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Introduction

Introduction

The singularity problem for quasi-linear elliptic eqns of the general form
div A(x, u,Vu) = B(x,u,Vu). (1)
For a domain Q in RN with 0 € Q and a soln v in a suitable sense (e.g., in

D'(Q2\ {0})), the following questions are of interest:

Can u be extended to the whole domain ) in a natural way so that the
new function satisfies the equation in Q (a removable singularity)?
Otherwise, what is the behaviour of u near 07

The topic of isolated singularities has received much attention in
connection with geometry (minimal surfaces), the Yamabe problem and
mathematical physics.
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Introduction

Serrin's pioneering papers (Acta Math, 1964 & 1965): For a domain Q in
RN with 0 € Q, assume that A(x, u, &) and B(x, u, ) are, respectively,
vector and scalar measurable functions in Q x R x RV satisfying:

[AGx, u, )] < BolélPt + BilulP ™ + B,
é_'A(X, u)é-) > |£|piﬁ3|u|piﬁ4a (2)
|B(X» U7£)| < ﬁ6|£‘p_l + ﬁ3|u|P—1 + 557

V(x,u,€) € Q x R x RN, where 1 < p < N is fixed, o > 0 is a constant
and f; (1 < i < 6) are measurable functions on Q2 belonging to suitable
Lebesgue classes: (1,32 € LN/(P=1=¢) 3¢ ¢ [N/(1=¢) and B; € LN/(P—)
for j = 3,4,5, where ¢ > 0. Then for any positive soln u of (1), we have:

© v can be extended as a continuous soln of (1) in £;

Q or

where 1 denotes the fundamental soln of the p-harmonic eqgn
—div (|Vu|[P~2Vu) = & (Dirac mass at 0) in D'(RV).
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Introduction

Serrin's papers [23, 24] have generated much research on isolated
singularities in the attempt to find analogues results for other nonlinear
PDEs. For the development of the singularity theory to nonlinear
second-order diff. eqns of elliptic (parabolic) type, see Véron's books [31]
(1996) and [32] (2017).

The challenge remains to address the singularity problem for quasi-linear
elliptic egns in divergence form such as (1) when the growth of B is bigger
than that of A. In this case, a crucial difficulty lies in that solns with
singularities stronger than that of ;1 may appear.
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Introduction

|. Quasilinear elliptic equations

Let B; denote the open unit ball in RN (N > 2) centred at 0. For
1 < p < Nand g >0, the profile near 0 of all positive solns for

div (|VulP™2Vu) = [u| Ty in B* := B; \ {0} (3)
depends on the position of g w.r.t. p — 1 as well as g, = N,(\,pjpl).

e Serrin [23, 24] (Acta Math. 1964, 1965): If 0 < g < p — 1, then
@ u can be extended as a continuous soln of (3) in By;

Q or

e Vazquez—Véron [27] (Manuscripta Math., 1980/1981):
If ¢ > qg. (for 1 < p < N), then any positive soln can be extended as a
continuous soln of (3) in By (removability).
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Introduction

e Friedman—Véron [15] (Arch. Ration. Mech. Anal., 1986):

If p— 1< g < g, then as |x| — 0, exactly one of the following holds:

(1) u can be extended as a continuous soln of (3) in By;

(i2) s.t. (weak singularity) and
—div (|VulP2Vu) + [u]7tu = NP5 in D(By).

(i3) \X\p/(‘Hl’p)u(X) — YN,p.q (strong singularity), where

o= () ()]

Generalizations: C.—Du [10] (JFA, 2010) and Chang—C. [5] (AIHP 2017)
generalized the results of Friedman—Véron [15] and Vézquez—Véron [27] to

nonlinear elliptic equations in divergence form

div (A(|x]) [VulP72Vu) = b(x) h(u) in B* := By \ {0}.
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Introduction

lI: Gradient-dependent nonlinearities and Hardy potentials

We study the existence of positive solutions and the classification of their
behaviour near zero for nonlinear elliptic equations of the form

x-Vu A m
Loa(u) := Aut(2 — N —2p) W—’_\ \QU_ x|%u? |V ul (5)

in Q\ {0}, where Q is an open subset Qg of RN containing zero.
Assumption: Let p, A\, 0, m, and g be real parameters such that

m>0, ¢g>0, and . (6)

