Moduli of SU_2 -representations and spherical surfaces

Gabriele Mondello

(Sapienza Università di Roma)

Joint work with Dmitri Panov (King's College of London)

Meeting "Moduli spaces and singularities" Montreal, 21 May 2024

Def. A *surface* S is a compact, oriented, connected real manifold of dimension 2.

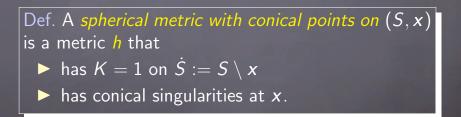
Def. A surface S is a compact, oriented, connected real manifold of dimension 2. Distinct marked points $x = (x_1, ..., x_n)$ on S.

Def. A surface S is a compact, oriented, connected real manifold of dimension 2. Distinct marked points $x = (x_1, ..., x_n)$ on S.

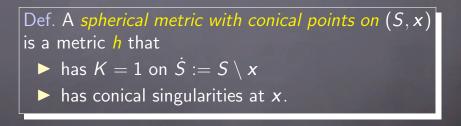
Def. A spherical metric with conical points on (S, x) is a metric *h* that

▶ has K = 1 on $\dot{S} := S \setminus x$

Def. A surface S is a compact, oriented, connected real manifold of dimension 2. Distinct marked points $x = (x_1, ..., x_n)$ on S.



Def. A surface S is a compact, oriented, connected real manifold of dimension 2. Distinct marked points $x = (x_1, ..., x_n)$ on S.

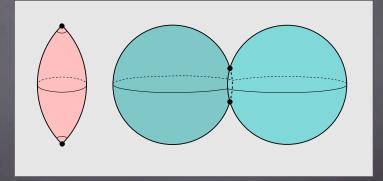


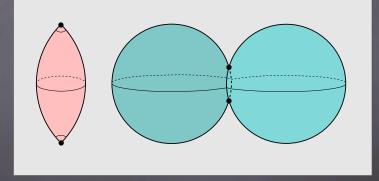
A spherical surface is a triple (S, x, h).

Spheres with 0,1,2 conical points

Spheres with 0,1,2 conical points ► Case (g,n)=(0,0), (0,1): round sphere S²

Spheres with 0,1,2 conical points
 ► Case (g,n)=(0,0), (0,1): round sphere S²
 ► Case (g, n) = (0,2):





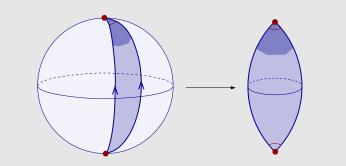
Now on $n \ge 1$ and $(g, n) \ne (0, 1)$, (0, 2)

How a conical point looks like

How a conical point looks like On $S \exists z$ locally, $x_i = \{z = 0\}$ and $h = f^*(h_{\mathbb{CP}^1})$

How a conical point looks like On $S \exists z$ locally, $x_i = \{z = 0\}$ and $h = f^*(h_{\mathbb{CP}^1})$ $f(z) = z^{\vartheta_i} \in \mathbb{C} \subset \mathbb{CP}^1$ $(\vartheta_i > 0)$ How a conical point looks like On $S \exists z \text{ locally}, \quad x_i = \{z = 0\} \text{ and } h = f^*(h_{\mathbb{CP}^1})$ $f(z) = z^{\vartheta_i} \in \mathbb{C} \subset \mathbb{CP}^1 \qquad (\vartheta_i > 0)$ The angle at x_i is $2\pi \vartheta_i$. How a conical point looks like On $S \exists z$ locally, $x_i = \{z = 0\}$ and $h = f^*(h_{\mathbb{CP}^1})$ $f(z) = z^{\vartheta_i} \in \mathbb{C} \subset \mathbb{CP}^1$ $(\vartheta_i > 0)$

The *angle* at x_i is $2\pi\vartheta_i$.



► PDE/variational:

 PDE/variational: fix background metric, vary conformal factor

PDE/variational: fix background metric, vary conformal factor ~> singular Liouville equation

PDE/variational:

fix background metric, vary conformal factor → singular Liouville equation

 \blacktriangleright complex analysis, \mathbb{CP}^1 -structures:

PDE/variational:

fix background metric, vary conformal factor → singular Liouville equation

complex analysis, CP¹-structures:
 fix a CP¹-structure, vary the Schwarzian

PDE/variational:

fix background metric, vary conformal factor → singular Liouville equation

► complex analysis, CP¹-structures: fix a CP¹-structure, vary the Schwarzian ~→ impose monodromy in SU₂

PDE/variational:

fix background metric, vary conformal factor → singular Liouville equation

► complex analysis, CP¹-structures: fix a CP¹-structure, vary the Schwarzian ~→ impose monodromy in SU₂

PDE/variational:

fix background metric, vary conformal factor → singular Liouville equation

► complex analysis, CP¹-structures: fix a CP¹-structure, vary the Schwarzian ~→ impose monodromy in SU₂

 synthetic geometry: cut&paste, monodromy, metric considerations

PDE/variational:

fix background metric, vary conformal factor → singular Liouville equation

► complex analysis, CP¹-structures: fix a CP¹-structure, vary the Schwarzian ~→ impose monodromy in SU₂

synthetic geometry: cut&paste, monodromy, metric considerations ~> hands in the mud

Fact. Spherical metric (S, x, h)

Fact. Spherical metric $(S, x, h) \iff (\operatorname{dev}_h, \rho_h)$

Fact. Spherical metric $(S, x, h) \iff (\operatorname{dev}_h, \rho_h)$

Take $\widetilde{\dot{S}} ightarrow \dot{S}$ universal cover,

Fact. Spherical metric $(S, x, h) \iff (\operatorname{dev}_h, \rho_h)$

Take $\widetilde{\dot{S}} \rightarrow \dot{S}$ universal cover, induce \widetilde{h} on $\widetilde{\dot{S}}$

Fact. Spherical metric $(S, x, h) \iff (\operatorname{dev}_h, \rho_h)$

Take $\widetilde{\dot{S}} \to \dot{S}$ universal cover, induce \widetilde{h} on $\widetilde{\dot{S}}$ $\longrightarrow \operatorname{dev}_h : \widetilde{\dot{S}} \to \mathbb{S}^2$ locally isometric developing map

