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Spherical metrics

Def. A surface S is a compact, oriented, connected
real manifold of dimension 2.
Distinct marked points x = (x1, . . . , xn) on S .

Def. A spherical metric with conical points on (S , x)
is a metric h that

▶ has K = 1 on Ṡ := S \ x
▶ has conical singularities at x .

A spherical surface is a triple (S , x , h).
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Spheres with 0,1,2 conical points

▶ Case (g,n)=(0,0), (0,1): round sphere S2

▶ Case (g , n) = (0, 2):

Now on n ≥ 1 and (g , n) ̸= (0, 1), (0, 2)
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How a conical point looks like

On S ∃z locally, xi = {z = 0} and h = f ∗(hCP1)

f (z) = zϑi ∈ C ⊂ CP1 (ϑi > 0)

The angle at xi is 2πϑi .
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Studying spherical metrics

▶ PDE/variational:
fix background metric, vary conformal factor
⇝ singular Liouville equation

▶ complex analysis, CP1-structures:
fix a CP1-structure, vary the Schwarzian
⇝ impose monodromy in SU2

▶ synthetic geometry:
cut&paste, monodromy, metric considerations
⇝ hands in the mud
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Developing a spherical surface

Fact. Spherical metric (S , x , h)↭ (devh, ρh)

Take ˜̇S → Ṡ universal cover, induce h̃ on ˜̇S
⇝ devh :

˜̇S → S2 locally isometric developing map

Note. devh is equivariant wrt

monodromy representation ρh : π1(Ṡ , b) → SO3(R)
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Construction of ρh
Rigidity property. Given Ω, Ω′ ⊂ S2, an isometry
r : Ω

∼−→ Ω′ uniquely extends to r̃ ∈ SO3(R).

2
S

Ω

’

r

Ω
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Construction of ρh
Fix b ∈ Ṡ , an open contractible neighborhood U0

and an isometry f0 : U0 → S2.

2
S

0

S

f
0

U

b
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Fix b ∈ Ṡ , an open contractible neighborhood U0

and an isometry f0 : U0 → S2.

2
S

0

S

f
0

U

b



7/34

Construction of ρh
Fix a loop γ ∈ π1(Ṡ , b).

S

S
2

b

f
0

γ

0
U
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Construction of ρh
Cover γ with U0, . . . ,Um contractible open,
s.t. U0 ∩ Um ̸= ∅ and Ui−1 ∩ Ui ̸= ∅.

S

S

2

b

f
0

γ

U1
U

0
U

U
m

2
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Construction of ρh
Take an isometry f1 : U1 → S2.

S
2

S

f
0

1
f

b

γ

0

m
U

2
U1

U

U
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Construction of ρh
The isometry r1 : f1(U1 ∩ U0)

∼−→ f0(U1 ∩ U0)
extends to r̃1 ∈ SO3(R).

S

S

2

f
0

1
f

1
r

b

γ

0

m
U

2
U1

U

U



7/34

Construction of ρh
f0 : U0 → S2 and r̃1 ◦ f1 : U1 → S2 agree on U1 ∩U0.

S

S
2

f
0

1
f

1
r

b

~

γ

U

m
U

2
U1

U

0
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Construction of ρh
Replace f1 by r̃1 ◦ f1.
So now f1, f0 agree on U1 ∩ U0.

S

S
2

1

b

f

f

0

γ

1

U

2

U
0

m

U U
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Construction of ρh
Up to replacing f2 by r̃2 ◦ f2, we can assume that
f2, f1 agree on U2 ∩ U1. And so on...

S

2
S

b

f
0

1
f

f
2

γ

0
U

U

U

1 U
2

m
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Construction of ρh
∃! R̃ ∈ SO3(R) such that R̃ ◦ f0 agrees with fm on
U0 ∩ Um.

Define ρh(γ) := R̃ .

S

2
S

b
R

m
f

0
f

γ

0

m
U

1
2

U U

U
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Construction of ρh
∃! R̃ ∈ SO3(R) such that R̃ ◦ f0 agrees with fm on
U0 ∩ Um. Define ρh(γ) := R̃ .
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b
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f
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Basic properties of monodromy

Monodromy representation ρh : π1(Ṡ , b) −→ SO3(R)

▶ is unique up to conjugation

▶ lifts to ρ̂h : π1(Ṡ , b) → SU2

Def. ρh, ρ̂h are called

▶ coaxial if valued in 1-parameter subgroup

▶ central if valued in center
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Local study moduli spaces

Local properties:

▶

▶

▶

▶

▶ local forgetful map: (S , x , h) 7→ (S , x , J)
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Global study of moduli spaces

Global properties:

▶ non-emptiness

▶ connectedness

▶
▶ global forgetful map

▶ properness
▶ finite fibers
▶
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Main characters: moduli spaces