The solutions of (5) are understood in the sense of distributions: a
non-negative function u € C(Q\ {0}) that satisfies

—/Vu~V<de—|—(2—N—2p)/ X dx +/A 2% dx
o o I ]
= [ IWuVumede ¥ g e @)\ o)),

Q
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Introduction

Background.
A. Without the gradient factor: The case p=(2— N)/2and m=0s
understood very well:

e C. [8] (Mem. AMS, 2014) for A < (N — 2)?/4 and 6 > —2.

e Wei-Du [33] (JDE, 2017) for A > (N —2)?/4 and 6 > —2;

e C.—Farcdseanu (JDE, 2021) for \,6 € R and Q = Qg or Q4 or RV,
B. Including the gradient factor, but no Hardy potential:

Ching—C. [6] (Analysis & PDE, 2015) studied the case p = (2 — N)/2,
A=60=0and me (0,2).
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Introduction

Recall that k = m+ g —1 > 0. For every p, \,0 € R, we define

_0+2-—m

K

0: and £ =1{(p,\,0) :=0%+2p0 + \. (8)

e When )\ < p?, we define ©. as the roots of t? 4+ 2pt + A\ = 0:

Or :=—pt+p?— A

We have £ < 0 if and only A < p2 and ©_ <0 <0O,.
The behaviour near zero of the positive solutions of (5) is closely linked
with two special solutions d)i/\ of L, x(-) = 0 defined by

|x|~©+ if A < p?
q);’A(X) B |X|_ei’ CDZ/\(X) B |x!_e+ Iogi if A= PZ

[x]
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From zero to infinity

We use a for a positive soln u of (5) as follows
Klu](x) := u(X), where X = x/|x|> for x € RN\ {0}. 9)
We observe that [VK[u](x)|?> = |Vu(X)|?|x|? and
div (|x]?C~M VK[u](x)) = [x]*N Au(X) for every x € RV \ {0}. (10)
Hence, the modified Kelvin transform K[u] of u satisfies

T KD = K IK L
(1)

for every x € RN\ {0}. If u solves (5) with Q = R", then K[u] solves an
equation of the same type as (5) except that

AK[u] + (2 — N+2p)

pin (5) — —pin (11),
0 in (5) — —0 +2m — 4 in (11).
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Classification results near zero

For 8> 0 and p # 0, we define Fg ,(r) = 6%]u]*“\ log r|* for r € (0,1).

Table: Important asymptotic profiles near zero

] Condition \ Relevant asymptotic profile ‘
A< PP e \(x) =Ix"-
x| ~©+ if A < p?
A< p? dF (x) = 1
=P W\(x) |x|*@+ log W if A= p?
X
(>0 0#0 Uge(x) = (10]m0) /% x|
£>0,0=0 Uro(x) = Fau(x]), p=m/k

A< 2, 0=0_+#£0

Upo_(x) = [0 *Ix|7® Fsu(Ix])
1
B=2vpP = A p=—_ifO_#—p

gzl_;, M:—% fo_=—p

A=0=0p(m-1)>0

A=0=p=0, me(0,2)

Folplu(Ix]), = (m—1)/x
Fio1,(Ix]) and pu = (m —2)/x
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Thecase A < 0and ©,p € R
Theorem 1 (C.-Farcaseanu, preprint) |

Let (6) hold, A < 0 and ©,p € R. Let u be any positive soln of (5).
(I) If© < ©_, then it holds

u(x) ~ Uge(x) as [x| =0 ie, |leo Ix|®u(x) = (¢/]0]™Y* . (12)