Fact. Spherical metric $(S, \mathbf{x}, h) \iff (\operatorname{dev}_h, \rho_h)$

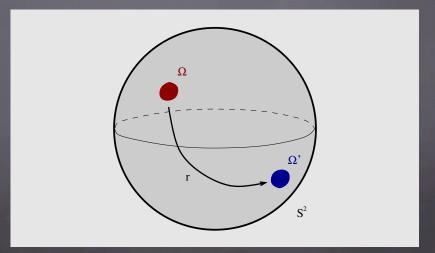
Take $\widetilde{\dot{S}} \to \dot{S}$ universal cover, induce \widetilde{h} on $\widetilde{\dot{S}}$ $\longrightarrow \operatorname{dev}_h : \widetilde{\dot{S}} \to \mathbb{S}^2$ locally isometric developing map

Note. dev_h is equivariant wrt monodromy representation $\rho_h : \pi_1(\dot{S}, b) \to SO_3(\mathbb{R})$

Construction of ρ_h

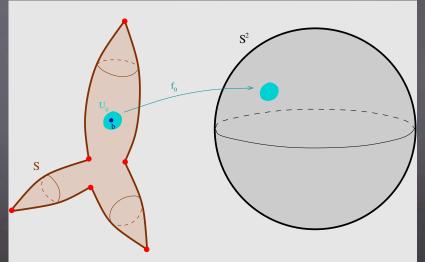
Construction of ρ_h

Rigidity property. Given Ω , $\Omega' \subset \mathbb{S}^2$, an isometry $r : \Omega \xrightarrow{\sim} \Omega'$ uniquely extends to $\tilde{r} \in SO_3(\mathbb{R})$.



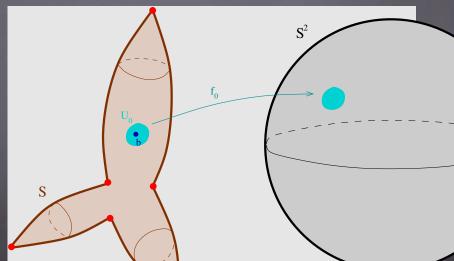
Construction of ρ_h

Fix $b \in \dot{S}$, an open contractible neighborhood U_0 and an isometry $f_0 : U_0 \to \mathbb{S}^2$.

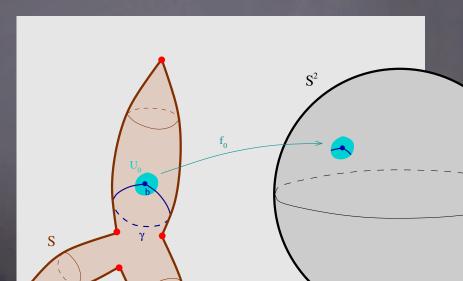


Construction of ρ_h

Fix $b \in \dot{S}$, an open contractible neighborhood U_0 and an isometry $f_0 : U_0 \to \mathbb{S}^2$.

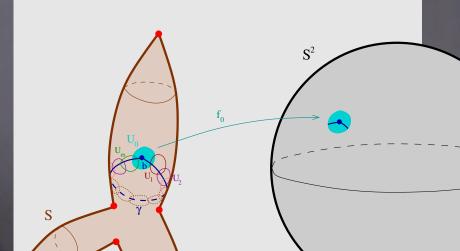


Construction of ρ_h Fix a loop $\gamma \in \pi_1(\dot{S}, b)$.

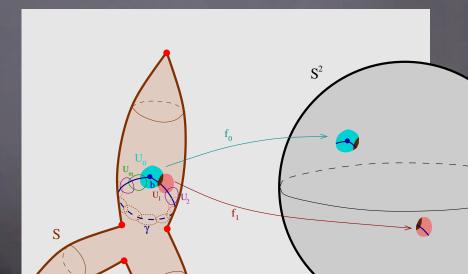


Construction of ρ_h

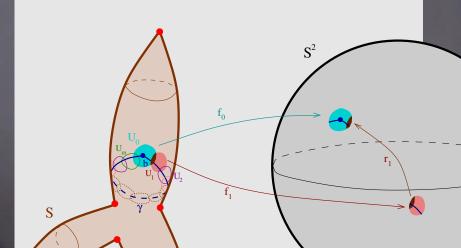
Cover γ with U_0, \ldots, U_m contractible open, s.t. $U_0 \cap U_m \neq \emptyset$ and $U_{i-1} \cap U_i \neq \emptyset$.



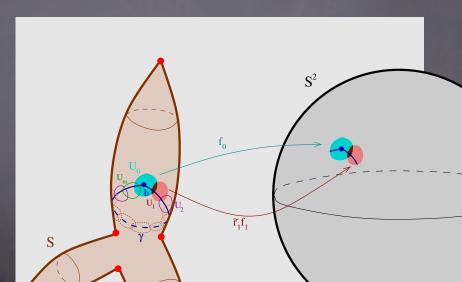
Construction of ρ_h Take an isometry $f_1: U_1 \to \mathbb{S}^2$.



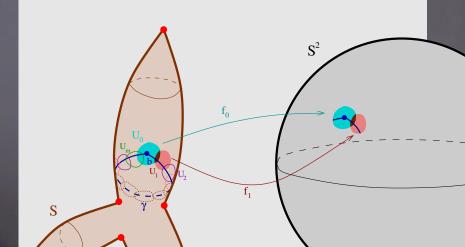
Construction of ρ_h The isometry $r_1 : f_1(U_1 \cap U_0) \xrightarrow{\sim} f_0(U_1 \cap U_0)$ extends to $\tilde{r}_1 \in SO_3(\mathbb{R})$.



Construction of ρ_h $f_0: U_0 \to \mathbb{S}^2$ and $\tilde{r}_1 \circ f_1: U_1 \to \mathbb{S}^2$ agree on $U_1 \cap U_0$.

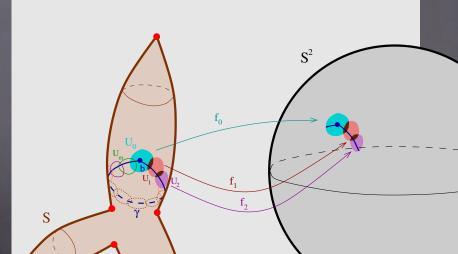


Construction of ρ_h Replace f_1 by $\tilde{r}_1 \circ f_1$. So now f_1, f_0 agree on $U_1 \cap U_0$.

