Existence and asymptotics of solutions for nonlinear elliptic equations with a gradient-dependent nonlinearity ¹

Florica C. Cîrstea

School of Mathematics and Statistics The University of Sydney

Analysis of Geometric Singularities, May 13-17, 2024

Centre de Recherches Mathématiques, Montréal

May 16, 2024

¹Joint work with M. Fărcășeanu [11] (preprint). Research supported by the ARC.

1/40

- From zero to infinity
- 3 Classification results near zero
- ${old 4}$ The case $\lambda < {f 0}$ and $\Theta,
 ho \in {\Bbb R}$
- 5 Classification for the case $\ell > 0$ and $\Theta \in \mathbb{R}$
- 6 Refined asymptotics for $\ell > 0$ and $\Theta \neq 0$
- ${\color{black} m {\mathcal O}}$ Refined asymptotics for $\Theta=0$ and $\ell=\lambda>0$
- 8 The case $\lambda \leq \rho^2$ and $\Theta = \Theta_- \neq 0$
- 9 Refined asymptotics for $\lambda < \rho^2$ and $\Theta = \Theta_- \neq 0$
- 10 Refined asymptotics for $\lambda = \rho^2$ and $\Theta = \Theta_- \neq 0$
- 11 The case $\Theta = \lambda = 0$ and $\rho \neq 0$
- 12 The case $\Theta = \lambda = \rho = 0$
- 13 Method of proofs
- ${\small \fbox{0}} {\small \vcenter{0}} {\small \vcenter{0}} {\scriptstyle \fbox{0}} {\small \vcenter{0}} {\scriptstyle \atop} {\scriptstyle } {\scriptstyle }$
- 15 Existence results
- 16 Bibliography

イロト イヨト イヨト イヨト 三日

The singularity problem for quasi-linear elliptic eqns of the general form

$$\operatorname{div} \mathbf{A}(x, u, \nabla u) = B(x, u, \nabla u). \tag{1}$$

For a domain Ω in \mathbb{R}^N with $0 \in \Omega$ and a soln u in a suitable sense (e.g., in $\mathcal{D}'(\Omega \setminus \{0\})$), the following questions are of interest:

Can u be extended to the whole domain Ω in a natural way so that the new function satisfies the equation in Ω (a removable singularity)? Otherwise, what is the behaviour of u near 0?

The topic of isolated singularities has received much attention in connection with geometry (minimal surfaces), the Yamabe problem and mathematical physics.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Serrin's pioneering papers (Acta Math, 1964 & 1965): For a domain Ω in \mathbb{R}^N with $0 \in \Omega$, assume that $\mathbf{A}(x, u, \xi)$ and $B(x, u, \xi)$ are, respectively, vector and scalar measurable functions in $\Omega \times \mathbb{R} \times \mathbb{R}^N$ satisfying:

$$\begin{cases} |\mathbf{A}(x, u, \xi)| \le \beta_0 |\xi|^{p-1} + \beta_1 |u|^{p-1} + \beta_2, \\ \xi \cdot \mathbf{A}(x, u, \xi) \ge |\xi|^p - \beta_3 |u|^p - \beta_4, \\ |B(x, u, \xi)| \le \beta_6 |\xi|^{p-1} + \beta_3 |u|^{p-1} + \beta_5, \end{cases}$$
(2)

 $\forall (x, u, \xi) \in \Omega \times \mathbb{R} \times \mathbb{R}^N$, where $1 is fixed, <math>\beta_0 > 0$ is a constant and β_i $(1 \le i \le 6)$ are measurable functions on Ω belonging to suitable Lebesgue classes: $\beta_1, \beta_2 \in L^{N/(p-1-\varepsilon)}$, $\beta_6 \in L^{N/(1-\varepsilon)}$ and $\beta_j \in L^{N/(p-\varepsilon)}$ for j = 3, 4, 5, where $\varepsilon > 0$. Then for any positive soln u of (1), we have:

- *u* can be extended as a continuous soln of (1) in Ω ;
- or ∃c₁, c₂ > 0 s.t. c₁ ≤ u(x)/µ(x) ≤ c₂ in a neighbourhood of 0, where µ denotes the fundamental soln of the p-harmonic eqn
 $-\text{div}(|\nabla \mu|^{p-2}\nabla \mu) = \delta_0$ (Dirac mass at 0) in $\mathcal{D}'(\mathbb{R}^N)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Serrin's papers [23, 24] have generated much research on isolated singularities in the attempt to find analogues results for other nonlinear PDEs. For the development of the singularity theory to nonlinear second-order diff. eqns of elliptic (parabolic) type, see Véron's books [31] (1996) and [32] (2017).

The challenge remains to address the singularity problem for quasi-linear elliptic eqns in divergence form such as (1) when the growth of B is bigger than that of **A**. In this case, a crucial difficulty lies in that solns with singularities stronger than that of μ may appear.

I. Quasilinear elliptic equations

Let B_1 denote the open unit ball in \mathbb{R}^N ($N \ge 2$) centred at 0. For 1 and <math>q > 0, the profile near 0 of all positive solns for

$$\operatorname{div}\left(|\nabla u|^{p-2}\nabla u\right) = |u|^{q-1}u \quad \text{in } B^* := B_1 \setminus \{0\}$$
(3)

depends on the position of q w.r.t. p-1 as well as $q_* = \frac{N(p-1)}{N-p}$.

- Serrin [23, 24] (Acta Math. 1964, 1965): If $0 < q \le p 1$, then
 - *u* can be extended as a continuous soln of (3) in B_1 ;
 - **2** or $\exists c_1, c_2 > 0$ s.t. $c_1 \leq u(x)/\mu(x) \leq c_2$ in a neighbourhood of 0.
- Vázquez–Véron [27] (Manuscripta Math., 1980/1981): If $q \ge q_*$ (for $1), then any positive soln can be extended as a continuous soln of (3) in <math>B_1$ (removability).

