction

Introduction

The singularity problem for quasi-linear elliptic eqns of the general form

divA(x , u,∇u) = B(x , u,∇u). (1)

For a domain Ω in RN with 0 ∈ Ω and a soln u in a suitable sense (e.g., in
D′(Ω \ {0})), the following questions are of interest:

Can u be extended to the whole domain Ω in a natural way so that the
new function satisfies the equation in Ω (a removable singularity)?
Otherwise, what is the behaviour of u near 0?

The topic of isolated singularities has received much attention in
connection with geometry (minimal surfaces), the Yamabe problem and
mathematical physics.
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Introduction

Serrin’s pioneering papers (Acta Math, 1964 & 1965): For a domain Ω in
RN with 0 ∈ Ω, assume that A(x , u, ξ) and B(x , u, ξ) are, respectively,
vector and scalar measurable functions in Ω× R× RN satisfying:

|A(x , u, ξ)| ≤ β0|ξ|p−1 + β1|u|p−1 + β2,

ξ · A(x , u, ξ) ≥ |ξ|p − β3|u|p − β4,

|B(x , u, ξ)| ≤ β6|ξ|p−1 + β3|u|p−1 + β5,

(2)

∀(x , u, ξ) ∈ Ω× R× RN , where 1 < p ≤ N is fixed, β0 > 0 is a constant
and βi (1 ≤ i ≤ 6) are measurable functions on Ω belonging to suitable
Lebesgue classes: β1, β2 ∈ LN/(p−1−ε), β6 ∈ LN/(1−ε) and βj ∈ LN/(p−ε)

for j = 3, 4, 5, where ε > 0. Then for any positive soln u of (1), we have:

1 u can be extended as a continuous soln of (1) in Ω;

2 or ∃c1, c2 > 0 s.t. c1 ≤ u(x)/µ(x) ≤ c2 in a neighbourhood of 0,
where µ denotes the fundamental soln of the p-harmonic eqn
−div (|∇µ|p−2∇µ) = δ0 (Dirac mass at 0) in D′(RN).
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Introduction

Serrin’s papers [23, 24] have generated much research on isolated
singularities in the attempt to find analogues results for other nonlinear
PDEs. For the development of the singularity theory to nonlinear
second-order diff. eqns of elliptic (parabolic) type, see Véron’s books [31]
(1996) and [32] (2017).

The challenge remains to address the singularity problem for quasi-linear
elliptic eqns in divergence form such as (1) when the growth of B is bigger
than that of A. In this case, a crucial difficulty lies in that solns with
singularities stronger than that of µ may appear.
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Introduction

I. Quasilinear elliptic equations

Let B1 denote the open unit ball in RN (N ≥ 2) centred at 0. For
1 < p ≤ N and q > 0, the profile near 0 of all positive solns for

div (|∇u|p−2∇u) = |u|q−1u in B∗ := B1 \ {0} (3)

depends on the position of q w.r.t. p − 1 as well as q∗ =
N(p−1)
N−p .

• Serrin [23, 24] (Acta Math. 1964, 1965): If 0 < q ≤ p − 1, then

1 u can be extended as a continuous soln of (3) in B1;

2 or ∃c1, c2 > 0 s.t. c1 ≤ u(x)/µ(x) ≤ c2 in a neighbourhood of 0.

• Vázquez–Véron [27] (Manuscripta Math., 1980/1981):
If q ≥ q∗ (for 1 < p < N), then any positive soln can be extended as a
continuous soln of (3) in B1 (removability).
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Introduction

• Friedman–Véron [15] (Arch. Ration. Mech. Anal., 1986):
If p − 1 < q < q∗, then as |x | → 0, exactly one of the following holds:

(i1) u can be extended as a continuous soln of (3) in B1;

(i2) ∃λ ∈ (0,∞) s.t. u(x)/µ(x) → λ (weak singularity) and

−div (|∇u|p−2∇u) + |u|q−1u = λp−1δ0 in D′(B1).

(i3) |x |p/(q+1−p)u(x) → γN,p,q (strong singularity), where

γN,p,q :=

[(
p

q+1−p

)p−1 (
pq

q+1−p − N
)]1/(q+1−p)

.