(I) If©=0©_, then we have
u(x) ~ Upo_(x) as|x| = 0. (13)
() If©_ < © < O, then the following limit exists

lim u(x)/®(x) € (0,00). (14)
|x|—0 P
(IV) If © > ©, then exactly one of the following situations occurs:
(A) (12) holds; (B) There exists lim|,|_o u(x)/d);“)\(x) € (0, 00).
(C) (14) holds.
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Classification for the case £ > 0 and © € R
Theorem 2 (C.-Farcaseanu, preprint)

Let (6) hold and p,0,\ € R such that { > 0. Let u be any given positive
solution of (5) with Q = Qq. If A >0 and © < 0, we assume that
lim|yso u(x) = 0. If A < p? and © > O, we also assume that

lim u(X)/CD:;A(X) = 00. (15)

|x|]—0
Then, u(x) ~ Upe(x) as |x| = 0, where

(Ie]=me)Y/* x| ° if© #0,

UE,@(X) = {)\}e(m/ﬁ)m/” if® =0.

Theorem 3 (Existence)

Let (6) hold, © # 0 and ¢ > 0. Then, YR > 0, Eq. (5) in Bg(0) \ {0} has
infinitely many positive solns satisfying u(x) ~ Uy e(x) as x| — 0.

p - = - ~r
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Refined asymptotics for £ > 0 and © # 0

Theorem 4 (Refined asymptotics)

Let (6) hold, © # 0 and ¢ > 0. Let u > 0 be a radial soln of (5) in
Br(0) \ {0} for some R > 0 s.t. u(x) ~ Upe(x) as |x| — 0. Assume that
u # Upe in any interval (0, r,) with r, € (0, R). Then, 3pug € R\ {0} s.t.

o (519)

u(r) = Upe(r) <1 + ZO reo(1 + o(l))> asr— 0%,

(17)
0

where & is the positive root of the following quadratic equation (in §)

£2+<€e’"_2(p+@)>5—£n:0. (18)
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Refined asymptotics for © = 0 and £ = A > 0

Theorem 5 |

Let (6) hold, ® =0, A >0, p € R. Assume u € C?(Bg(0)\ {0}) is a

positive radial soln of (5) in Bg(0) \ {0} s.t. u(x) ~ Uro(x) as |x| = 0.

(a) Assume that either p # 0 or g # 1. For r > 0 small, we define
u?(r)

= iy X0 = (T -3) —2vEr T2 o)

(a1) Then, as r — 0%, we have t — oo and X(t) — 0. Moreover, as r — 0%

Uro(r) (1 y2moE 'g"%f(l + o(l))> ifp #0,
u(r) = . ’1 . (20)
U&o(f) <1+(q;3)m( +01( 2))) pr:(), q#l
" (log 1)
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Refined asymptotics for © = 0 and £ = A > 0

Theorem 6 (Continuation)
(a2) There exists To > 0 large s.t. |X(t)| < x/(2m) ¥Vt > Ty and

dX  AmX(t)
dt "2(5 - X(1) *(

m X (t) a4 X(
+<1+2( ) .

m—X(1)

(b) If p=0 and q = 1, then there exists a constant ¢ € R such that

u(r) = Ugo(r) + c = A |log r| + ¢ for all r >0 small. (22)
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Thecase A < p2and @ = ©_ #0

Characterization of solutions modeled by Uy g _:
Theorem 7 (C.-Farcaseanu, preprint)

Let (6) hold, A < p?> and © = ©_ # 0. Let u be any given positive
solution of (5) with Q = Qq. If A\ >0 and © < 0, we further assume that
lim|y 0 u(x) = 0. Then, u satisfies (13): u(x) ~ Upe_(x) as [x| — 0.

In Theorem 8 with \ < p? we obtain a sharp existence result, confirming
that in any of the cases of Theorem 7, there exist infinitely many positive
radial sols of (5) in Bg(0) \ {0} s.t. (13) holds. We set

m
O 1" o and m=_"FEL L™ g3

p'zzx/fﬂ—A Co2ypP =X O-

For every r € (0,1), we define Upg_(r) by
Uoe (r) :=w r_e*| log r|_% with v := (pr) = . (24)
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Refined asymptotics for A < p2 and © = ©_ #0

Theorem 8

Let (6) hold, p € R, A < p? and © = ©_ # 0.

