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Spherical metrics

Def. A surface S is a compact, oriented, connected
real manifold of dimension 2.
Distinct marked points x = (x1,...,x,) on S.

Def. A spherical metric with conical points on (S, x)
is a metric h that

> has K =1onS:=S\x
» has conical singularities at x.

A spherical surface is a triple (S, x, h).

2/34



Spheres with 0,1,2 conical points

3/34



Spheres with 0,1,2 conical points

» Case (g,n)=(0,0), (0,1): round sphere S?

3/34



Spheres with 0,1,2 conical points

» Case (g,n)=(0,0), (0,1): round sphere S?

» Case (g,n) = (0,2):

AN

3/34



Spheres with 0,1,2 conical points

» Case (g,n)=(0,0), (0,1): round sphere S?

» Case (g,n) = (0,2):

AN

Now on n > 1 and (g, n) # (0,1),(0,2)
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Studying spherical metrics

» PDE /variational:
fix background metric, vary conformal factor
~~ singular Liouville equation

» complex analysis, CP!-structures:
fix a CP!-structure, vary the Schwarzian
~> impose monodromy in SU;

» |synthetic geometry:
cut&paste, monodromy, metric considerations
~» hands in the mud
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Developing a spherical surface

Fact. Spherical metric (S, x, h) «~ (devy, pp)

Take S — S universal cover, induce hon S

~ devy i S & §? locally isometric developing map

. devy, is equivariant wrt
monodromy representation pp : m1(S, b) — SO3(R)
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Construction of py,

Rigidity property. Given , ' C S?, an isometry
r: Q — Q' uniquely extends to 7 € SO3(R).
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Construction of py,

Fix a loop v € m1(S, b).




Construction of py,

Cover v with Uy, ..., U, contractible open,
st. UyN Uy # 0 and U1 N U; # 0.
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Take an isometry f; : U; — S2.




Construction of py,

The isometry r; : f1(Ur N Up) — fo(Ur N Up)
extends to /4 € SO3(R).
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fo: Up = S?and Fiof : Uy — S? agree on U; N Up.
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Construction of py,

Up to replacing f, by 7 o f,, we can assume that
f,, fi agree on U, N U;. And so on...




Construction of py,

31 R € SO3(R) such that R o f agrees with f,, on
Uo N Upy.




Construction of py,

31 R € SO3(R) such that f\jo fo agrees with f,, on
Uo N Up,. Define pp(7y) := R.
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Basic properties of monodromy

Monodromy representation pj, : m1(S, b) — SO3(R)
» is unique up to conjugation
» lifts to pp, : m1(S, b) — SU,

Def. pp, pp are called
» coaxial if valued in 1-parameter subgroup
» central if valued in center
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MSg.n

moduli space of spherical surfaces
of genus g with n conical points
(up to isometry)

locus of surfaces with points
of angles 279 = (2n}q, ..., 2710,)
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M, , moduli space of Riemann surfaces (S, J)
of genus g with n distinct marked points
x = (x1,...,%,) (up to biholomorphism)

F:MSg () — M, forgetful map
F[S,x, h] :=[S, x, J]
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[3j] € m1(S, b) peripheral loop that winds about x;

¢ C SU, conj.class, eigenvalues e=(?i—1)

Rep(S,SU,)  moduli space of representations
p: m(S,b) = SU,
(up to SU,-conjugation)

Q{epﬁ(s, SU,) moduli space of relative reps
locus of [p] with p(5;) € ¢
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Main characters: monodromy map

the monodromy map MS, , — Rep(s, SU,)
[S, x, h] — [p4] is well-defined!

M : MS, ,—2— Rep(S, SU,)

Restriction

M : M5 g.1(8) —=— Rep, (S, SU2)
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On the local monodromy map

Theorem. Assume that no ¥, is integer. Then

» monodromy of a spherical metric is noncoaxial,
» monodromy map is a local homeomorphism.

Consequence.
Transport local structures of Rep, to MS(F)

If some ¥; is integer, then the monodromy
map has
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Decorated representation spaces

Def. A decoration for p : m1(S, b) — SUs, is a

A : {peripheral loops} — su; \ {0}

2rA(7)

p-equivariant such that p(y) = e

Q/{e??(S', SU,)  moduli space of decorated reps
(up to SU,-conjugation)

Q@ﬁ(s, SU,) moduli space of rel. dec. reps
locus [|A(5))| = ¥;

i’@ﬁ — Rep, has fiber (52)k % (SO)nfk
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Decorated monodromy

Def. Decorated rep (p, A) is elementary if
there exists a line g C su, such that

Im(A) Cg,  Im(p) C exp(g)

Theorem. The local decorated monodromy map

M MSy,—— Rep(S, SU,)

» takes values in nonelementary locus

» is a local homeomorphism
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Monodromy is non-elementary

Argument by contradiction:
» Let M(S, x, h) = (pn, Ap) elementary

» Up to conjugation, p, and e* fix 0, 00 in CP*

> V= dcvh( 2) vector field on 5
~> V descends to V on S with zeroes in x

> V = 0 contradicts x(S) < 0

18/34
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M is local homeomorphism

Basic observation:

» Given a small geodesic triangle 7 C S?,
deformations of 7 controlled by its vertices

Idea:

» Fine geodesic triangulation T of (S, h) with
x C {vertices}

» Fund. domain D C S triangulated by Ty C 75

» Move (pn, Ap) ~> adjust developing map
on each triangle 7 of Ty

19/34
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Q{ep(s, SUQ) = .‘7‘[0711(5, SUQ)/SUQ

where Hom(S, SU,) := Hom(m (S, b), SU,)