Generalizations: C.–Du [10] (JFA, 2010) and Chang–C. [5] (AIHP 2017)
generalized the results of Friedman–Véron [15] and Vázquez–Véron [27] to
nonlinear elliptic equations in divergence form

div (A(|x |) |∇u|p−2∇u) = b(x) h(u) in B∗ := B1 \ {0}. (4)
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Introduction

II: Gradient-dependent nonlinearities and Hardy potentials

We study the existence of positive solutions and the classification of their
behaviour near zero for nonlinear elliptic equations of the form

Lρ,λ(u) := ∆u+(2− N − 2ρ)
x · ∇u

|x |2
+

λ

|x |2
u = |x |θuq |∇u|m (5)

in Ω \ {0}, where Ω is an open subset Ω0 of RN containing zero.
Assumption: Let ρ, λ, θ,m, and q be real parameters such that

m > 0, q ≥ 0, and κ := m + q − 1 > 0. (6)

The solutions of (5) are understood in the sense of distributions: a
non-negative function u ∈ C 1(Ω \ {0}) that satisfies

−
∫
Ω
∇u · ∇φ dx + (2− N − 2ρ)

∫
Ω

x · ∇u

|x |2
φ dx +

∫
Ω

λ uφ

|x |2
dx

=

∫
Ω
|x |θuq|∇u|mφ dx ∀ φ ∈ C 1

c (Ω \ {0}).
(7)
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Introduction

Background.
A. Without the gradient factor: The case ρ = (2− N)/2 and m = 0 is
understood very well:

• C. [8] (Mem. AMS, 2014) for λ ≤ (N − 2)2/4 and θ > −2.

• Wei–Du [33] (JDE, 2017) for λ > (N − 2)2/4 and θ > −2;

• C.–Farcăşeanu (JDE, 2021) for λ, θ ∈ R and Ω = Ω0 or Ω∞ or RN .

B. Including the gradient factor, but no Hardy potential:
Ching–C. [6] (Analysis & PDE, 2015) studied the case ρ = (2− N)/2,
λ = θ = 0 and m ∈ (0, 2).
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Introduction

Recall that κ = m + q − 1 > 0. For every ρ, λ, θ ∈ R, we define

Θ :=
θ + 2−m

κ
and ℓ = ℓ(ρ, λ,Θ) := Θ2 + 2ρΘ+ λ. (8)

• When λ ≤ ρ2, we define Θ± as the roots of t2 + 2ρt + λ = 0:

Θ± := −ρ±
√
ρ2 − λ.

We have ℓ ≤ 0 if and only λ ≤ ρ2 and Θ− ≤ Θ ≤ Θ+.

The behaviour near zero of the positive solutions of (5) is closely linked
with two special solutions Φ±

ρ,λ of Lρ,λ(·) = 0 defined by

Φ−
ρ,λ(x) = |x |−Θ− , Φ+

ρ,λ(x) =


|x |−Θ+ if λ < ρ2

|x |−Θ+ log
1

|x |
if λ = ρ2
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From zero to infinity

We use a modified Kelvin transform for a positive soln u of (5) as follows

K [u](x) := u(x̃), where x̃ = x/|x |2 for x ∈ RN \ {0}. (9)

We observe that |∇K [u](x)|2 = |∇u(x̃)|2|x̃ |2 and

div (|x |2(2−N)∇K [u](x)) = |x̃ |2N ∆u(x̃) for every x ∈ RN \ {0}. (10)

Hence, the modified Kelvin transform K [u] of u satisfies

∆K [u] + (2−N+2ρ)
x · ∇K [u]

|x |2
+

λ

|x |2
K [u] = |x |−θ+2m−4(K [u])q|∇K [u]|m

(11)
for every x ∈ RN \ {0}. If u solves (5) with Ω = RN , then K [u] solves an
equation of the same type as (5) except that

ρ in (5) 7−→ −ρ in (11),

θ in (5) 7−→ −θ + 2m − 4 in (11).
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Classification results near zero

For β > 0 and µ ̸= 0, we define Fβ,µ(r) = β
1
κ |µ|−µ| log r |µ for r ∈ (0, 1).