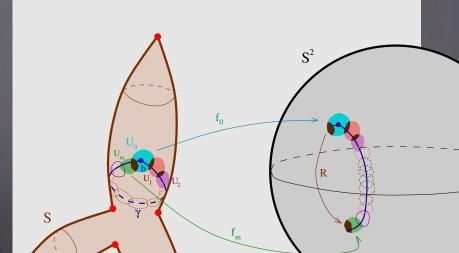


Construction of ρ_h

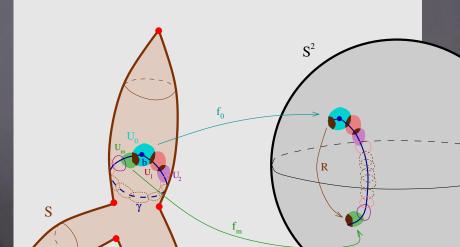
Up to replacing f_2 by $\tilde{r}_2 \circ f_2$, we can assume that f_2, f_1 agree on $U_2 \cap U_1$. And so on...



Construction of ρ_h $\exists! \tilde{R} \in SO_3(\mathbb{R})$ such that $\tilde{R} \circ f_0$ agrees with f_m on $U_0 \cap U_m$.



Construction of ρ_h $\exists ! \ \tilde{R} \in SO_3(\mathbb{R}) \text{ such that } \tilde{R} \circ f_0 \text{ agrees with } f_m \text{ on } U_0 \cap U_m. \text{ Define } \rho_h(\gamma) := \tilde{R}.$



Monodromy representation $\rho_h: \pi_1(\dot{S}, b) \longrightarrow SO_3(\mathbb{R})$

Monodromy representation $\rho_h : \pi_1(S, b) \longrightarrow SO_3(\mathbb{R})$ \blacktriangleright is unique up to conjugation

Monodromy representation ρ_h : π₁(S, b) → SO₃(ℝ)
is unique up to conjugation
lifts to ρ̂_h : π₁(S, b) → SU₂

Monodromy representation ρ_h : π₁(S, b) → SO₃(ℝ)
is unique up to conjugation
lifts to ρ̂_h : π₁(S, b) → SU₂

Def. ρ_h, ρ̂_h are called
► coaxial if valued in 1-parameter subgroup

Monodromy representation ρ_h : π₁(S, b) → SO₃(ℝ)
is unique up to conjugation
lifts to ρ̂_h : π₁(S, b) → SU₂

Def. ρ_h, ρ̂_h are called
► coaxial if valued in 1-parameter subgroup
► central if valued in center

Local properties: ► analyticity

Local properties:
analyticity
dimension and smoothness

Local properties:
analyticity
dimension and smoothness
symplectic structure

- analyticity
- dimension and smoothness
- symplectic structure
- ▶ local monodromy map: $(S, x, h) \mapsto \rho_h$

- analyticity
- dimension and smoothness
- symplectic structure
- ▶ local monodromy map: $(S, x, h) \mapsto \rho_h$
- ► local forgetful map: $(S, x, h) \mapsto (S, x, J)$

- analyticity
- dimension and smoothness
- symplectic structure
- ► local monodromy map: $(S, x, h) \mapsto \rho_h$
- ▶ local forgetful map: $(S, x, h) \mapsto (S, \overline{x}, J)$

Global properties:

Global properties: non-emptiness

Global properties:non-emptinessconnectedness

Global properties:
non-emptiness
connectedness
topology (finiteness)

Global properties:
non-emptiness
connectedness
topology (finiteness)
global forgetful map

Global properties: non-emptiness connectedness topology (finiteness) global forgetful map properness __finite fibers bounded image

Global properties: non-emptiness connectedness topology (finiteness) global forgetful map properness __finite fibers bounded image

Main characters: moduli spaces

Main characters: moduli spaces

 $\mathcal{MS}_{g,n}$

moduli space of spherical surfaces of genus g with n conical points (up to isometry)

Main characters: moduli spaces

 $\mathcal{MS}_{g,n}$

moduli space of spherical surfaces of genus g with n conical points (up to isometry)

 $\mathcal{MS}_{g,n}(\boldsymbol{\vartheta})$ locus of surfaces with points of angles $2\pi\boldsymbol{\vartheta} = (2\pi\vartheta_1, \dots, 2\pi\vartheta_n)$

Main characters: forgetful map

Main characters: forgetful map

 $\mathcal{M}_{g,n}$ moduli space of Riemann surfaces (S, J)of genus g with n distinct marked points $x = (x_1, \dots, x_n)$ (up to biholomorphism)

Main characters: forgetful map

 $\mathcal{M}_{g,n}$ moduli space of Riemann surfaces (S, J)of genus g with n distinct marked points $x = (x_1, \dots, x_n)$ (up to biholomorphism)

 $F: \mathcal{MS}_{g,n}(\vartheta) \longrightarrow \mathcal{M}_{g,n} \quad \text{forgetful map} \\ F[S, x, h] := [S, x, J]$

Main characters: representation spaces

Main characters: representation spaces $[\beta_j] \in \pi_1(\dot{S}, b)$ peripheral loop that winds about x_j

Main characters: representation spaces $[\beta_j] \in \pi_1(\dot{S}, b)$ peripheral loop that winds about x_j $c_j \subset SU_2$ conj.class, eigenvalues $e^{\pm i\pi(\vartheta_j - 1)}$ Main characters: representation spaces $[\beta_j] \in \pi_1(\dot{S}, b)$ peripheral loop that winds about x_j $c_j \subset SU_2$ conj.class, eigenvalues $e^{\pm i\pi(\vartheta_j - 1)}$

 $\begin{array}{ll} \mathcal{R}ep(\dot{S}, \mathrm{SU}_2) & \text{moduli space of representations} \\ \rho : \pi_1(\dot{S}, b) \to \mathrm{SU}_2 \\ (\text{up to } \mathrm{SU}_2\text{-conjugation}) \end{array}$

Main characters: representation spaces $[\beta_i] \in \pi_1(\dot{S}, b)$ peripheral loop that winds about x_i conj.class, eigenvalues $e^{\pm i \pi (artheta_j - 1)}$ $C_i \subset SU_2$

 $\mathcal{R}ep(S, SU_2)$ moduli space of representations $\rho: \pi_1(\dot{S}, b) \to \mathrm{SU}_2$ (up to SU_2 -conjugation)

 $\mathcal{R}ep_{\theta}(\dot{S}, \mathrm{SU}_2)$ moduli space of relative reps locus of $[\rho]$ with $\rho(\beta_i) \in c_i$

Main characters: monodromy map

Main characters: monodromy map

Issue: the monodromy map $\mathcal{MS}_{g,n} \to \mathcal{R}ep(S, \mathrm{SU}_2)$ $[S, x, h] \mapsto [\hat{\rho}_h]$ is only locally well-defined!