(a) Let (13) hold for a positive radial soln u of (5) in Bg(0) \ {0}.
(a1) IF9 #£0, then we have

@ Ioglog%

> - (1+o(1))] asr—0%. (25)
K log +

u(r) = Use_(r) [l +

(a2) If9 =0 and m # 1, then

m(m —1) (1+ o(1))
K3 (©-)? (log %)2

u(r)=Uoe (r) |1+

] asr— 0T, (26)

(a3) If 9 =0 and m = 1, then there exists a constant C € R such that

_1

u(r) = Uge_(r) (L+Cllogr|™") = for every r > 0 small. (27)

(b) For every R € (0,00), equation (5) in Br(0) \ {0} has infinitely many |

nncitiva radial enlutinne catichsino (1) |
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Refined asymptotics for A < p2 and © = ©_ #0
Lemma 9 |

Let (6) hold, p € R, A < p?> and © = ©_ # 0. Let u > 0 be a radial soln
of (5) in Bg(0) \ {0} s.t. (13) holds. We define

t=(r°u(r))™ and X(t)=t(r/(r)/u(r)+0O_) —p. (28)
(a) 3To > 4p/|©_]| large s.t. | X(t)| <p/2 V¥Vt > Ty and

dX  \/pP—) 1\ X(t) +p
7 w0+ (1+1) 7

o™ { < X(t)ﬂﬂ)m]
= s SRR
* K (X(t) +p) tO_
(b) IFM # 0, then tX(t) — —2p?M as t — oo and (25) holds.
(c) IfM =0 and m # 1, then lim;_ t2X(t) = m(m — 1)p3/(©_)? and

(26) holds.
(d) If M =0 and m =1, then X =0 on [Ty, o0) and (27) holds.
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Refined asymptotics for A = p? and © = ©_ #£0

When A = p? # 0 and © = ©4 = —p, we recall that Uo,e_ is defined by
1
Uoo_(r) = (2(k+2) K2 ©_|~m)~ r=©-|log r\_% for r € (0,1). (30)

Theorem 10
Let (6) hold, \=p? #0 and © = O = —p.
(a) If (13) holds for a positive radial soln u of (5) in Br(0) \ {0}, then

4m(2 + k) loglog L

— _ r +
u(r)=Upe_(r) |1 2351 4) logl (1+o0(1))| asr—0".

(31)
(b) For every R € (0,00), equation (5) in Bg(0) \ {0} has infinitely many
positive radial solutions satisfying (31).
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Refined asymptotics for A = p? and © = ©_ #£0

We define £ as follows
Q= p|2 /\/1+K/2. (32)
Lemma 11

Let (6) hold, A\ = p> # 0 and © = @, = —p. Let u > 0 be a positive
radial soln of (5) in Br(0)\ {0} s.t. (13) holds. For r > 0 small, we define

et = (r*u(r))™2 and X(t)=e" (r/(r)/u(r)—p) - Q. (33)

(a) Asr — 0", we have e/ log(1/r) — Qk/2 and X(t) — 0.
(b) 3Ty > log (4/|p|) large s.t. |X(t)| < Q/2 for all t > Ty and

2 (2o Zaploe ool )

(c) We have et X(t) — pigi’jlrz) as t — oo and (31) holds.

P —— - —
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The case © = XA =0and p # 0

Theorem 12 (C.-Farcaseanu, preprint)

Let (6) hold and © = X\ = 0. Let u be any positive soln of (5).

(a) If me (0,1) and p < 0, then the following dichotomy occurs:
(i) Either lim,| 0 u(x) = 0 and, more precisely,

u(x) ~ Fapu(x) as [x| =0, where p=(m—1)/k.

(i) Or 0 <liminf|, 0 u(x) < limsup,_q u(x) < 0.

(b) Ifm>1 and p <0, then the alternative in (a)(ii) always holds.