• Friedman–Véron [15] (Arch. Ration. Mech. Anal., 1986):

If $p - 1 < q < q_*$, then as $|x| \rightarrow 0$, exactly one of the following holds:

 (i_1) u can be extended as a continuous soln of (3) in B_1 ;

(*i*₂) $\exists \lambda \in (0,\infty)$ s.t. $u(x)/\mu(x) \rightarrow \lambda$ (weak singularity) and

 $-\mathrm{div}\left(|\nabla u|^{p-2}\nabla u\right)+|u|^{q-1}u=\lambda^{p-1}\delta_0\quad\text{in}\quad \mathcal{D}'(B_1).$

(*i*₃)
$$|\mathbf{x}|^{p/(q+1-p)}u(\mathbf{x}) \to \gamma_{N,p,q}$$
 (strong singularity), where
 $\gamma_{N,p,q} := \left[\left(\frac{p}{q+1-p} \right)^{p-1} \left(\frac{pq}{q+1-p} - N \right) \right]^{1/(q+1-p)}$.

Generalizations: C.–Du [10] (JFA, 2010) and Chang–C. [5] (AIHP 2017) generalized the results of Friedman–Véron [15] and Vázquez–Véron [27] to nonlinear elliptic equations in divergence form

 $\operatorname{div}\left(\mathcal{A}(|x|) | \nabla u|^{p-2} \nabla u\right) = b(x) h(u) \quad \text{in } B^* := B_1 \setminus \{0\}.$ (4)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

II: Gradient-dependent nonlinearities and Hardy potentials

We study the existence of positive solutions and the classification of their behaviour near zero for nonlinear elliptic equations of the form

$$\mathbb{L}_{\rho,\lambda}(u) := \Delta u + (2 - N - 2\rho) \frac{x \cdot \nabla u}{|x|^2} + \frac{\lambda}{|x|^2} u = |x|^{\theta} u^{\mathfrak{q}} |\nabla u|^m$$
(5)

in $\Omega \setminus \{0\}$, where Ω is an open subset Ω_0 of \mathbb{R}^N containing zero. Assumption: Let ρ, λ, θ, m , and q be real parameters such that

$$m > 0, \quad q \ge 0, \quad \text{and} \quad \kappa := m + q - 1 > 0.$$
 (6)

The solutions of (5) are understood in the sense of distributions: a non-negative function $u \in C^1(\Omega \setminus \{0\})$ that satisfies

$$-\int_{\Omega} \nabla u \cdot \nabla \varphi \, dx + (2 - N - 2\rho) \int_{\Omega} \frac{x \cdot \nabla u}{|x|^2} \varphi \, dx + \int_{\Omega} \frac{\lambda \, u\varphi}{|x|^2} \, dx$$

$$= \int_{\Omega} |x|^{\theta} u^{q} |\nabla u|^{m} \varphi \, dx \quad \forall \ \varphi \in C^{1}_{c}(\Omega \setminus \{0\}).$$
(7)

Florica C. Cîrstea (2024)

Background.

A. Without the gradient factor: The case $\rho = (2 - N)/2$ and m = 0 is understood very well:

- C. [8] (Mem. AMS, 2014) for $\lambda \le (N-2)^2/4$ and $\theta > -2$.
- Wei–Du [33] (JDE, 2017) for $\lambda > (N-2)^2/4$ and $\theta > -2$;
- C.–Farcășeanu (JDE, 2021) for $\lambda, \theta \in \mathbb{R}$ and $\Omega = \Omega_0$ or Ω_{∞} or \mathbb{R}^N .

B. Including the gradient factor, but no Hardy potential: Ching-C. [6] (Analysis & PDE, 2015) studied the case $\rho = (2 - N)/2$, $\lambda = \theta = 0$ and $m \in (0, 2)$.

イロト 不得下 イヨト イヨト 二日

Recall that $\kappa = m + q - 1 > 0$. For every $\rho, \lambda, \theta \in \mathbb{R}$, we define

$$\Theta := rac{ heta+2-m}{\kappa} \quad ext{and} \quad \ell = \ell(
ho,\lambda,\Theta) := \Theta^2 + 2
ho\Theta + \lambda. \tag{8}$$

• When $\lambda \leq \rho^2$, we define Θ_{\pm} as the roots of $t^2 + 2\rho t + \lambda = 0$:

$$\Theta_{\pm} := -\rho \pm \sqrt{\rho^2 - \lambda}.$$

We have $\ell \leq 0$ if and only $\lambda \leq \rho^2$ and $\Theta_- \leq \Theta \leq \Theta_+$.

The behaviour near zero of the positive solutions of (5) is closely linked with two special solutions $\Phi_{\rho,\lambda}^{\pm}$ of $\mathbb{L}_{\rho,\lambda}(\cdot) = 0$ defined by

$$\Phi_{\rho,\lambda}^{-}(x) = |x|^{-\Theta_{-}}, \quad \Phi_{\rho,\lambda}^{+}(x) = \begin{cases} |x|^{-\Theta_{+}} & \text{if } \lambda < \rho^{2} \\ |x|^{-\Theta_{+}} \log \frac{1}{|x|} & \text{if } \lambda = \rho^{2} \end{cases}$$

We use a modified Kelvin transform for a positive soln u of (5) as follows

$$\mathcal{K}[u](x) := u(\widetilde{x}), \quad \text{where } \widetilde{x} = x/|x|^2 \quad \text{for } x \in \mathbb{R}^N \setminus \{0\}. \tag{9}$$

We observe that $|\nabla K[u](x)|^2 = |\nabla u(\widetilde{x})|^2 |\widetilde{x}|^2$ and

$$\operatorname{div}\left(|x|^{2(2-N)}\,\nabla K[u](x)\right)=|\widetilde{x}|^{2N}\,\Delta u(\widetilde{x})\quad\text{for every }x\in\mathbb{R}^N\setminus\{0\}.\eqno(10)$$