Main characters: monodromy map

Issue: the monodromy map $\mathcal{MS}_{g,n} \to \mathcal{R}ep(S, \mathrm{SU}_2)$ $[S, x, h] \mapsto [\hat{\rho}_h]$ is only locally well-defined!

$$M: \mathcal{MS}_{g,n} \xrightarrow{\mathsf{loc}} \mathcal{R}ep(\dot{S}, \mathrm{SU}_2)$$

Restriction

 $M_{\vartheta}: \mathcal{MS}_{g,n}(\vartheta) \xrightarrow{\mathsf{loc}} \mathcal{Rep}_{\vartheta}(\dot{S}, \mathrm{SU}_2)$

Theorem. Assume that no ϑ_j is integer.

Theorem. Assume that no ϑ_j is integer. Then \blacktriangleright monodromy of a spherical metric is noncoaxial,

Theorem. Assume that no ϑ_j is integer. Then
 ▶ monodromy of a spherical metric is noncoaxial,
 ▶ monodromy map is a local homeomorphism.

Theorem. Assume that no ϑ_j is integer. Then
 ▶ monodromy of a spherical metric is noncoaxial,
 ▶ monodromy map is a local homeomorphism.

Consequence. Transport local structures of $\mathcal{Rep}_{\vartheta}$ to $\mathcal{MS}(\vartheta)$

Theorem. Assume that no ϑ_j is integer. Then
 ▶ monodromy of a spherical metric is noncoaxial,
 ▶ monodromy map is a local homeomorphism.

Consequence. Transport local structures of $\mathcal{Rep}_{\vartheta}$ to $\mathcal{MS}(\vartheta)$

Note. If some ϑ_j is integer, then the monodromy map has positive dimensional fibers

Def. A decoration for ρ : $\pi_1(\dot{S}, b) \to SU_2$ is a A : {peripheral loops} $\to \mathfrak{su}_2 \setminus \{0\}$ ρ -equivariant such that $\rho(\gamma) = e^{2\pi A(\gamma)}$

Def. A decoration for $\rho : \pi_1(\dot{S}, b) \to SU_2$ is a A : {peripheral loops} $\to \mathfrak{su}_2 \setminus \{0\}$ ρ -equivariant such that $\rho(\gamma) = e^{2\pi A(\gamma)}$

 $\mathcal{R}ep(S, \mathrm{SU}_2)$ moduli space of decorated reps (up to SU_2 -conjugation)

Def. A decoration for $\rho : \pi_1(\dot{S}, b) \to SU_2$ is a A : {peripheral loops} $\to \mathfrak{su}_2 \setminus \{0\}$ ρ -equivariant such that $\rho(\gamma) = e^{2\pi A(\gamma)}$

moduli space of decorated reps (up to SU_2 -conjugation)

 $\widehat{\operatorname{Rep}}_{\vartheta}(\dot{S}, \mathrm{SU}_2)$

 $\mathcal{R}ep(S, SU_2)$

moduli space of rel. dec. reps locus $\|A(\beta_j)\| = \vartheta_j$

Def. A decoration for $ho: \pi_1(\dot{S}, b) \to \mathrm{SU}_2$ is a A : {peripheral loops} $\to \mathfrak{su}_2 \setminus \{0\}$ ho-equivariant such that $ho(\gamma) = e^{2\pi \mathrm{A}(\gamma)}$

 $\widehat{\mathcal{R}ep}(\dot{S}, \mathrm{SU}_2) \quad \begin{array}{l} \mathsf{moduli space of decorated reps} \\ (\mathsf{up to SU}_2\mathsf{-}\mathsf{conjugation}) \end{array}$

 $\widehat{\operatorname{{\mathcal Rep}}}_{\vartheta}(\dot{S},\operatorname{SU}_2)$

moduli space of rel. dec. reps locus $||A(\beta_j)|| = \vartheta_j$

 $\widehat{\mathscr{Rep}}_{artheta} o \mathscr{Rep}_{artheta}$ has fiber $(S^2)^k imes (S^0)^{n-k}$

Decorated monodromy

Decorated monodromy Def. Decorated rep (ρ, A) is elementary if

Decorated monodromy Def. Decorated rep (ρ, A) is elementary if there exists a line $\mathfrak{g} \subset \mathfrak{su}_2$ such that

 $\operatorname{Im}(A) \subset \mathfrak{g}, \qquad \operatorname{Im}(\rho) \subset \exp(\mathfrak{g})$

Decorated monodromy Def. Decorated rep (ρ, A) is elementary if there exists a line $\mathfrak{g} \subset \mathfrak{su}_2$ such that $\operatorname{Im}(A) \subset \mathfrak{g}, \qquad \operatorname{Im}(\rho) \subset \exp(\mathfrak{g})$

Theorem. The local decorated monodromy map

$$\widehat{M}: \mathcal{MS}_{g,n} \xrightarrow{\mathsf{loc}} \widehat{\mathcal{Rep}}(\dot{S}, \mathrm{SU}_2)$$

Decorated monodromy Def. Decorated rep (ρ, A) is elementary if there exists a line $\mathfrak{g} \subset \mathfrak{su}_2$ such that $\operatorname{Im}(A) \subset \mathfrak{g}, \qquad \operatorname{Im}(\rho) \subset \exp(\mathfrak{g})$

Theorem. The local decorated monodromy map

$$\widehat{M}: \mathcal{MS}_{g,n} \xrightarrow{\mathsf{loc}} \widehat{\mathcal{Rep}}(\dot{S}, \mathrm{SU}_2)$$

takes values in nonelementary locus

Decorated monodromy Def. Decorated rep (ρ, A) is elementary if there exists a line $\mathfrak{g} \subset \mathfrak{su}_2$ such that $\operatorname{Im}(A) \subset \mathfrak{g}, \qquad \operatorname{Im}(\rho) \subset \exp(\mathfrak{g})$