Table: Important asymptotic profiles near zero

Condition Relevant asymptotic profile

λ ≤ ρ2 Φ−
ρ,λ(x) = |x |−Θ−

λ ≤ ρ2 Φ+
ρ,λ(x) =


|x |−Θ+ if λ < ρ2

|x |−Θ+ log
1

|x |
if λ = ρ2

ℓ > 0, Θ ̸= 0 Uℓ,Θ(x) = (|Θ|−mℓ)1/κ |x |−Θ

ℓ > 0, Θ = 0 Uℓ,0(x) = Fλ,µ(|x |), µ = m/κ

λ ≤ ρ2, Θ = Θ− ̸= 0

U0,Θ−(x) = |Θ−|−
m
κ |x |−Θ−Fβ,µ(|x |)

β = 2
√
ρ2 − λ, µ = −1

κ
if Θ− ̸= −ρ

β = 1− 1

µ
, µ = −2

κ
if Θ− = −ρ

λ = Θ = 0, ρ (m − 1) > 0 F2|ρ|,µ(|x |), µ = (m − 1)/κ

λ = Θ = ρ = 0, m ∈ (0, 2) F1− 1
µ
,µ(|x |) and µ = (m − 2)/κ
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The case λ < 0 and Θ, ρ ∈ R

Theorem 1 (C.-Fărcăşeanu, preprint)

Let (6) hold, λ < 0 and Θ, ρ ∈ R. Let u be any positive soln of (5).

(I) If Θ < Θ−, then it holds

u(x) ∼ Uℓ,Θ(x) as |x | → 0 i.e., lim
|x |→0

|x |Θu(x) = (ℓ/|Θ|m)1/κ. (12)

(II) If Θ = Θ−, then we have

u(x) ∼ U0,Θ−(x) as |x | → 0. (13)

(III) If Θ− < Θ ≤ Θ+, then the following limit exists

lim
|x |→0

u(x)/Φ−
ρ,λ(x) ∈ (0,∞). (14)

(IV) If Θ > Θ+, then exactly one of the following situations occurs:
(A) (12) holds; (B) There exists lim|x |→0 u(x)/Φ

+
ρ,λ(x) ∈ (0,∞).

(C) (14) holds.
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Classification for the case ℓ > 0 and Θ ∈ R

Theorem 2 (C.-Fărcăşeanu, preprint)

Let (6) hold and ρ, θ, λ ∈ R such that ℓ > 0. Let u be any given positive
solution of (5) with Ω = Ω0. If λ ≥ 0 and Θ < 0, we assume that
lim|x |→0 u(x) = 0. If λ ≤ ρ2 and Θ > Θ+, we also assume that

lim
|x |→0

u(x)/Φ+
ρ,λ(x) = ∞. (15)

Then, u(x) ∼ Uℓ,Θ(x) as |x | → 0, where

Uℓ,Θ(x) =

{
(|Θ|−mℓ)1/κ |x |−Θ if Θ ̸= 0,

λ
1
κ (m/κ)−m/κ|log |x ||m/κ if Θ = 0.

(16)

Theorem 3 (Existence)

Let (6) hold, Θ ̸= 0 and ℓ > 0. Then, ∀R > 0, Eq. (5) in BR(0) \ {0} has
infinitely many positive solns satisfying u(x) ∼ Uℓ,Θ(x) as |x | → 0.
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Refined asymptotics for ℓ > 0 and Θ ̸= 0

Theorem 4 (Refined asymptotics)

Let (6) hold, Θ ̸= 0 and ℓ > 0. Let u > 0 be a radial soln of (5) in
BR(0) \ {0} for some R > 0 s.t. u(x) ∼ Uℓ,Θ(x) as |x | → 0. Assume that
u ̸≡ Uℓ,Θ in any interval (0, r∗) with r∗ ∈ (0,R). Then, ∃µ0 ∈ R \ {0} s.t.

lim
r→0+

r−ξ0

(
ru′(r)

u(r)
+ Θ

)
= µ0,

u(r) = Uℓ,Θ(r)

(
1 +

µ0
ξ0

r ξ0(1 + o(1))

)
as r → 0+,

(17)

where ξ0 is the positive root of the following quadratic equation (in ξ)

ξ2 +

(
ℓm

Θ
− 2 (ρ+Θ)

)
ξ − ℓκ = 0. (18)
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Refined asymptotics for Θ = 0 and ℓ = λ > 0

Theorem 5

Let (6) hold, Θ = 0, λ > 0, ρ ∈ R. Assume u ∈ C 2(BR(0) \ {0}) is a
positive radial soln of (5) in BR(0) \ {0} s.t. u(x) ∼ Uℓ,0(x) as |x | → 0.