For 7T1(5, b)
» generators y;, vj, 3

» relation [p1,01] - [pg, Vgl - B1- - PBg =€

Hom(S,SU,) = R71(/) compact, algebraic,

R : (SU2)2g+n SU2
(M, N, B) — (ILi[M;, Ni))(I1; B;)
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Semi-analytic spaces

R2/S! 2 R/{%1} = Ry

Def. A subset of RV

semi-algebraic

semi-analytic

if it is finite union | locally finite union
is of subsets

defined by

finitely many | polynomial analytic

(in)equalities
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Semi-analyticity of rep spaces

Theorem.
> Hom(m1(S, b),SU,) is real algebraic, and
Rep(S, SU,) is semi-algebraic
Homy and Rep,, are compact algebraic subsets
coaxial locus is closed algebraic

—_—

elementary locus in Hom, Rep is closed analytic

>
>
» for Hom, @ replace “algebraic” by “analytic”
>
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Finiteness of topology of MS, ()

Theorem. MS, (1) is covered by
» finitely many open subsets,

» each is a bounded semi-analytic subset

of some RV

Cor. M8,z n(9¥9) homeomorphic to complement
of sub CW (orbi)cpx inside finite CW (orbi)cpx
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Finiteness of topology of MS, (1)

Idea:
» (S,x,h) ~ I C S Voronoi graph
(I equidistant from x)

» decompose MS, (1) into subsets VS, ,(F,1)
according to Voronoi graph

» T space of triangles with sides < 27 [max; ¥; ]
bounded semi-analytic subset of R®

> MS, ,(9,T) is semi-analytic inside F8(28-2+n)

24/34
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Theorem. In Rep(S, SU,)
» coaxial: irreducible, dim 2g+n-1

» noncoaxial: conn.or.mfd. dim 6g-6+3n, dense

» Poisson structure®™ on noncoaxial locus

(*) Atiyah-Bott '82, Goldman '84, Guruprasad-Huebschmann-Jeffrey-Weitsman '97,...

Theorem. In @(S,SUQ)
» elementary: conn.irred. dim 2g

» noncoaxial: conn.or.mfd dim 6g-6+2n, dense
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Special (g, n,9): all [p] € Repﬁ(S,SUg) coaxial

Theorem. Special triples are of the following type.
» Case g =0 with di(9 — 1,Z)) < 1.

» Case g =0 with di(9 —1,Z]) = 1.
Repy = {*}

> Case g =1withd € Z" and 3 _(J; — 1) € 2Z
Rep,y = S? with 4 central points

O MSen(9) =0 < g=0and d;(I9 —1,Z7) < 1
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» k=n = conn.or.mfd. dim 2n — 3

Theorem. g=1withd €Z" > (J;—1)€2Z
» noncentral locus ~ conn.or.mfd. dim 2n +1

» central locus ~~ dim 2n — 3

. For 9 odd, MS;1(9)
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Theorem. In non-special @ﬂ(S,SUz)
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Unboundedness of MS, (V)

Theorem. Let MS' be a component of MS, (1)
If (g, n) # (0,3), then MS" is not compact

Cor. NB(g,n,9)#0 — F(MS') unbounded

Note: {NBy(g,n) =0} C R" defines
locally finite union of hyperplanes

Theorem (2019). NBy(g,n) #0 = F proper.

29/34



Strategy for non-compactness of M’

30/34



Strategy for non-compactness of MS’

Two different cases:

30/34



/
Strategy for non-compactness of MS
Two different cases:

» some v; integral

30/34



/
Strategy for non-compactness of MS
Two different cases:

» some v; integral

by hand, show that inf, . sys; =0

30/34



/
Strategy for non-compactness of MS
Two different cases:

» some v; integral

by hand, show that inf, . sys; =0
use local surgery near x;

30/34



Strategy for non-compactness of M’

Two different cases:

» some v; integral

by hand, show that inf, . sys; =0
use local surgery near x;

» no v; integral

30/34



/
Strategy for non-compactness of MS
Two different cases:

» some v; integral

by hand, show that inf, . sys; =0
use local surgery near x;

» no v; integral

sys has local minima

30/34



/
Strategy for non-compactness of MS
Two different cases:

» some v; integral

by hand, show that inf, . sys; =0
use local surgery near x;

» no v; integral

sys has local minima
—> cannot be done by hand

30/34



/
Strategy for non-compactness of MS
Two different cases:

» some v; integral

by hand, show that inf, . sys; =0
use local surgery near x;

» no v; integral

sys has local minima
—> cannot be done by hand

use Goldman symplectic structure
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Projective structures

Spherical metric h on S equivalent to [devy, py]:
» pp 7T1(5, b) — SU,

» pp-equivariant local homeo devy, : S — S?
CP'-structure on S «~» replace SU, by SL,(C)

MPg n(¥) moduli space of CP-structures
on S with angle 279, at x;

Py n(9) > Mg n holomorphic affine bundle

J -
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>

My - MP, ,(19) 1—> Repl€($,SLy(C))
monodromy map My is local homeo (Luo '93)
cpx Goldman sympl.form Q¢ on MP, ,(19)

real Goldman sympl.form Q on MS, (V)
is restriction of Q¢

MPg n(9) — My, affine bundle
= H(MPy ,(9)) = H (M)
[Qc] = Flw] = [Q] = Flv]
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