Hence, the modified Kelvin transform K[u] of u satisfies

$$\Delta K[u] + (2 - N + 2\rho) \frac{x \cdot \nabla K[u]}{|x|^2} + \frac{\lambda}{|x|^2} K[u] = |x|^{-\theta + 2m - 4} (K[u])^q |\nabla K[u]|^m$$
(11)
for every $x \in \mathbb{R}^N \setminus \{0\}$. If u solves (5) with $\Omega = \mathbb{R}^N$, then $K[u]$ solves an equation of the same type as (5) except that

$$\begin{array}{l} \rho \text{ in } (5) \longmapsto -\rho \text{ in } (11), \\ \theta \text{ in } (5) \longmapsto -\theta + 2m - 4 \text{ in } (11). \end{array}$$

イロト 不得 トイヨト イヨト

Classification results near zero

For $\beta > 0$ and $\mu \neq 0$, we define $F_{\beta,\mu}(r) = \beta^{\frac{1}{\kappa}} |\mu|^{-\mu} |\log r|^{\mu}$ for $r \in (0,1)$.

Table: Important asymptotic profiles near zero

Condition	Relevant asymptotic profile		
$\lambda \le \rho^2$	$\Phi^{\rho,\lambda}(x) = x ^{-\Theta}$		
$\lambda \leq ho^2$	$\Phi_{\rho,\lambda}^{+}(x) = \begin{cases} x ^{-\Theta_{+}} & \text{if } \lambda < \rho^{2} \\ x ^{-\Theta_{+}} \log \frac{1}{ x } & \text{if } \lambda = \rho^{2} \end{cases}$		
$\ell > 0, \Theta eq 0$	$U_{\ell,\Theta}(x) = (\Theta ^{-m}\ell)^{1/\kappa} x ^{-\Theta}$		
$\ell > 0, \Theta = 0$	$U_{\ell,0}(x)=F_{\lambda,\mu}(x)$, $\mu=m/\kappa$		
$\lambda \leq ho^2$, $\Theta = \Theta eq 0$	$U_{0,\Theta_{-}}(x) = \Theta_{-} ^{-\frac{m}{\kappa}} x ^{-\Theta_{-}} F_{\beta,\mu}(x)$ $\beta = 2\sqrt{\rho^{2} - \lambda}, \ \mu = -\frac{1}{\kappa} \text{ if } \Theta_{-} \neq -\rho$ $\beta = 1 - \frac{1}{\mu}, \ \mu = -\frac{2}{\kappa} \text{ if } \Theta_{-} = -\rho$		
$\lambda = \Theta = 0, \ ho (m-1) > 0$	$F_{2 \rho ,\mu}(x), \ \mu = (m-1)/\kappa$		
$\lambda = \Theta = \rho = 0, \ m \in (0,2)$	$F_{1-\frac{1}{\mu},\mu}(x)$ and $\mu=(m-2)/\kappa$		

Florica C. Cîrstea (2024)

12/40

The case $\lambda < \mathbf{0}$ and $\Theta, \rho \in \mathbb{R}$

Theorem 1 (C.-Fărcășeanu, preprint)

Let (6) hold, $\lambda < 0$ and $\Theta, \rho \in \mathbb{R}$. Let u be any positive soln of (5). (1) If $\Theta < \Theta_{-}$, then it holds

$$u(x) \sim U_{\ell,\Theta}(x) \text{ as } |x| \to 0 \text{ i.e., } \lim_{|x|\to 0} |x|^{\Theta} u(x) = (\ell/|\Theta|^m)^{1/\kappa}.$$
 (12)

(II) If $\Theta = \Theta_{-}$, then we have

$$u(x) \sim U_{0,\Theta_{-}}(x) \text{ as } |x| \to 0.$$
 (13)

(III) If $\Theta_{-} < \Theta \leq \Theta_{+}$, then the following limit exists

$$\lim_{|x|\to 0} u(x)/\Phi^-_{\rho,\lambda}(x) \in (0,\infty).$$
(14)

(IV) If $\Theta > \Theta_+$, then exactly one of the following situations occurs: (A) (12) holds; (B) There exists $\lim_{|x|\to 0} u(x)/\Phi_{\rho,\lambda}^+(x) \in (0,\infty)$. (C) (14) holds.

Florica C. Cîrstea (2024)

Theorem 2 (C.-Fărcășeanu, preprint)

Let (6) hold and $\rho, \theta, \lambda \in \mathbb{R}$ such that $\ell > 0$. Let u be any given positive solution of (5) with $\Omega = \Omega_0$. If $\lambda \ge 0$ and $\Theta < 0$, we assume that $\lim_{|x|\to 0} u(x) = 0$. If $\lambda \le \rho^2$ and $\Theta > \Theta_+$, we also assume that

$$\lim_{|x|\to 0} u(x)/\Phi^+_{\rho,\lambda}(x) = \infty.$$
(15)

Then, $u(x) \sim U_{\ell,\Theta}(x)$ as $|x| \rightarrow 0$, where

$$U_{\ell,\Theta}(x) = \begin{cases} (|\Theta|^{-m}\ell)^{1/\kappa} |x|^{-\Theta} & \text{if } \Theta \neq 0, \\ \lambda^{\frac{1}{\kappa}} (m/\kappa)^{-m/\kappa} |\log |x||^{m/\kappa} & \text{if } \Theta = 0. \end{cases}$$
(16)

Theorem 3 (Existence)

Let (6) hold, $\Theta \neq 0$ and $\ell > 0$. Then, $\forall R > 0$, Eq. (5) in $B_R(0) \setminus \{0\}$ has infinitely many positive solns satisfying $u(x) \sim U_{\ell,\Theta}(x)$ as $|x| \to 0$.