(a) Assume that either ρ ̸= 0 or q ̸= 1. For r > 0 small, we define

t =
u2(r)

r2(u′(r))2
, X (t) = t

(
t−

m
2 uκ(r)− λ

)
− 2ρ

√
t +

q − 1

m
. (19)

(a1) Then, as r → 0+, we have t → ∞ and X (t) → 0. Moreover, as r → 0+

u(r) =


Uℓ,0(r)

(
1 +

2ρm

λκ2
log log 1

r

log 1
r

(1 + o(1))

)
if ρ ̸= 0,

Uℓ,0(r)

(
1 +

(q − 1)m

λκ3
(1 + o(1))(
log 1

r

)2
)

if ρ = 0, q ̸= 1.

(20)
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Refined asymptotics for Θ = 0 and ℓ = λ > 0

Theorem 6 (Continuation)

(a2) There exists T0 > 0 large s.t. |X (t)| < κ/(2m) ∀t ≥ T0 and

dX

dt
=

λmX (t)

2
(
κ
m − X (t)

) + (1 + mX (t)
κ
m − X (t)

)
ρ√
t

+

(
1 +

mX (t)

2
(
κ
m − X (t)

)) 1−q
m + X (t)

t
.

(21)

(b) If ρ = 0 and q = 1, then there exists a constant c ∈ R such that

u(r) = Uℓ,0(r) + c = λ
1
κ | log r |+ c for all r > 0 small. (22)
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The case λ ≤ ρ2 and Θ = Θ− ̸= 0

Characterization of solutions modeled by U0,Θ− :

Theorem 7 (C.-Fărcăşeanu, preprint)

Let (6) hold, λ ≤ ρ2 and Θ = Θ− ̸= 0. Let u be any given positive
solution of (5) with Ω = Ω0. If λ ≥ 0 and Θ < 0, we further assume that
lim|x |→0 u(x) = 0. Then, u satisfies (13): u(x) ∼ U0,Θ−(x) as |x | → 0.

In Theorem 8 with λ < ρ2 we obtain a sharp existence result, confirming
that in any of the cases of Theorem 7, there exist infinitely many positive
radial sols of (5) in BR(0) \ {0} s.t. (13) holds. We set

p :=
|Θ−|m

2
√
ρ2 − λ

> 0 and M :=
κ+ 1

2
√
ρ2 − λ

+
m

Θ−
. (23)

For every r ∈ (0, 1), we define U0,Θ−(r) by

U0,Θ−(r) := v0 r
−Θ− | log r |−

1
κ with v0 := (pκ)−

1
κ . (24)

Florica C. Ĉırstea (2024) May 16, 2024 18 / 40



Refined asymptotics for λ < ρ2 and Θ = Θ− ̸= 0

Theorem 8

Let (6) hold, ρ ∈ R, λ < ρ2 and Θ = Θ− ̸= 0.

(a) Let (13) hold for a positive radial soln u of (5) in BR(0) \ {0}.
(a1) If M ̸= 0, then we have

u(r) = U0,Θ−(r)

[
1 +

2M

κ2
log log 1

r

log 1
r

(1 + o(1))

]
as r → 0+. (25)

(a2) If M = 0 and m ̸= 1, then

u(r) = U0,Θ−(r)

[
1 +

m(m − 1)

κ3 (Θ−)2
(1 + o(1))(
log 1

r

)2
]

as r → 0+. (26)

(a3) If M = 0 and m = 1, then there exists a constant C ∈ R such that

u(r) = U0,Θ−(r)
(
1 + C | log r |−1

)− 1
κ for every r > 0 small. (27)

(b) For every R ∈ (0,∞), equation (5) in BR(0) \ {0} has infinitely many
positive radial solutions satisfying (13).
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Refined asymptotics for λ < ρ2 and Θ = Θ− ̸= 0

Lemma 9

Let (6) hold, ρ ∈ R, λ < ρ2 and Θ = Θ− ̸= 0. Let u > 0 be a radial soln
of (5) in BR(0) \ {0} s.t. (13) holds. We define

t = (rΘ−u(r))−κ and X (t) = t
(
ru′(r)/u(r) + Θ−

)
− p. (28)

(a) ∃T0 > 4 p/|Θ−| large s.t. |X (t)| ≤ p/2 ∀t ≥ T0 and

dX

dt
=

√
ρ2 − λ

κ (X (t) + p)
X (t) +

(
1 +

1

κ

)
X (t) + p

t

+
|Θ−|m

κ (X (t) + p)

[
1−

(
1− X (t) + p

t Θ−

)m]
.