MS g ,n moduli space of spherical surfaces
of genus g with n conical points
(up to isometry)

MS g ,n(ϑ) locus of surfaces with points
of angles 2πϑ = (2πϑ1, . . . , 2πϑn)
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Main characters: forgetful map

Mg ,n moduli space of Riemann surfaces (S , J)
of genus g with n distinct marked points
x = (x1, . . . , xn) (up to biholomorphism)

F : MS g ,n(ϑ) −→ Mg ,n forgetful map
F [S , x , h] := [S , x , J]
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Main characters: representation spaces

[βj ] ∈ π1(Ṡ , b) peripheral loop that winds about xj

cj ⊂ SU2 conj.class, eigenvalues e±iπ(ϑj−1)

Rep(Ṡ , SU2) moduli space of representations

ρ : π1(Ṡ , b) → SU2

(up to SU2-conjugation)

Rep
ϑ
(Ṡ , SU2) moduli space of relative reps

locus of [ρ] with ρ(βj) ∈ cj
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Main characters: monodromy map

Issue: the monodromy map MS g ,n → Rep(Ṡ , SU2)
[S , x , h] 7→ [ρ̂h] is only locally well-defined!

M : MS g ,n
loc // Rep(Ṡ , SU2)

Restriction

Mϑ : MS g ,n(ϑ)
loc // Rep

ϑ
(Ṡ , SU2)
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(Ṡ , SU2)



14/34

Main characters: monodromy map

Issue: the monodromy map MS g ,n → Rep(Ṡ , SU2)
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On the local monodromy map

Theorem. Assume that no ϑj is integer. Then

▶ monodromy of a spherical metric is noncoaxial,

▶ monodromy map is a local homeomorphism.

Consequence.
Transport local structures of Rep

ϑ
to MS(ϑ)

Note. If some ϑj is integer, then the monodromy
map has positive dimensional fibers
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Decorated representation spaces

Def. A decoration for ρ : π1(Ṡ , b) → SU2 is a

A : {peripheral loops} → su2 \ {0}

ρ-equivariant such that ρ(γ) = e2πA(γ)

R̂ep(Ṡ , SU2) moduli space of decorated reps
(up to SU2-conjugation)
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(Ṡ , SU2) moduli space of rel. dec. reps
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ϑ
→ Rep

ϑ
has fiber (S2)k × (S0)n−k
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(Ṡ , SU2) moduli space of rel. dec. reps

locus ∥A(βj)∥ = ϑj

R̂ep
ϑ
→ Rep

ϑ
has fiber (S2)k × (S0)n−k



16/34

Decorated representation spaces

Def. A decoration for ρ : π1(Ṡ , b) → SU2 is a

A : {peripheral loops} → su2 \ {0}

ρ-equivariant such that ρ(γ) = e2πA(γ)
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Decorated monodromy

Def. Decorated rep (ρ,A) is elementary if
there exists a line g ⊂ su2 such that

Im(A) ⊂ g, Im(ρ) ⊂ exp(g)

Theorem. The local decorated monodromy map

M̂ : MS g ,n
loc // R̂ep(Ṡ , SU2)

▶ takes values in nonelementary locus

▶ is a local homeomorphism
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Monodromy is non-elementary

Argument by contradiction:

▶ Let M̂(S , x , h) = (ρh,Ah) elementary

▶ Up to conjugation, ρh and eAh fix 0,∞ in CP1

▶ Ṽ = dev∗h(z
∂
∂z ) vector field on ˜̇S

⇝ Ṽ descends to V on S with zeroes in x

▶ V ̸= 0 contradicts χ(Ṡ) < 0
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▶ Ṽ = dev∗h(z
∂
∂z ) vector field on ˜̇S
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⇝ Ṽ descends to V on S with zeroes in x

▶ V ̸= 0 contradicts χ(Ṡ) < 0
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M̂ is local homeomorphism

Basic observation:

▶ Given a small geodesic triangle τ ⊂ S2,
deformations of τ controlled by its vertices

Idea:

▶ Fine geodesic triangulation T of (S , h) with
x ⊂ {vertices}

▶ Fund. domain D ⊂ ˜̇S triangulated by T0 ⊂ T̃

▶ Move (ρh,Ah) ⇝ adjust developing map
on each triangle τ of T0
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Analyticity of representation spaces

Rep(Ṡ , SU2) = Hom(Ṡ , SU2)/SU2

where Hom(Ṡ , SU2) := Hom(π1(Ṡ , b), SU2)

For π1(Ṡ , b)

▶ generators µi , νi , βj

▶ relation [µ1, ν1] · · · [µg , νg ] · β1 · · · βg = e

Hom(Ṡ , SU2) ∼= R−1(I ) compact, algebraic,

R : (SU2)
2g+n // SU2

(M ,N ,B) � // (
∏

i [Mi ,Ni ])(
∏

j Bj)
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Semi-analytic spaces

Warning: R2/S1 ∼= R/{±1} ∼= R≥0 semi-algebraic

Def. A subset of RN

is

semi-algebraic

semi-analytic

if it is finite union

locally finite union

of subsets
defined by
finitely many polynomial

analytic

(in)equalities
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Semi-analyticity of rep spaces

Theorem.