Theorem. The local decorated monodromy map

$$\widehat{M}: \mathcal{MS}_{g,n} \xrightarrow{\mathsf{loc}} \widehat{\mathcal{Rep}}(\dot{S}, \mathrm{SU}_2)$$

takes values in nonelementary locusis a local homeomorphism

Argument by contradiction: • Let $\widehat{M}(S, \mathbf{x}, h) = (\rho_h, A_h)$ elementary

Argument by contradiction:
Let M(S, x, h) = (ρ_h, A_h) elementary
Up to conjugation, ρ_h and e^{A_h} fix 0,∞ in CP¹

Argument by contradiction: • Let $\widehat{M}(S, x, h) = (\rho_h, A_h)$ elementary • Up to conjugation, ρ_h and e^{A_h} fix $0, \infty$ in \mathbb{CP}^1 • $\widetilde{V} = \operatorname{dev}_h^*(z \frac{\partial}{\partial z})$ vector field on $\widetilde{\dot{S}}$

Argument by contradiction: • Let $\widehat{M}(S, x, h) = (\rho_h, A_h)$ elementary • Up to conjugation, ρ_h and e^{A_h} fix $0, \infty$ in \mathbb{CP}^1 • $\widetilde{V} = \operatorname{dev}_h^*(z \frac{\partial}{\partial z})$ vector field on \widetilde{S} $\rightsquigarrow \widetilde{V}$ descends to V on S with zeroes in x

Argument by contradiction: • Let $\widehat{M}(S, \mathbf{x}, h) = (\rho_h, \overline{A_h})$ elementary ▶ Up to conjugation, ρ_h and e^{A_h} fix $0,\infty$ in \mathbb{CP}^1 $\blacktriangleright \widetilde{V} = \operatorname{dev}_{h}^{*}(z\frac{\partial}{\partial z})$ vector field on \dot{S} \blacktriangleright $V \neq 0$ contradicts $\chi(\dot{S}) < 0$

Basic observation:

► Given a small geodesic triangle \(\tau \) ⊂ \(\S^2\), deformations of \(\tau\) controlled by its vertices

Basic observation:

► Given a small geodesic triangle \(\tau \) ⊂ S², deformations of \(\tau \) controlled by its vertices Idea:

► Fine geodesic triangulation T of (S, h) with x ⊂ {vertices}

Basic observation:

► Given a small geodesic triangle \(\tau \) ⊂ S², deformations of \(\tau \) controlled by its vertices Idea:

Fine geodesic triangulation T of (S, h) with x ⊂ {vertices}

Fund. domain $D \subset \widetilde{\dot{S}}$ triangulated by $T_0 \subset \widetilde{T}$

\widehat{M} is local homeomorphism

Basic observation:

 ▶ Given a small geodesic triangle \(\tau < \S^2\), deformations of \(\tau \) controlled by its vertices
 Idea:

Fine geodesic triangulation T of (S, h) with x ⊂ {vertices}

igarpropto Fund. domain $D\subset \widetilde{\dot{S}}$ triangulated by $\mathcal{T}_0\subset \widetilde{\mathcal{T}}$

Move (ρ_h, A_h) → adjust developing map on each triangle τ of T₀

$$\mathcal{R}ep(\dot{S},\mathrm{SU}_2) = \mathcal{H}om(\dot{S},\mathrm{SU}_2)/\mathrm{SU}_2$$

where $\mathcal{H}om(\dot{S},\mathrm{SU}_2) := \mathcal{H}om(\pi_1(\dot{S},b),\mathrm{SU}_2)$

$$\mathcal{R}ep(\dot{S},\mathrm{SU}_2) = \mathcal{H}om(\dot{S},\mathrm{SU}_2)/\mathrm{SU}_2$$

where $\mathcal{H}om(\dot{S}, \mathrm{SU}_2) := \mathcal{H}om(\pi_1(\dot{S}, b), \mathrm{SU}_2)$ For $\pi_1(\dot{S}, b)$

- generators μ_i, ν_i, β_j
- $\blacktriangleright \text{ relation } [\mu_1, \nu_1] \cdots [\mu_g, \nu_g] \cdot \beta_1 \cdots \beta_g = e$

$$\mathcal{R}ep(\dot{S},\mathrm{SU}_2) = \mathcal{H}om(\dot{S},\mathrm{SU}_2)/\mathrm{SU}_2$$

where $\mathcal{H}om(\dot{S}, \mathrm{SU}_2) := \mathcal{H}om(\pi_1(\dot{S}, b), \mathrm{SU}_2)$ For $\pi_1(\dot{S}, b)$

• generators μ_i, ν_i, β_j

► relation $[\mu_1, \nu_1] \cdots [\mu_g, \nu_g] \cdot \beta_1 \cdots \beta_g = e$

 $\mathcal{H}\!\mathit{om}(\dot{S},\mathrm{SU}_2)\cong R^{-1}(I)$ compact, algebraic

$$\mathcal{R}ep(\dot{S},\mathrm{SU}_2) = \mathcal{H}om(\dot{S},\mathrm{SU}_2)/\mathrm{SU}_2$$

where $\overline{\mathcal{H}om(\dot{S},\mathrm{SU}_2)}:=\mathcal{H}om(\pi_1(\dot{S},b),\mathrm{SU}_2)$ For $\pi_1(\dot{S},b)$

• generators μ_i, ν_i, β_j

► relation $[\mu_1, \nu_1] \cdots [\mu_g, \nu_g] \cdot \beta_1 \cdots \beta_g = e$

 $\mathcal{H}om(\overline{S}, \mathrm{SU}_2) \cong R^{-1}(I)$ compact, algebraic,

$$R: (SU_2)^{2g+n} \longrightarrow SU_2$$
$$(\boldsymbol{M}, \boldsymbol{N}, \boldsymbol{B}) \longmapsto (\prod_i [M_i, N_i])(\prod_i B_j)$$

Warning: $\mathbb{R}^2/S^1 \cong \mathbb{R}/\{\pm 1\} \cong \mathbb{R}_{\geq 0}$ semi-algebraic