(29)

(b) If M ̸= 0, then tX (t) → −2p2M as t → ∞ and (25) holds.

(c) If M = 0 and m ̸= 1, then limt→∞ t2X (t) = m(m − 1)p3/(Θ−)
2 and

(26) holds.

(d) If M = 0 and m = 1, then X ≡ 0 on [T0,∞) and (27) holds.
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Refined asymptotics for λ = ρ2 and Θ = Θ− ̸= 0

When λ = ρ2 ̸= 0 and Θ = Θ± = −ρ, we recall that U0,Θ− is defined by

U0,Θ−(r) :=
(
2 (κ+ 2)κ−2 |Θ−|−m

) 1
κ r−Θ− | log r |−

2
κ for r ∈ (0, 1). (30)

Theorem 10

Let (6) hold, λ = ρ2 ̸= 0 and Θ = Θ± = −ρ.
(a) If (13) holds for a positive radial soln u of (5) in BR(0) \ {0}, then

u(r) = U0,Θ−(r)

[
1− 4m(2 + κ)

ρκ2(3κ+ 4)

log log 1
r

log 1
r

(1 + o(1))

]
as r → 0+.

(31)

(b) For every R ∈ (0,∞), equation (5) in BR(0) \ {0} has infinitely many
positive radial solutions satisfying (31).
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Refined asymptotics for λ = ρ2 and Θ = Θ− ̸= 0

We define Q as follows

Q := |ρ|
m
2 /
√
1 + κ/2. (32)

Lemma 11

Let (6) hold, λ = ρ2 ̸= 0 and Θ = Θ± = −ρ. Let u > 0 be a positive
radial soln of (5) in BR(0) \ {0} s.t. (13) holds. For r > 0 small, we define

et = (r−ρu(r))−
κ
2 and X (t) = et

(
ru′(r)/u(r)− ρ

)
−Q. (33)

(a) As r → 0+, we have et/ log(1/r) → Qκ/2 and X (t) → 0.

(b) ∃T0 > log (4Q/|ρ|) large s.t. |X (t)| ≤ Q/2 for all t ≥ T0 and

dX

dt
=

(
1 +

2

κ

)
(X +Q)

{
1− Q2

(X +Q)2

[
1 +

e−t

ρ
(X +Q)

]m}
.

(34)

(c) We have etX (t) → 2m|ρ|m
ρ(3κ+4) as t → ∞ and (31) holds.
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The case Θ = λ = 0 and ρ ̸= 0

Theorem 12 (C.-Fărcăşeanu, preprint)

Let (6) hold and Θ = λ = 0. Let u be any positive soln of (5).

(a) If m ∈ (0, 1) and ρ < 0, then the following dichotomy occurs:

(i) Either lim|x|→0 u(x) = 0 and, more precisely,

u(x) ∼ F2|ρ|,µ(x) as |x | → 0, where µ = (m − 1)/κ. (35)

(ii) Or 0 < lim inf|x|→0 u(x) ≤ lim sup|x|→0 u(x) <∞.

(b) If m ≥ 1 and ρ < 0, then the alternative in (a)(ii) always holds.

(c) If m > 1 and ρ > 0, then the following trichotomy occurs:

(i) Either lim|x|→0 u(x) = +∞ and, more precisely, (35) holds.
(ii) Or 0 < lim inf|x|→0 u(x) ≤ lim sup|x|→0 u(x) <∞.
(iii) Or lim|x|→0 u(x) = 0 and

0 < lim inf|x|→0 u(x)/Φ
−
ρ,λ(x) ≤ lim sup|x|→0 u(x)/Φ

−
ρ,λ(x) <∞.