(c) Ifm>1 and , then the following trichotomy occurs:
(i) Either lim,|_0 u(x) = 400 and, more precisely, (35) holds.
(i) Or 0 <liminf|, o u(x) < limsup,_q u(x) < 0.
(i) Orlimj, o u(x) =0 and

0 < liminfjx 0 u(x)/®, \(x) < limsup), o u(x)/®, \(x) < co.

(d) If0<m<1and , then either (c)(ii) or (c)(iii) holds.
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Thecase ® = A =p=0

Theorem 13 (C.-Farcadseanu, preprint)

Let (6) hold, ® = A\ = p =0. Let u be a positive soln of (5).
(a) If m € (0,2), then the following dichotomy occurs:
(i) Eitherlim, 0 u(x) = 0 and, more precisely,

_ u(x) m—2
e oy, — 1 wheren=— (36)
Z
(i) Or there exists lim, o u(x) € (0, c0).
(b) Ifm > 2, then there always exists lim|,|_o u(x) € (0, o).
May 16, 2024 24 /40
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Method of proofs

For classification: Gradient estimates via Bernstein technique (for A < 0).
Proposition 1

Letm>0,g>0 m+qg>1, A<0, and 6 € R. Then, there exists a
positive constant Cy, depending only on m, N, g, A\ and 0, such that for
every positive solution u of (5) and ry > 0 with By,,(0) C Q, we have
u(x)
Vu(x)| < GG —= forall 0< |x|<r. (37)

x|

Idea of the proof. If A =0, then the conclusion follows from Lemma 2.1
in Ching—C. [Proc. Roy. Soc. Edinburgh Sect. A (2020)]. For A < 0 we
proceed similarly, but modifications appear in the latter part of the proof.
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Method of proofs

Comparison Principles

Idea of the Proof. Careful constructions of super-solutions and
comparison principles.

Lemma 14 (Comparison principle, I)

Let D be a bounded domain in RN with N > 2. Let

B(x,z,£) : D x R x RN — R be continuous in D x R x RN and
continuously differentiable with respect to § for |€] > 0 in RV, Assume
that B(x, z, &) is non-decreasing in z for fixed (x,£) € D x RN. Let
and up be non-negative C1(D) N C(D) (distributional) solutions of

Au—éx,u,Vu >0 inD,
{ 1 (x,u1 1) (38)

Aup — B(x,u2,Vp) <0 in D.

Suppose |Vui| + |Vua| > 0in D. If uy < up on 9D, then uy < up in D.
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Method of proofs
Lemma 15 (Comparison principle, 11) |

LAet D be a bounded domain in RN with N > 2. Assume that

B(x,z,€) : D x R x RN — R s locally Lipschitz continuous with respect
to & in D x R x RN and is non-decreasing in z for fixed (x,&) € D x RN,
Let uy and uy be (distribution) solutions in WI})’COO(D) of (38). If

n <uw+M ondD,

where M is a positive constant, then u; < up + M in D.

Lemma 14 follows from Pucci-Serrin (JDE, 2004) [20, Theorem 10.1]. The
second comparison principle in Lemma 15 is included in CoroIIary 3.5.2to
Theorem 3.5.1 in [21], where the class C(D) is weakened to W,">*(D).
Theorem 3.5.1 in Pucci—Serrin (2007) [21], like Theorem 10.1 in [20], is
essentially Theorem 10.7(i) in Gilbarg and Trudinger’s book [16] with the
exception that the functions Aand B in [20, 21] are allowed to be singular
at £ = 0. This is then compensated in [20, Theorem 10.1] by the

additional condition that |Vui| 4 |[Vup| > 0in D.
Florica C. Cirstea (2024) May 16, 2024 27 /40



Existence results

Aim: To obtain existence of positive (radial) solutions in each of the cases
prescribed by our sharp classification results.
We use a dynamical systems approach. We illustrate it for the existence of

positive solutions of (5) modeled by Uy near zero.
Assume that © # 0 and ¢ > 0, where ¢ is given by (8). We define My by