Warning: $\mathbb{R}^2/S^1 \cong \mathbb{R}/\{\pm 1\} \cong \mathbb{R}_{\geq 0}$ semi-algebraic

Def. A subset of \mathbb{R}^{N}

Warning: $\mathbb{R}^2/S^1 \cong \mathbb{R}/\{\pm 1\} \cong \mathbb{R}_{\geq 0}$ semi-algebraic

Def. A subset of \mathbb{R}^N

semi-algebraic

is

Warning: $\mathbb{R}^2/S^1 \cong \mathbb{R}/\{\pm 1\} \cong \mathbb{R}_{\geq 0}$ semi-algebraic

Def. A subset of \mathbb{R}^N

		semi-algebraic	
	if it is	finite union	
is	of subsets		
	defined by		
	finitely many	polynomial	
	(in)equalities		

Warning: $\mathbb{R}^2/S^1 \cong \mathbb{R}/\{\pm 1\} \cong \mathbb{R}_{\geq 0}$ semi-algebraic

Def. A subset of \mathbb{R}^N

		semi-algebraic	semi-analytic
	if it is	finite union	
is	of subsets		
	defined by		
	finitely many	polynomial	
	(in)equalities		

Warning: $\mathbb{R}^2/S^1 \cong \mathbb{R}/\{\pm 1\} \cong \mathbb{R}_{\geq 0}$ semi-algebraic

Def. A subset of \mathbb{R}^N

		semi-algebraic	semi-analytic
_	if it is	finite union	locally finite union
is	of subsets		
	defined by		
	finitely many	polynomial	analytic
	(in)equalities		

Theorem.

 Hom(π₁(S, b), SU₂) is real algebraic, and *Rep*(S, SU₂) is semi-algebraic

Theorem.

- Hom(π₁(S, b), SU₂) is real algebraic, and *Rep*(S, SU₂) is semi-algebraic
- $\mathcal{H}om_{\vartheta}$ and $\mathcal{R}ep_{\vartheta}$ are compact algebraic subsets

Theorem.

 Hom(π₁(S, b), SU₂) is real algebraic, and *Rep*(S, SU₂) is semi-algebraic
 Hom_θ and *Rep_θ* are compact algebraic subsets
 coaxial locus is closed algebraic

Theorem.

 Hom(π₁(S, b), SU₂) is real algebraic, and *Rep*(S, SU₂) is semi-algebraic
 Hom_θ and *Rep_θ* are compact algebraic subsets
 coaxial locus is closed algebraic
 for Hom, Rep replace "algebraic" by "analytic"

Theorem.

Hom(π₁(S, b), SU₂) is real algebraic, and Rep(S, SU₂) is semi-algebraic
Hom_θ and Rep_θ are compact algebraic subsets
coaxial locus is closed algebraic
for Hom, Rep replace "algebraic" by "analytic"
elementary locus in Hom, Rep is closed analytic

Theorem. $\mathcal{MS}_{g,n}(\vartheta)$ is covered by

finitely many open subsets,

Theorem. $\mathcal{MS}_{g,n}(\vartheta)$ is covered by

finitely many open subsets,

 each is a bounded semi-analytic subset of some R^N

Cor. $\mathcal{MS}_{g,n}(\vartheta)$ homeomorphic to complement of sub CW (orbi)cpx inside finite CW (orbi)cpx

Idea:

Idea: • $(S, x, h) \rightsquigarrow \Gamma \subset \dot{S}$ Voronoi graph (Γ equidistant from x)

Idea:

 (S, x, h) ~→ Γ ⊂ S Voronoi graph (Γ equidistant from x)
 decompose MS_{g,n}(ϑ) into subsets MS_{g,n}(ϑ, Γ) according to Voronoi graph Γ

Idea:

- (S, x, h) → Γ ⊂ S Voronoi graph
 (Γ equidistant from x)
- decompose $\mathcal{MS}_{g,n}(\vartheta)$ into subsets $\mathcal{MS}_{g,n}(\vartheta, \Gamma)$ according to Voronoi graph Γ
- Subscription Strain Strai

Idea:

- (S, x, h) → Γ ⊂ S Voronoi graph
 (Γ equidistant from x)
- decompose MS_{g,n}(ϑ) into subsets MS_{g,n}(ϑ, Γ) according to Voronoi graph Γ
- Subscription Strain Strai
- $\mathcal{MS}_{g,n}(\vartheta, \Gamma)$ is semi-analytic inside $\mathfrak{T}^{6(2g-2+n)}$



Theorem. In $\Re ep(\dot{S}, SU_2)$ \triangleright coaxial: irreducible, dim 2g+n-1



► coaxial: irreducible, dim 2g+n-1

noncoaxial: conn.or.mfd. dim 6g-6+3n, dense

► coaxial: irreducible, dim 2g+n-1

noncoaxial: conn.or.mfd. dim 6g-6+3n, dense
 Poisson structure^(*) on noncoaxial locus

- coaxial: irreducible, dim 2g+n-1
- noncoaxial: conn.or.mfd. dim 6g-6+3n, dense
 Poisson structure^(*) on noncoaxial locus

(*) Atiyah-Bott '82, Goldman '84, Guruprasad-Huebschmann-Jeffrey-Weitsman '97,...

Theorem. In $\widehat{\mathcal{R}ep}(\dot{S}, \mathrm{SU}_2)$

Theorem. In $\mathcal{R}ep(S, SU_2)$

- ► coaxial: irreducible, dim 2g+n-1
- noncoaxial: conn.or.mfd. dim 6g-6+3n, dense
 Poisson structure^(*) on noncoaxial locus

(*) Atiyah-Bott '82, Goldman '84, Guruprasad-Huebschmann-Jeffrey-Weitsman '97,...

Theorem. In *Rep*(*S*, SU₂)
 ▶ elementary: conn.irred. dim 2g

Theorem. In $\mathcal{R}ep(\dot{S}, \mathrm{SU}_2)$

- ► coaxial: irreducible, dim 2g+n-1
- noncoaxial: conn.or.mfd. dim 6g-6+3n, dense
 Poisson structure^(*) on noncoaxial locus

(*) Atiyah-Bott '82, Goldman '84, Guruprasad-Huebschmann-Jeffrey-Weitsman '97,...