▶ Hom(π1(Ṡ , b), SU2) is real algebraic, and
Rep(Ṡ , SU2) is semi-algebraic

▶ Homϑ and Rep
ϑ
are compact algebraic subsets

▶ coaxial locus is closed algebraic

▶ for Ĥom , R̂ep replace “algebraic” by “analytic”

▶ elementary locus in Ĥom , R̂ep is closed analytic



22/34

Semi-analyticity of rep spaces

Theorem.
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▶ for Ĥom , R̂ep replace “algebraic” by “analytic”
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▶ elementary locus in Ĥom , R̂ep is closed analytic



22/34

Semi-analyticity of rep spaces

Theorem.
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Finiteness of topology of MS g ,n(ϑ)

Theorem. MS g ,n(ϑ) is covered by

▶ finitely many open subsets,

▶ each is a bounded semi-analytic subset

of some RN

Cor. MS g ,n(ϑ) homeomorphic to complement
of sub CW (orbi)cpx inside finite CW (orbi)cpx
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Finiteness of topology of MS g ,n(ϑ)

Idea:

▶ (S , x , h) ⇝ Γ ⊂ Ṡ Voronoi graph
(Γ equidistant from x)

▶ decompose MS g ,n(ϑ) into subsets MS g ,n(ϑ, Γ)
according to Voronoi graph Γ

▶ T space of triangles with sides ≤ 2π⌈maxi ϑi⌉
bounded semi-analytic subset of R6

▶ MS g ,n(ϑ, Γ) is semi-analytic inside T6(2g−2+n)
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(Γ equidistant from x)

▶ decompose MS g ,n(ϑ) into subsets MS g ,n(ϑ, Γ)
according to Voronoi graph Γ

▶ T space of triangles with sides ≤ 2π⌈maxi ϑi⌉
bounded semi-analytic subset of R6

▶ MS g ,n(ϑ, Γ) is semi-analytic inside T6(2g−2+n)



24/34

Finiteness of topology of MS g ,n(ϑ)

Idea:

▶ (S , x , h) ⇝ Γ ⊂ Ṡ Voronoi graph
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Rep and R̂ep

Theorem. In Rep(Ṡ , SU2)

▶ coaxial: irreducible, dim 2g+n-1

▶ noncoaxial: conn.or.mfd. dim 6g-6+3n, dense

▶ Poisson structure(⋆) on noncoaxial locus

(⋆) Atiyah-Bott ’82, Goldman ’84, Guruprasad-Huebschmann-Jeffrey-Weitsman ’97,...

Theorem. In R̂ep(Ṡ , SU2)

▶ elementary: conn.irred. dim 2g

▶ noncoaxial: conn.or.mfd dim 6g-6+2n, dense
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▶ coaxial: irreducible, dim 2g+n-1

▶ noncoaxial: conn.or.mfd. dim 6g-6+3n, dense

▶ Poisson structure(⋆) on noncoaxial locus

(⋆) Atiyah-Bott ’82, Goldman ’84, Guruprasad-Huebschmann-Jeffrey-Weitsman ’97,...

Theorem. In R̂ep(Ṡ , SU2)
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Rep and R̂ep

Theorem. In Rep(Ṡ , SU2)

▶ coaxial: irreducible, dim 2g+n-1
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Special Rep
ϑ

Special (g , n,ϑ): all [ρ] ∈ Rep
ϑ
(Ṡ , SU2) coaxial

Theorem. Special triples are of the following type.

▶ Case g = 0 with d1(ϑ− 1,Zn
o) < 1.

Rep
ϑ
= ∅ (⋆)

▶ Case g = 0 with d1(ϑ− 1,Zn
o) = 1.

Rep
ϑ
= {∗}

▶ Case g = 1 with ϑ ∈ Zn and
∑

j(ϑj − 1) ∈ 2Z
Rep

ϑ
∼= S2 with 4 central points

(⋆) MS g ,n(ϑ) = ∅ ⇐⇒ g = 0 and d1(ϑ− 1,Zn
o) < 1
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(Ṡ , SU2) coaxial

Theorem. Special triples are of the following type.

▶ Case g = 0 with d1(ϑ− 1,Zn
o) < 1.

Rep
ϑ
= ∅ (⋆)

▶ Case g = 0 with d1(ϑ− 1,Zn
o) = 1.