Florica C. Cîrstea (2024)

14 / 40

Theorem 4 (Refined asymptotics)

Let (6) hold, $\Theta \neq 0$ and $\ell > 0$. Let u > 0 be a radial soln of (5) in $B_R(0) \setminus \{0\}$ for some R > 0 s.t. $u(x) \sim U_{\ell,\Theta}(x)$ as $|x| \to 0$. Assume that $u \neq U_{\ell,\Theta}$ in any interval $(0, r_*)$ with $r_* \in (0, R)$. Then, $\exists \mu_0 \in \mathbb{R} \setminus \{0\}$ s.t.

$$\lim_{r \to 0^{+}} r^{-\xi_{0}} \left(\frac{ru'(r)}{u(r)} + \Theta \right) = \mu_{0},$$

$$u(r) = U_{\ell,\Theta}(r) \left(1 + \frac{\mu_{0}}{\xi_{0}} r^{\xi_{0}} (1 + o(1)) \right) \text{ as } r \to 0^{+},$$
(17)

where ξ_0 is the positive root of the following quadratic equation (in ξ)

$$\xi^{2} + \left(\frac{\ell m}{\Theta} - 2\left(\rho + \Theta\right)\right)\xi - \ell\kappa = 0.$$
(18)

Florica	С.	Cîrstea	(2024)
---------	----	---------	--------

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem 5

Let (6) hold, $\Theta = 0$, $\lambda > 0$, $\rho \in \mathbb{R}$. Assume $u \in C^2(B_R(0) \setminus \{0\})$ is a positive radial soln of (5) in $B_R(0) \setminus \{0\}$ s.t. $u(x) \sim U_{\ell,0}(x)$ as $|x| \to 0$. (a) Assume that either $\rho \neq 0$ or $q \neq 1$. For r > 0 small, we define

$$t = \frac{u^2(r)}{r^2(u'(r))^2}, \quad X(t) = t\left(t^{-\frac{m}{2}}u^{\kappa}(r) - \lambda\right) - 2\rho\sqrt{t} + \frac{q-1}{m}.$$
 (19)

(a₁) Then, as $r \to 0^+$, we have $t \to \infty$ and $X(t) \to 0$. Moreover, as $r \to 0^+$

$$u(r) = \begin{cases} U_{\ell,0}(r) \left(1 + \frac{2\rho \, m}{\lambda \kappa^2} \frac{\log \log \frac{1}{r}}{\log \frac{1}{r}} (1 + o(1)) \right) & \text{if } \rho \neq 0, \\ U_{\ell,0}(r) \left(1 + \frac{(q-1) \, m}{\lambda \kappa^3} \frac{(1 + o(1))}{\left(\log \frac{1}{r}\right)^2} \right) & \text{if } \rho = 0, \ q \neq 1. \end{cases}$$
(20)

Theorem 6 (Continuation)

(a₂) There exists $T_0 > 0$ large s.t. $|X(t)| < \kappa/(2m) \ \forall t \ge T_0$ and

$$\frac{dX}{dt} = \frac{\lambda m X(t)}{2\left(\frac{\kappa}{m} - X(t)\right)} + \left(1 + \frac{m X(t)}{\frac{\kappa}{m} - X(t)}\right) \frac{\rho}{\sqrt{t}} + \left(1 + \frac{m X(t)}{2\left(\frac{\kappa}{m} - X(t)\right)}\right) \frac{\frac{1-q}{m} + X(t)}{t}.$$
(21)

(b) If $\rho = 0$ and q = 1, then there exists a constant $c \in \mathbb{R}$ such that

$$u(r) = U_{\ell,0}(r) + c = \lambda^{\frac{1}{\kappa}} |\log r| + c \quad \text{for all } r > 0 \text{ small.}$$
(22)

	May 16, 2024	
	17 / 40	

イロト 不得 トイヨト イヨト 二日

Florica C. Cîrstea (2024)

The case $\lambda \leq \rho^2$ and $\Theta = \Theta_- \neq 0$

Characterization of solutions modeled by U_{0,Θ_-} :

Theorem 7 (C.-Fărcășeanu, preprint)

Let (6) hold, $\lambda \leq \rho^2$ and $\Theta = \Theta_- \neq 0$. Let u be any given positive solution of (5) with $\Omega = \Omega_0$. If $\lambda \geq 0$ and $\Theta < 0$, we further assume that $\lim_{|x|\to 0} u(x) = 0$. Then, u satisfies (13): $u(x) \sim U_{0,\Theta_-}(x)$ as $|x| \to 0$.

In Theorem 8 with $\lambda < \rho^2$ we obtain a sharp existence result, confirming that in any of the cases of Theorem 7, there exist infinitely many positive radial sols of (5) in $B_R(0) \setminus \{0\}$ s.t. (13) holds. We set

$$\mathfrak{p} := \frac{|\Theta_-|^m}{2\sqrt{\rho^2 - \lambda}} > 0 \quad \text{and} \quad \mathfrak{M} := \frac{\kappa + 1}{2\sqrt{\rho^2 - \lambda}} + \frac{m}{\Theta_-}.$$
 (23)

For every $r \in (0,1)$, we define $U_{0,\Theta_-}(r)$ by

$$U_{0,\Theta_{-}}(r) := v_0 r^{-\Theta_{-}} |\log r|^{-\frac{1}{\kappa}} \text{ with } v_0 := (\mathfrak{p}\kappa)^{-\frac{1}{\kappa}}.$$
(24)

Refined asymptotics for $\lambda < \rho^2$ and $\Theta = \Theta_- \neq 0$

Theorem 8

Let (6) hold, $\rho \in \mathbb{R}$, $\lambda < \rho^2$ and $\Theta = \Theta_- \neq 0$. (a) Let (13) hold for a positive radial soln u of (5) in $B_R(0) \setminus \{0\}$. (a₁) If $\mathfrak{M} \neq 0$, then we have

$$u(r) = U_{0,\Theta_{-}}(r) \left[1 + \frac{2\mathfrak{M}}{\kappa^2} \frac{\log \log \frac{1}{r}}{\log \frac{1}{r}} (1 + o(1)) \right] \text{ as } r \to 0^+.$$
 (25)