(d) If 0 < m ≤ 1 and ρ > 0, then either (c)(ii) or (c)(iii) holds.
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The case Θ = λ = ρ = 0

Theorem 13 (C.-Fărcăşeanu, preprint)

Let (6) hold, Θ = λ = ρ = 0. Let u be a positive soln of (5).

(a) If m ∈ (0, 2), then the following dichotomy occurs:

(i) Either lim|x|→0 u(x) = 0 and, more precisely,

lim
|x|→0

u(x)

F1− 1
µ ,µ(x)

= 1, where µ =
m − 2

κ
. (36)

(ii) Or there exists lim|x|→0 u(x) ∈ (0,∞).

(b) If m ≥ 2, then there always exists lim|x |→0 u(x) ∈ (0,∞).
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Method of proofs

For classification: Gradient estimates via Bernstein technique (for λ ≤ 0).

Proposition 1

Let m ≥ 0, q ≥ 0, m + q > 1, λ ≤ 0, and θ ∈ R. Then, there exists a
positive constant C1, depending only on m,N, q, λ and θ, such that for
every positive solution u of (5) and r0 > 0 with B2r0(0) ⊂ Ω, we have

|∇u(x)| ≤ C1
u(x)

|x |
for all 0 < |x | ≤ r0. (37)

Idea of the proof. If λ = 0, then the conclusion follows from Lemma 2.1
in Ching–C. [Proc. Roy. Soc. Edinburgh Sect. A (2020)]. For λ < 0 we
proceed similarly, but modifications appear in the latter part of the proof.
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Comparison Principles

Idea of the Proof. Careful constructions of super-solutions and
comparison principles.

Lemma 14 (Comparison principle, I)

Let D be a bounded domain in RN with N ≥ 2. Let
B̂(x , z , ξ) : D × R× RN → R be continuous in D × R× RN and
continuously differentiable with respect to ξ for |ξ| > 0 in RN . Assume
that B̂(x , z , ξ) is non-decreasing in z for fixed (x , ξ) ∈ D × RN . Let u1
and u2 be non-negative C 1(D) ∩ C (D) (distributional) solutions of{

∆u1 − B̂(x , u1,∇u1) ≥ 0 in D,

∆u2 − B̂(x , u2,∇u2) ≤ 0 in D.
(38)

Suppose |∇u1|+ |∇u2| > 0 in D. If u1 ≤ u2 on ∂D, then u1 ≤ u2 in D.
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Lemma 15 (Comparison principle, II)

Let D be a bounded domain in RN with N ≥ 2. Assume that
B̂(x , z , ξ) : D × R× RN → R is locally Lipschitz continuous with respect
to ξ in D × R× RN and is non-decreasing in z for fixed (x , ξ) ∈ D × RN .
Let u1 and u2 be (distribution) solutions in W 1,∞

loc (D) of (38). If

u1 ≤ u2 +M on ∂D,

where M is a positive constant, then u1 ≤ u2 +M in D.

Lemma 14 follows from Pucci–Serrin (JDE, 2004) [20, Theorem 10.1]. The
second comparison principle in Lemma 15 is included in Corollary 3.5.2 to
Theorem 3.5.1 in [21], where the class C 1(D) is weakened to W 1,∞

loc (D).
Theorem 3.5.1 in Pucci–Serrin (2007) [21], like Theorem 10.1 in [20], is
essentially Theorem 10.7(i) in Gilbarg and Trudinger’s book [16] with the
exception that the functions Â and B̂ in [20, 21] are allowed to be singular
at ξ = 0. This is then compensated in [20, Theorem 10.1] by the
additional condition that |∇u1|+ |∇u2| > 0 in D.
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Aim: To obtain existence of positive (radial) solutions in each of the cases
prescribed by our sharp classification results.
We use a dynamical systems approach. We illustrate it for the existence of
positive solutions of (5) modeled by U0 near zero.
Assume that Θ ̸= 0 and ℓ > 0, where ℓ is given by (8). We define M0 by

M0 := (|Θ|−mℓ)
1
κ > 0. (39)

We prove that for every R > 0, there exist infinitely many positive radial
solutions u(x) = u(|x |) of (5) in BR(0) satisfying

lim
r→0+

u(r)

r−Θ
= lim

r→0+

u′(r)

−Θ r−Θ−1
= M0. (40)

Fix R > 0. We first assume that u is a positive radial solution of (5) in
BR(0) \ {0} satisfying (40). Then, there exists r0 ∈ (0,R) small such that
for every r ∈ (0, r0], we have

|rΘu(r)−M0| ≤
M0

2
and |rΘ+1u′(r) + ΘM0| ≤

|Θ|M0

2
. (41)
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For every r ∈ (0, r0], we set

t = log (r0/r)

and define (X1(t),X2(t),X3(t)) as follows
X1(t) = rΘ u(r)−M0,

X2(t) = rΘ+1 u′(r) + ΘM0,

X3(t) = r .