Mo := (|©]~™¢)x > 0. (39)

We prove that for every R > 0, there exist infinitely many positive radial
solutions u(x) = u(|x|) of (5) in Br(0) satisfying

. ou(r) u(ry
. e = In. Zg e = Mo (40)
Fix R > 0. We first assume that v is a positive radial solution of (5) in
Bgr(0) \ {0} satisfying (40). Then, there exists rp € (0, R) small such that
for every r € (0, ro], we have
©] Mo

M
1rPu(r) — M| < 70 and |[r®1d/(r) + © Mp| < B (41)
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Existence results

For every r € (0, ro], we set
t = log (10/)
and define (Xi(t), Xa(t), X3(t)) as follows

By the assumption in (40), it is clear that
(X1(t), Xo(t), X3(t)) — (0,0,0) as t — oo.
Let 1, : R — R be smooth functions such that
fi(s) = (s+ Mp)? for every |s| < My/2,
f(s) = (OMy—s)" if ©® >0and fa(s) = (s —OMy)" if© <0
for every |s| < |©] My/2. From our choice of ry so that (41) holds, we have
A(X1(t)) = (X1(t)+Mp)? and  H(Xa(t)) = [Xo(t)—O© Mp|™ for all t > 0.
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Existence results

Then, X(t) = (X1(t), Xa(t), X3(t)) is a solution of the following
autonomous first order differential system: for all t > 0

X]/_(t) = -0 Xl(t') - Xg(t) = Hl(X)7

Xy(t) = AX1(t) = (© +2p) Xo(t) — A(Xa(t)) f2(Xa(t)) + £ Mo := Ha(X),
X3(t) = —X3(t) == H3(X).

(43)
Hence, we have obtained a nonlinear differential system of the form

X(t) = H(X) (44)
where H = (H1, Ha, H3) is specified in (43). Remark that in our situation,
X3 in (42) is a positive solution of Xj(t) = —X3(t) for t > 0.

We next describe the behaviour of (43) near its critical point 0 = (0,0, 0).
Since 0 is a hyperbolic critical point, the behaviour of the nonlinear system
(43) near X = 0 is approximated by the behaviour of its linearization

X" = AX at X = 0. The matrix A, representing DH(0), is given by
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Existence results

-0 -1 0
A=|X\—tqg —-©@-2p+' 0. (45)
0 0 -1
The matrix A has no zero or pure imaginary eigenvalues so that 0 is a
hyperbolic critical point. More precisely, 0 is a saddle point since two
eigenvalues of A are negative and the other is positive. The eigenvalues of

A are p3 = —1 and the roots p; 2 of the quadratic equation
l
p? +2¢u — Lk =0, wherez/z::@—&-p—%. (46)

Since pipp = —Ck < 0, the equation in (46) has one positive root u, and
one negative root 1 given by

p1 = = — P2 A bk, pp = =)+ /Y2 4 Lk

For the unstable eigenvalue o, an associated eigenvector is

=(1,p— 58 — \/v¥2 + lk,0). The stable eigenvalue p; (and s,
respectlvely) has an eigenvector vi = (1, p ég + /9?2 + (k,0) (and

vz = (0,0, 1), respectively).
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Existence results

The stable subspace E* of the linear system X'(t) = AX at 0 is the plane
spanned by vy and vs, that is,

¢
<p—2g—|— ¢2+€k>X1—X2:O.

Let ¢; be the flow of the nonlinear system (43). By the Stable Manifold
Theory, there exists a two-dimensional differentiable manifold S tangent to
the stable subspace E* of the linear system X'(t) = AX at 0 such that for
all t > 0, we have ¢+(S) C S and for all xg € S,

tlrgo de(x0) = 0.

The stable manifold S is local since it is only defined in a small
neighbourhood of 0. Moreover, since our function H in (44) is of class
C® on a small open neighbourhood E of 0, it is known that the stable
manifold S is of class C* as well. The invariant stable manifold S is
(locally) unique.
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Thank you for your attention!
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