(a₂) If $\mathfrak{M} = 0$ and $m \neq 1$, then

$$u(r) = U_{0,\Theta_{-}}(r) \left[1 + \frac{m(m-1)}{\kappa^{3} (\Theta_{-})^{2}} \frac{(1+o(1))}{\left(\log \frac{1}{r}\right)^{2}} \right] \text{ as } r \to 0^{+}.$$
 (26)

(a₃) If $\mathfrak{M} = 0$ and m = 1, then there exists a constant $C \in \mathbb{R}$ such that

$$u(r) = U_{0,\Theta_{-}}(r) \left(1 + C |\log r|^{-1}\right)^{-rac{1}{\kappa}}$$
 for every $r > 0$ small. (27)

(b) For every $R \in (0, \infty)$, equation (5) in $B_R(0) \setminus \{0\}$ has infinitely many positive radial solutions satisfying (13) Florica C. Cirstea (2024) May 16, 2024 19/40 Refined asymptotics for $\lambda < \rho^2$ and $\Theta = \Theta_- \neq 0$

Lemma 9

Let (6) hold, $\rho \in \mathbb{R}$, $\lambda < \rho^2$ and $\Theta = \Theta_- \neq 0$. Let u > 0 be a radial soln of (5) in $B_R(0) \setminus \{0\}$ s.t. (13) holds. We define

$$t = (r^{\Theta_-}u(r))^{-\kappa}$$
 and $X(t) = t(ru'(r)/u(r) + \Theta_-) - \mathfrak{p}.$ (28)

(a) $\exists T_0 > 4 \mathfrak{p}/|\Theta_-|$ large s.t. $|X(t)| \le \mathfrak{p}/2 \ \forall t \ge T_0$ and

$$\frac{dX}{dt} = \frac{\sqrt{\rho^2 - \lambda}}{\kappa \left(X(t) + \mathfrak{p}\right)} X(t) + \left(1 + \frac{1}{\kappa}\right) \frac{X(t) + \mathfrak{p}}{t} + \frac{|\Theta_-|^m}{\kappa \left(X(t) + \mathfrak{p}\right)} \left[1 - \left(1 - \frac{X(t) + \mathfrak{p}}{t \Theta_-}\right)^m\right].$$
(29)

(b) If $\mathfrak{M} \neq 0$, then $tX(t) \rightarrow -2\mathfrak{p}^2\mathfrak{M}$ as $t \rightarrow \infty$ and (25) holds.

- (c) If $\mathfrak{M} = 0$ and $m \neq 1$, then $\lim_{t\to\infty} t^2 X(t) = m(m-1)\mathfrak{p}^3/(\Theta_-)^2$ and (26) holds.
- (d) If $\mathfrak{M} = 0$ and m = 1, then $X \equiv 0$ on $[T_0, \infty)$ and (27) holds.

Florica C. Cîrstea (2024)

Refined asymptotics for $\lambda = \rho^2$ and $\Theta = \Theta_- \neq 0$

When $\lambda = \rho^2 \neq 0$ and $\Theta = \Theta_{\pm} = -\rho$, we recall that U_{0,Θ_-} is defined by

$$U_{0,\Theta_{-}}(r) := \left(2\left(\kappa + 2\right)\kappa^{-2}|\Theta_{-}|^{-m}\right)^{\frac{1}{\kappa}}r^{-\Theta_{-}}|\log r|^{-\frac{2}{\kappa}} \text{ for } r \in (0,1).$$
(30)

Theorem 10

Let (6) hold,
$$\lambda = \rho^2 \neq 0$$
 and $\Theta = \Theta_{\pm} = -\rho$.
(a) If (13) holds for a positive radial soln u of (5) in $B_R(0) \setminus \{0\}$, then

$$u(r) = U_{0,\Theta_-}(r) \left[1 - \frac{4m(2+\kappa)}{\rho\kappa^2(3\kappa+4)} \frac{\log\log\frac{1}{r}}{\log\frac{1}{r}} (1+o(1)) \right] \text{ as } r \to 0^+.$$
(31)

(b) For every $R \in (0, \infty)$, equation (5) in $B_R(0) \setminus \{0\}$ has infinitely many positive radial solutions satisfying (31).

イロト イポト イヨト イヨト 二日

Refined asymptotics for $\lambda=\rho^2$ and $\Theta=\Theta_-\neq 0$

We define \mathfrak{Q} as follows

$$\mathfrak{Q} := |\rho|^{\frac{m}{2}} / \sqrt{1 + \kappa/2}. \tag{32}$$

Lemma 11

Let (6) hold, $\lambda = \rho^2 \neq 0$ and $\Theta = \Theta_{\pm} = -\rho$. Let u > 0 be a positive radial soln of (5) in $B_R(0) \setminus \{0\}$ s.t. (13) holds. For r > 0 small, we define $e^t = (r^{-\rho}u(r))^{-\frac{\kappa}{2}}$ and $X(t) = e^t (ru'(r)/u(r) - \rho) - \mathfrak{Q}$. (33)

(a) As $r \to 0^+$, we have $e^t / \log(1/r) \to \mathfrak{Q}\kappa/2$ and $X(t) \to 0$. (b) $\exists T_0 > \log(4\mathfrak{Q}/|\rho|)$ large s.t. $|X(t)| \leq \mathfrak{Q}/2$ for all $t \geq T_0$ and

$$\frac{dX}{dt} = \left(1 + \frac{2}{\kappa}\right) \left(X + \mathfrak{Q}\right) \left\{1 - \frac{\mathfrak{Q}^2}{(X + \mathfrak{Q})^2} \left[1 + \frac{e^{-t}}{\rho} \left(X + \mathfrak{Q}\right)\right]^m\right\}.$$
(34)

(c) We have $e^t X(t) \to \frac{2m|\rho|^m}{\rho(3\kappa+4)}$ as $t \to \infty$ and (31) holds.