Theorem. In *Rep*(*S*, SU₂)
▶ elementary: conn.irred. dim 2g
▶ noncoaxial: conn.or.mfd dim 6g-6+2n, dense



Special $\mathcal{R}ep_{\vartheta}$ Special (g, n, ϑ) : all $[\rho] \in \mathcal{R}ep_{\vartheta}(\dot{S}, SU_2)$ coaxial

Special $\mathcal{R}ep_{\vartheta}$ Special (g, n, ϑ) : all $[\rho] \in \mathcal{R}ep_{\vartheta}(\dot{S}, SU_2)$ coaxial Theorem. Special triples are of the following type. \blacktriangleright Case g = 0 with $d_1(\vartheta - \mathbf{1}, \mathbb{Z}_o^n) < 1$.

Special $\mathcal{R}ep_{\vartheta}$ Special (g, n, ϑ) : all $[\rho] \in \mathcal{R}ep_{\vartheta}(\dot{S}, SU_2)$ coaxial Theorem. Special triples are of the following type. \blacktriangleright Case g = 0 with $d_1(\vartheta - \mathbf{1}, \mathbb{Z}_o^n) < 1$. $\mathcal{R}ep_{\vartheta} = \emptyset$ (*) Special *Rep* Special (g, n, ϑ) : all $[\rho] \in \operatorname{Rep}_{\vartheta}(S, \operatorname{SU}_2)$ coaxial Theorem. Special triples are of the following type. ► Case g = 0 with $d_1(\vartheta - \mathbf{1}, \mathbb{Z}_{0}^{n}) < 1$. $\mathcal{R}ep_{\mathcal{A}} = \emptyset$ (*) ► Case g = 0 with $d_1(\vartheta - \mathbf{1}, \mathbb{Z}_{0}^{n}) = 1$.

Special Rep Special (g, n, ϑ) : all $[\rho] \in \operatorname{Rep}_{\vartheta}(S, \operatorname{SU}_2)$ coaxial Theorem. Special triples are of the following type. • Case g = 0 with $d_1(\vartheta - \mathbf{1}, \mathbb{Z}_o^n) < 1$. $\mathcal{R}ep_{\mathcal{P}} = \emptyset$ (*) • Case g = 0 with $d_1(\vartheta - \mathbf{1}, \mathbb{Z}_0^n) = 1$. $\mathcal{R}ep_{\mathcal{A}} = \{*\}$



Special Rep. Special (g, n, ϑ) : all $[\rho] \in \mathcal{R}ep_{\vartheta}(\dot{S}, SU_2)$ coaxial Theorem. Special triples are of the following type. \blacktriangleright Case g = 0 with $d_1(\vartheta - \mathbf{1}, \mathbb{Z}_o^n) < 1$. $\mathcal{R}ep_{\mathcal{A}} = \emptyset^{(\star)}$ ► Case g = 0 with $d_1(\vartheta - \mathbf{1}, \mathbb{Z}_{0}^{n}) = 1$. $\mathcal{Rep}_{\mathcal{R}} = \{*\}$ • Case g = 1 with $\vartheta \in \mathbb{Z}^n$ and $\sum_i (\vartheta_i - 1) \in 2\mathbb{Z}$ $\mathcal{R}ep_{\mathcal{A}} \cong S^2$ with 4 central points

Special
$$\mathcal{R}ep_{\vartheta}$$

Special (g, n, ϑ) : all $[\rho] \in \mathcal{R}ep_{\vartheta}(\dot{S}, \mathrm{SU}_2)$ coaxial
Theorem. Special triples are of the following type.
• Case $g = 0$ with $d_1(\vartheta - \mathbf{1}, \mathbb{Z}_o^n) < 1$.
 $\mathcal{R}ep_{\vartheta} = \emptyset^{(\star)}$
• Case $g = 0$ with $d_1(\vartheta - \mathbf{1}, \mathbb{Z}_o^n) = 1$.
 $\mathcal{R}ep_{\vartheta} = \{*\}$
• Case $g = 1$ with $\vartheta \in \mathbb{Z}^n$ and $\sum_j (\vartheta_j - 1) \in 2\mathbb{Z}$
 $\mathcal{R}ep_{\vartheta} \cong S^2$ with 4 central points

$$^{(\star)}\mathcal{MS}_{g,n}(artheta)=\emptyset\iff g=0 ext{ and } d_1(artheta-\mathbf{1},\mathbb{Z}_o^n)<1$$

k:=number of integral entries of artheta

Theorem. g = 0 with $d_1(\vartheta - \mathbf{1}, \mathbb{Z}_o^n) = 1$. $\blacktriangleright k = 0 \implies \widehat{\mathcal{Rep}}_{\vartheta}^{ne} = \{*\}$

Theorem. g = 0 with $d_1(\vartheta - \mathbf{1}, \mathbb{Z}_o^n) = 1$. $\flat \ k = 0 \implies \widehat{\mathcal{Rep}}_{\vartheta}^{ne} = \{*\}$ $\flat \ k \in [1, n-2] \implies \text{conn.or.mfd. dim } 2k-1$

Theorem.
$$g = 0$$
 with $d_1(\vartheta - \mathbf{1}, \mathbb{Z}_o^n) = 1$.
 $\blacktriangleright k = 0 \implies \widehat{\mathcal{Rep}}_{\vartheta}^{ne} = \{*\}$
 $\blacktriangleright k \in [1, n-2] \implies \text{conn.or.mfd. dim } 2k - 1$
 $\blacktriangleright k = n \implies \text{conn.or.mfd. dim } 2n - 3$

Theorem.
$$g = 0$$
 with $d_1(\vartheta - \mathbf{1}, \mathbb{Z}_o^n) = 1$.
 $\blacktriangleright k = 0 \implies \widehat{\mathcal{Rep}}_{\vartheta}^{ne} = \{*\}$
 $\blacktriangleright k \in [1, n-2] \implies \text{conn.or.mfd. dim } 2k - 1$
 $\blacktriangleright k = n \implies \text{conn.or.mfd. dim } 2n - 3$

Theorem. g = 1 with $\vartheta \in \mathbb{Z}^n$, $\sum_j (\vartheta_j - 1) \in \overline{2\mathbb{Z}}$