Rep
ϑ
= {∗}

▶ Case g = 1 with ϑ ∈ Zn and
∑

j(ϑj − 1) ∈ 2Z
Rep

ϑ
∼= S2 with 4 central points

(⋆) MS g ,n(ϑ) = ∅ ⇐⇒ g = 0 and d1(ϑ− 1,Zn
o) < 1



27/34

Special R̂ep
ϑ

Theorem. g = 0 with d1(ϑ− 1,Zn
o) = 1.

▶ k = 0 =⇒ R̂ep
ne

ϑ
= {∗}

▶ k ∈ [1, n − 2] =⇒ conn.or.mfd. dim 2k − 1

▶ k = n =⇒ conn.or.mfd. dim 2n − 3

Theorem. g = 1 with ϑ ∈ Zn,
∑

j(ϑj − 1) ∈ 2Z
▶ noncentral locus ⇝ conn.or.mfd. dim 2n + 1

▶ central locus ⇝ dim 2n − 3

Example. For ϑ odd, MS 1,1(ϑ) disconnected
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Non-special Rep
ϑ
and R̂ep

ϑ

Theorem. In non-special Rep
ϑ
(Ṡ , SU2)

▶ coaxial locus is the singular locus, has dim 2g

▶ noncoaxial locus is a conn.orient. manifold,
dense, of dim 6g − 6 + 2(n − k)

▶ noncoaxial locus is symplectic

Theorem. In non-special R̂ep
ϑ
(Ṡ , SU2)

▶ coaxial locus is the singular locus

▶ nc: dense conn.or.mfd dim 6g − 6 + 2n
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Unboundedness of MS g ,n(ϑ)

Theorem. Let MS ′
be a component of MS g ,n(ϑ)

If (g , n) ̸= (0, 3), then MS ′
is not compact

Cor. NB(g , n,ϑ) ̸= 0 =⇒ F (MS ′
) unbounded

Note: {NBϑ(g , n) = 0} ⊂ Rn defines
locally finite union of hyperplanes

Theorem (2019). NBϑ(g , n) ̸= 0 =⇒ F proper.
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Strategy for non-compactness of MS ′

Two different cases:

▶ some ϑj integral

by hand, show that infMS ′ sysj = 0
use local surgery near xj

▶ no ϑj integral

sys has local minima
=⇒ cannot be done by hand

use Goldman symplectic structure
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MS ′
non-compact: case ϑj ∈ Z

Define sysj : MS ′ → R+ sending [S , x , h] to

min

{
ℓh(shortest geodesic arc from xj to xi with i ̸= j)

ℓh(shortest geodesic loop based in xj)

Use local surgery at xj and dim(MS ′
) > 0

⇝ infMS ′ sysj = 0

=⇒ MS ′
is not compact
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MS ′
non-compact: all ϑj /∈ Z

▶ Goldman sympl.form Ω on MS g ,n(ϑ)

▶ recall F : MS g ,n(ϑ) → Mg ,n

▶ Claim: [Ω] = F ∗[ω] for some ω on Mg ,n

▶ (g , n) ̸= (0, 3) =⇒ Mg ,n non-compact
=⇒ [ω3g−3+n] = 0

▶ [Ω3g−3+n] = F ∗[ω3g−3+n] = 0

▶ Ω3g−3+n is a volume form on MS ′

=⇒ MS ′
non-compact
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Projective structures

Spherical metric h on Ṡ equivalent to [devh, ρh]:
▶ ρh : π1(Ṡ , b) → SU2

▶ ρh-equivariant local homeo devh :
˜̇S → S2

CP1-structure on Ṡ ↭ replace SU2 by SL2(C)

MP g ,n(ϑ) moduli space of CP1-structures

on Ṡ with angle 2πϑj at xj

MP g ,n(ϑ)
F̌ //Mg ,n holomorphic affine bundle

MS g ,n(ϑ)
?�
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F

99
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On Goldman symplectic form

▶ Mϑ : MS g ,n(ϑ)
loc−→ Repnc

ϑ
(Ṡ , SU2) noncoaxial

▶ M̌ϑ : MP g ,n(ϑ)
loc−→ Repnc

ϑ
(Ṡ , SL2(C))

monodromy map M̌ϑ is local homeo (Luo ’93)

▶ cpx Goldman sympl.form ΩC on MP g ,n(ϑ)

▶ real Goldman sympl.form Ω on MS g ,n(ϑ)
is restriction of ΩC

▶ MP g ,n(ϑ) → Mg ,n affine bundle
=⇒ H2(MP g ,n(ϑ)) ∼= H2(Mg ,n)

▶ [ΩC] = F̌ ∗[ω] =⇒ [Ω] = F ∗[ω]
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