Theorem 12 (C.-Fărcășeanu, preprint)

Let (6) hold and $\Theta = \lambda = 0$. Let u be any positive soln of (5). (a) If $m \in (0,1)$ and $\rho < 0$, then the following dichotomy occurs: (i) Either $\lim_{|x|\to 0} u(x) = 0$ and, more precisely,

 $u(x) \sim F_{2|\rho|,\mu}(x) \text{ as } |x| \to 0, \text{ where } \mu = (m-1)/\kappa.$ (35)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem 13 (C.-Fărcășeanu, preprint)

Let (6) hold, $\Theta = \lambda = \rho = 0$. Let u be a positive soln of (5). (a) If $m \in (0, 2)$, then the following dichotomy occurs: (i) Either $\lim_{|x|\to 0} u(x) = 0$ and, more precisely,

$$\lim_{|x|\to 0} \frac{u(x)}{F_{1-\frac{1}{\mu},\mu}(x)} = 1, \quad \text{where } \mu = \frac{m-2}{\kappa}.$$
 (36)

(ii) Or there exists lim_{|x|→0} u(x) ∈ (0,∞).
(b) If m ≥ 2, then there always exists lim_{|x|→0} u(x) ∈ (0,∞).

Florica	С.	Cîrstea	(2024))
---------	----	---------	--------	---

イロト 不得 トイラト イラト 一日

For classification: Gradient estimates via Bernstein technique (for $\lambda \leq 0$).

Proposition 1

Let $m \ge 0$, $q \ge 0$, m + q > 1, $\lambda \le 0$, and $\theta \in \mathbb{R}$. Then, there exists a positive constant C_1 , depending only on m, N, q, λ and θ , such that for every positive solution u of (5) and $r_0 > 0$ with $\overline{B_{2r_0}(0)} \subset \Omega$, we have

$$|
abla u(x)| \leq C_1 \, rac{u(x)}{|x|} \quad ext{for all } 0 < |x| \leq r_0.$$

Idea of the proof. If $\lambda = 0$, then the conclusion follows from Lemma 2.1 in Ching–C. [Proc. Roy. Soc. Edinburgh Sect. A (2020)]. For $\lambda < 0$ we proceed similarly, but modifications appear in the latter part of the proof.

イロト 不得 トイヨト イヨト 二日

Comparison Principles

Idea of the Proof. Careful constructions of super-solutions and comparison principles.

Lemma 14 (Comparison principle, I)

Let D be a bounded domain in \mathbb{R}^N with $N \ge 2$. Let $\widehat{B}(x, z, \xi) : D \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ be continuous in $D \times \mathbb{R} \times \mathbb{R}^N$ and continuously differentiable with respect to ξ for $|\xi| > 0$ in \mathbb{R}^N . Assume that $\widehat{B}(x, z, \xi)$ is non-decreasing in z for fixed $(x, \xi) \in D \times \mathbb{R}^N$. Let u_1 and u_2 be non-negative $C^1(D) \cap C(\overline{D})$ (distributional) solutions of

$$\begin{cases} \Delta u_1 - \widehat{B}(x, u_1, \nabla u_1) \ge 0 & \text{in } D, \\ \Delta u_2 - \widehat{B}(x, u_2, \nabla u_2) \le 0 & \text{in } D. \end{cases}$$
(38)

Suppose $|\nabla u_1| + |\nabla u_2| > 0$ in D. If $u_1 \le u_2$ on ∂D , then $u_1 \le u_2$ in D.

イロト 不得下 イヨト イヨト 二日

Lemma 15 (Comparison principle, II)

Let D be a bounded domain in \mathbb{R}^N with $N \ge 2$. Assume that $\widehat{B}(x, z, \boldsymbol{\xi}) : D \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}$ is locally Lipschitz continuous with respect to $\boldsymbol{\xi}$ in $D \times \mathbb{R} \times \mathbb{R}^N$ and is non-decreasing in z for fixed $(x, \boldsymbol{\xi}) \in D \times \mathbb{R}^N$. Let u_1 and u_2 be (distribution) solutions in $W_{loc}^{1,\infty}(D)$ of (38). If

 $u_1 \leq u_2 + M$ on ∂D ,

where M is a positive constant, then $u_1 \leq u_2 + M$ in D.

Lemma 14 follows from Pucci–Serrin (JDE, 2004) [20, Theorem 10.1]. The second comparison principle in Lemma 15 is included in Corollary 3.5.2 to Theorem 3.5.1 in [21], where the class $C^1(D)$ is weakened to $W_{\text{loc}}^{1,\infty}(D)$. Theorem 3.5.1 in Pucci–Serrin (2007) [21], like Theorem 10.1 in [20], is essentially Theorem 10.7(i) in Gilbarg and Trudinger's book [16] with the exception that the functions \widehat{A} and \widehat{B} in [20, 21] are allowed to be singular at $\boldsymbol{\xi} = 0$. This is then compensated in [20, Theorem 10.1] by the additional condition that $|\nabla u_1| + |\nabla u_2| > 0$ in D.

Florica C. Cîrstea (2024)

May 16, 2024

27 / 40

Aim: To obtain existence of positive (radial) solutions in each of the cases prescribed by our sharp classification results.

We use a dynamical systems approach. We illustrate it for the existence of positive solutions of (5) modeled by U_0 near zero.