(42)

By the assumption in (40), it is clear that

(X1(t),X2(t),X3(t)) → (0, 0, 0) as t → ∞.

Let f1, f2 : R → R be smooth functions such that

f1(s) = (s +M0)
q for every |s| ≤ M0/2,

f2(s) = (ΘM0 − s)m if Θ > 0 and f2(s) = (s −ΘM0)
m if Θ < 0

for every |s| ≤ |Θ|M0/2. From our choice of r0 so that (41) holds, we have

f1(X1(t)) = (X1(t)+M0)
q and f2(X2(t)) = |X2(t)−ΘM0|m for all t ≥ 0.
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Then, X(t) = (X1(t),X2(t),X3(t)) is a solution of the following
autonomous first order differential system: for all t ≥ 0

X ′
1(t) = −ΘX1(t)− X2(t) := H1(X),

X ′
2(t) = λX1(t)− (Θ + 2ρ)X2(t)− f1(X1(t)) f2(X2(t)) + ℓM0 := H2(X),

X ′
3(t) = −X3(t) := H3(X).

(43)
Hence, we have obtained a nonlinear differential system of the form

X′(t) = H(X) (44)

where H = (H1,H2,H3) is specified in (43). Remark that in our situation,
X3 in (42) is a positive solution of X ′

3(t) = −X3(t) for t ≥ 0.

We next describe the behaviour of (43) near its critical point 0 = (0, 0, 0).
Since 0 is a hyperbolic critical point, the behaviour of the nonlinear system
(43) near X = 0 is approximated by the behaviour of its linearization
X′ = AX at X = 0. The matrix A, representing DH(0), is given by
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A =

 −Θ −1 0

λ− ℓq −Θ− 2ρ+ ℓm
Θ 0

0 0 −1

 . (45)

The matrix A has no zero or pure imaginary eigenvalues so that 0 is a
hyperbolic critical point. More precisely, 0 is a saddle point since two
eigenvalues of A are negative and the other is positive. The eigenvalues of
A are µ3 = −1 and the roots µ1,2 of the quadratic equation

µ2 + 2ψµ− ℓ k = 0, where ψ := Θ + ρ− ℓm

2Θ
. (46)

Since µ1µ2 = −ℓk < 0, the equation in (46) has one positive root µ2 and
one negative root µ1 given by

µ1 := −ψ −
√
ψ2 + ℓk, µ2 := −ψ +

√
ψ2 + ℓk.

For the unstable eigenvalue µ2, an associated eigenvector is
v2 = (1, ρ− ℓm

2Θ −
√
ψ2 + ℓk, 0). The stable eigenvalue µ1 (and µ3,

respectively) has an eigenvector v1 = (1, ρ− ℓm
2Θ +

√
ψ2 + ℓk , 0) (and

v3 = (0, 0, 1), respectively).
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The stable subspace E s of the linear system X′(t) = AX at 0 is the plane
spanned by v1 and v3, that is,(

ρ− ℓm

2Θ
+
√
ψ2 + ℓk

)
x1 − x2 = 0.

Let ϕt be the flow of the nonlinear system (43). By the Stable Manifold
Theory, there exists a two-dimensional differentiable manifold S tangent to
the stable subspace E s of the linear system X′(t) = AX at 0 such that for
all t ≥ 0, we have ϕt(S) ⊆ S and for all x0 ∈ S ,

lim
t→∞

ϕt(x0) = 0.

The stable manifold S is local since it is only defined in a small
neighbourhood of 0. Moreover, since our function H in (44) is of class
C∞ on a small open neighbourhood E of 0, it is known that the stable
manifold S is of class C∞ as well. The invariant stable manifold S is
(locally) unique.
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Thank you for your attention!
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