Assume that $\Theta \neq 0$ and $\ell > 0$, where ℓ is given by (8). We define M_0 by

$$M_0 := (|\Theta|^{-m}\ell)^{\frac{1}{\kappa}} > 0.$$
(39)

We prove that for every R > 0, there exist infinitely many positive radial solutions u(x) = u(|x|) of (5) in $B_R(0)$ satisfying

$$\lim_{r \to 0^+} \frac{u(r)}{r^{-\Theta}} = \lim_{r \to 0^+} \frac{u'(r)}{-\Theta r^{-\Theta-1}} = M_0.$$
 (40)

Fix R > 0. We first assume that u is a positive radial solution of (5) in $B_R(0) \setminus \{0\}$ satisfying (40). Then, there exists $r_0 \in (0, R)$ small such that for every $r \in (0, r_0]$, we have

$$|r^{\Theta}u(r) - M_0| \leq \frac{M_0}{2} \quad \text{and} \quad |r^{\Theta+1}u'(r) + \Theta M_0| \leq \frac{|\Theta| M_0}{2}. \tag{41}$$
Florica C. Cirstea (2024)
$$May 16, 2024 \qquad May 16, 2024 \qquad May 16, 2024$$

For every $r \in (0, r_0]$, we set

 $t = \log\left(r_0/r\right)$

and define $(X_1(t), X_2(t), X_3(t))$ as follows

$$\begin{cases} X_{1}(t) = r^{\Theta} u(r) - M_{0}, \\ X_{2}(t) = r^{\Theta+1} u'(r) + \Theta M_{0}, \\ X_{3}(t) = r. \end{cases}$$
(42)

By the assumption in (40), it is clear that

$$(X_1(t),X_2(t),X_3(t))
ightarrow (0,0,0)$$
 as $t
ightarrow\infty.$

Let $f_1, f_2 : \mathbb{R} \to \mathbb{R}$ be smooth functions such that

$$\begin{split} f_1(s) &= (s+M_0)^q \quad \text{for every } |s| \leq M_0/2, \\ f_2(s) &= (\Theta M_0 - s)^m \text{ if } \Theta > 0 \text{ and } f_2(s) = (s-\Theta M_0)^m \text{ if } \Theta < 0 \end{split}$$

for every $|s| \le |\Theta| M_0/2$. From our choice of r_0 so that (41) holds, we have $f_1(X_1(t)) = (X_1(t) + M_0)^q$ and $f_2(X_2(t)) = |X_2(t) - \Theta M_0|^m$ for all $t \ge 0$. Then, $\mathbf{X}(t) = (X_1(t), X_2(t), X_3(t))$ is a solution of the following autonomous first order differential system: for all $t \ge 0$

$$\begin{cases} X_1'(t) = -\Theta X_1(t) - X_2(t) := H_1(\mathbf{X}), \\ X_2'(t) = \lambda X_1(t) - (\Theta + 2\rho) X_2(t) - f_1(X_1(t)) f_2(X_2(t)) + \ell M_0 := H_2(\mathbf{X}), \\ X_3'(t) = -X_3(t) := H_3(\mathbf{X}). \end{cases}$$
(43)

Hence, we have obtained a nonlinear differential system of the form

$$\mathbf{X}'(t) = \mathbf{H}(\mathbf{X}) \tag{44}$$

where $\mathbf{H} = (H_1, H_2, H_3)$ is specified in (43). Remark that in our situation, X_3 in (42) is a positive solution of $X'_3(t) = -X_3(t)$ for $t \ge 0$.

We next describe the behaviour of (43) near its critical point $\mathbf{0} = (0, 0, 0)$. Since $\mathbf{0}$ is a *hyperbolic* critical point, the behaviour of the nonlinear system (43) near $\mathbf{X} = \mathbf{0}$ is approximated by the behaviour of its linearization $\mathbf{X}' = A\mathbf{X}$ at $\mathbf{X} = \mathbf{0}$. The matrix A, representing $D\mathbf{H}(\mathbf{0})$, is given by

$$A = \begin{bmatrix} -\Theta & -1 & 0\\ \lambda - \ell q & -\Theta - 2\rho + \frac{\ell m}{\Theta} & 0\\ 0 & 0 & -1 \end{bmatrix}.$$
 (45)

The matrix A has no zero or pure imaginary eigenvalues so that $\mathbf{0}$ is a *hyperbolic* critical point. More precisely, $\mathbf{0}$ is a *saddle point* since two eigenvalues of A are negative and the other is positive. The eigenvalues of A are $\mu_3 = -1$ and the roots $\mu_{1,2}$ of the quadratic equation

$$\mu^{2} + 2\psi\mu - \ell k = 0, \quad \text{where } \psi := \Theta + \rho - \frac{\ell m}{2\Theta}. \tag{46}$$

Since $\mu_1\mu_2 = -\ell k < 0$, the equation in (46) has one positive root μ_2 and one negative root μ_1 given by

$$\mu_1 := -\psi - \sqrt{\psi^2 + \ell k}, \quad \mu_2 := -\psi + \sqrt{\psi^2 + \ell k}.$$

For the unstable eigenvalue μ_2 , an associated eigenvector is $v_2 = (1, \rho - \frac{\ell m}{2\Theta} - \sqrt{\psi^2 + \ell k}, 0)$. The stable eigenvalue μ_1 (and μ_3 , respectively) has an eigenvector $v_1 = (1, \rho - \frac{\ell m}{2\Theta} + \sqrt{\psi^2 + \ell k}, 0)$ (and $v_3 = (0, 0, 1)$, respectively).

Florica C. Cîrstea (2024)

May 16, 2024 31 / 40

The stable subspace E^s of the linear system $\mathbf{X}'(t) = A\mathbf{X}$ at $\mathbf{0}$ is the plane spanned by v_1 and v_3 , that is,

$$\left(\rho - \frac{\ell m}{2\Theta} + \sqrt{\psi^2 + \ell k}\right) x_1 - x_2 = 0.$$

Let ϕ_t be the flow of the nonlinear system (43). By the Stable Manifold Theory, there exists a two-dimensional differentiable manifold S tangent to the stable subspace E^s of the linear system $\mathbf{X}'(t) = A\mathbf{X}$ at $\mathbf{0}$ such that for all $t \ge 0$, we have $\phi_t(S) \subseteq S$ and for all $\mathbf{x}_0 \in S$,

$$\lim_{t\to\infty}\phi_t(\mathbf{x}_0)=\mathbf{0}.$$

The stable manifold S is local since it is only defined in a small neighbourhood of **0**. Moreover, since our function **H** in (44) is of class C^{∞} on a small open neighbourhood E of **0**, it is known that the stable manifold S is of class C^{∞} as well. The invariant stable manifold S is (locally) unique.

Thank you for your attention!

3

- M. F. Bidaut-Véron, M. Garcia-Huidobro and L. Véron, Local and global properties of solutions of quasilinear Hamilton-Jacobi equations, J. Funct. Anal. 267 (2014), 3294–3331.
- B. Brandolini, F. Chiacchio, F.C. Cîrstea, C. Trombetti, Local behaviour of singular solutions for nonlinear elliptic equations in divergence form. Calc. Var. Partial Differential Equations, 48, no. 3-4, 367–393 (2013)
- H. Brezis, L. Véron, *Removable singularities for some nonlinear elliptic equations*, Arch. Ration. Mech. Anal. **75** (1980/81), 1–6.
- L. Caffarelli, B. Gidas, J. Spruck, *Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth*, Comm. Pure Appl. Math., **42**, (1989), 271–297.

イロト イヨト イヨト イヨト

- T.-Y. Chang and F. C. Cîrstea, Singular solutions for divergence-form elliptic equations involving regular variation theory: Existence and classification, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), no. 6, 1483–1506.
- J. Ching and F. C. Cîrstea, *Existence and classification of singular solutions to nonlinear elliptic equations with a gradient term*, Anal. PDE **8** (2015), 1931–1962.
- J. Ching and F. C. Cîrstea, *Gradient estimates for nonlinear elliptic equations with a gradient-dependent nonlinearity*, Proc. Roy. Soc. Edinburgh Sect. A, **150** (2020), no. 3, 1361–1376.
- F.C. Cîrstea, A complete classification of the isolated singularities for nonlinear elliptic equations with inverse square potentials, Mem. Amer. Math. Soc. 227 (1068) (2014).

3

(日)

- F.C. Cîrstea, Y. Du, Asymptotic behavior of solutions of semilinear elliptic equations near an isolated singularity, J. Funct. Anal. 250 (2007), 317–346.
- F.C. Cîrstea and Y. Du, *Isolated singularities for weighted quasilinear elliptic equations*, J. Funct. Anal. **259** (2010), 174–202.
- F.C. Cîrstea and M. Fărcășeanu, Sharp existence and classification results for nonlinear elliptic equations in with Hardy potential, J. Differential Equations 292 (2021), 461–500.
- F.C. Cîrstea and V. Rădulescu, Extremal singular solutions for degenerate logistic-type equations in anisotropic media. *C. R. Math. Acad. Sci. Paris* **339** (2004), 119–124.
- A. Farina and J. Serrin, Entire solutions of completely coercive quasilinear elliptic equations, II, J. Differential Equations 250 (2011), 4409–4436.

э

イロト イポト イヨト イヨト

- M. Fraas, Y. Pinchover, Positive Liouville theorems and asymptotic behaviour for *p*-Laplacian type elliptic equations with a Fuchsian
- A. Friedman, L. Véron, *Singular solutions of some quasilinear elliptic equations*, Arch. Ration. Mech. Anal. **96** (1986), 359–387.
- D. Gilbarg, N.S. Trudinger, *Elliptic Partial Differential Equations of Second Order*, reprint of the 1998 edition, Classics Math., Springer-Verlag, Berlin, 2001.
- C.-S. Hsia, C.-S. Lin, Z.-Q. Wang, Asymptotic symmetry and local behaviors of solutions to a class of anisotropic elliptic equations, Indiana Univ. Math. J., 60 (2011), 1623–1654.
- P.L. Lions, Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre, J. Analyse Math. 45 (1985), 234–254.

э

イロト 不得 トイヨト イヨト

- P.-T. Nguyen, Isolated singularities of positive solutions of elliptic equations with weighted gradient term, Anal. PDE 9 (2016), 1671–1691.
- P. Pucci and J. Serrin, *The strong maximum principle revisited*, J. Differential Equations **196** (2004), 1–66.
- P. Pucci and J. Serrin, *The Maximum Principle*, no. 73 in Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Verlag, Basel, 2007.
- E. Seneta, *Regularly Varying Functions*, Lecture Notes in Math., vol. 508, Springer-Verlag, Berlin–New York, 1976.
- J. Serrin, *Local behavior of solutions of quasi-linear equations*, Acta Math. **111** (1964), 247–302.
- J. Serrin, *Isolated singularities of solutions of quasi-linear equations*, Acta Math. **113** (1965), 219–240.

3

イロト 不得 トイヨト イヨト

- P. Tolksdorf, *Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations* **51** (1984), 126–150.
- N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721–747.
- J.L. Vázquez, L. Véron, *Removable singularities of some strongly nonlinear elliptic equations*, Manuscripta Math. **33** (1980/1981), 129–144.
- J.L. Vázquez, L. Véron, *Isolated singularities of some semilinear elliptic equations*, J. Differential Equations **60** (1985), 301–321.
- L. Véron, *Singular solutions of some nonlinear elliptic equations*, Nonlinear Anal. **5** (1981), 225–242.

イロト イヨト イヨト イヨト

- L. Véron, Weak and strong singularities of nonlinear elliptic equations, in: Nonlinear Functional Analysis and Its Applications, Part 2, Berkeley, CA, 1983, in: Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, RI, 1986, pp. 477–495.
- L. Véron, Singularities of solutions of second order quasilinear equations, Pitman Research Notes in Mathematics Series, Vol. 353, Longman, Harlow, 1996).
- L. Véron, Local and global aspects of quasilinear degenerate elliptic equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.
- L. Wei and Y. Du, Exact singular behavior of positive solutions to nonlinear elliptic equations with a Hardy potential, J. Differential Equations, 262 (2017), no. 7, 3864–3886.

э

イロト 不得 トイヨト イヨト