Theorem.
$$g = 0$$
 with $d_1(\vartheta - \mathbf{1}, \mathbb{Z}_o^n) = 1$.
 $\blacktriangleright k = 0 \implies \widehat{\mathcal{Rep}}_{\vartheta}^{ne} = \{*\}$
 $\blacktriangleright k \in [1, n-2] \implies \text{conn.or.mfd. dim } 2k - 1$
 $\blacktriangleright k = n \implies \text{conn.or.mfd. dim } 2n - 3$

Theorem. g = 1 with $\vartheta \in \mathbb{Z}^n$, $\sum_j (\vartheta_j - 1) \in 2\mathbb{Z}$ \triangleright noncentral locus \rightsquigarrow conn.or.mfd. dim 2n + 1

Theorem.
$$g = 0$$
 with $d_1(\vartheta - \mathbf{1}, \mathbb{Z}_o^n) = 1$.
 $\blacktriangleright k = 0 \implies \widehat{\mathcal{Rep}}_{\vartheta}^{ne} = \{*\}$
 $\blacktriangleright k \in [1, n-2] \implies \text{conn.or.mfd. dim } 2k - 1$
 $\blacktriangleright k = n \implies \text{conn.or.mfd. dim } 2n - 3$

Theorem. g = 1 with $\vartheta \in \mathbb{Z}^n$, $\sum_j (\vartheta_j - 1) \in 2\mathbb{Z}$ \triangleright noncentral locus \rightsquigarrow conn.or.mfd. dim 2n + 1 \triangleright central locus \rightsquigarrow dim 2n - 3

Theorem.
$$g = 0$$
 with $d_1(\vartheta - \mathbf{1}, \mathbb{Z}_o^n) = 1$.
 $\blacktriangleright k = 0 \implies \widehat{\mathcal{Rep}}_{\vartheta}^{ne} = \{*\}$
 $\blacktriangleright k \in [1, n-2] \implies \text{conn.or.mfd. dim } 2k - 1$
 $\blacktriangleright k = n \implies \text{conn.or.mfd. dim } 2n - 3$

Theorem. g = 1 with $\vartheta \in \mathbb{Z}^n$, $\sum_j (\vartheta_j - 1) \in 2\mathbb{Z}$ \triangleright noncentral locus \rightsquigarrow conn.or.mfd. dim 2n + 1 \triangleright central locus \rightsquigarrow dim 2n - 3

Example. For ϑ odd, $\mathcal{MS}_{1,1}(\vartheta)$ disconnected

Theorem. In non-special $\mathcal{Rep}_{\vartheta}(S, \mathrm{SU}_2)$ \blacktriangleright coaxial locus is the singular locus, has dim 2g

Theorem. In non-special *Rep*_∂(S, SU₂)
▶ coaxial locus is the singular locus, has dim 2g
▶ noncoaxial locus is a conn.orient. manifold, dense, of dim 6g - 6 + 2(n - k)

Theorem. In non-special *Rep*_∂(S, SU₂)
► coaxial locus is the singular locus, has dim 2g
► noncoaxial locus is a conn.orient. manifold, dense, of dim 6g - 6 + 2(n - k)
► noncoaxial locus is symplectic

Theorem. In non-special *Rep*_∂(S, SU₂)
► coaxial locus is the singular locus, has dim 2g
► noncoaxial locus is a conn.orient. manifold, dense, of dim 6g - 6 + 2(n - k)
► noncoaxial locus is symplectic

Theorem. In non-special $\widehat{\mathcal{R}ep}_{\vartheta}(\dot{S}, \mathrm{SU}_2)$ \blacktriangleright coaxial locus is the singular locus

Theorem. In non-special *Rep_ϑ*(S, SU₂)
▶ coaxial locus is the singular locus, has dim 2g
▶ noncoaxial locus is a conn.orient. manifold, dense, of dim 6g - 6 + 2(n - k)
▶ noncoaxial locus is symplectic

Theorem. In non-special Rep_v(S, SU₂)
▶ coaxial locus is the singular locus
▶ nc: dense conn.or.mfd dim 6g - 6 + 2n

Theorem. Let \mathcal{MS}' be a component of $\mathcal{MS}_{g,n}(artheta)$

Theorem. Let \mathcal{MS}' be a component of $\mathcal{MS}_{g,n}(\vartheta)$ If $(g, n) \neq (0, 3)$, then \mathcal{MS}' is not compact

Theorem. Let \mathcal{MS}' be a component of $\mathcal{MS}_{g,n}(\vartheta)$ If $(g, n) \neq (0, 3)$, then \mathcal{MS}' is not compact

Cor. $\operatorname{NB}(g, n, \vartheta) \neq 0 \implies F(\mathcal{MS}')$ unbounded

Theorem. Let \mathcal{MS}' be a component of $\mathcal{MS}_{g,n}(\vartheta)$ If $(g, n) \neq (0, 3)$, then \mathcal{MS}' is not compact

Cor. $\operatorname{NB}(g, n, \vartheta) \neq 0 \implies F(\mathcal{MS}')$ unbounded

Note: $\{ NB_{\vartheta}(g, n) = 0 \} \subset \mathbb{R}^n$ defines locally finite union of hyperplanes

Theorem. Let \mathcal{MS}' be a component of $\mathcal{MS}_{g,n}(\vartheta)$ If $(g, n) \neq (0, 3)$, then \mathcal{MS}' is not compact

Cor. $\operatorname{NB}(g, n, \vartheta) \neq 0 \implies F(\mathcal{MS}')$ unbounded

Note: $\{ NB_{\vartheta}(g, n) = 0 \} \subset \mathbb{R}^n$ defines locally finite union of hyperplanes

Theorem (2019). $NB_{\vartheta}(g, n) \neq 0 \implies F$ proper.

Two different cases:

Two different cases:

> some ϑ_i integral

Two different cases:

► some ϑ_j integral by hand, show that $\inf_{\mathcal{MS}'} \operatorname{sys}_j = 0$

Two different cases:

> some ϑ_i integral

by hand, show that $\inf_{\mathcal{MS}'} \operatorname{sys}_j = 0$ use local surgery near x_i

Two different cases:

> some ϑ_i integral

by hand, show that $\inf_{\mathcal{MS}'} \operatorname{sys}_j = 0$ use local surgery near x_i

 \blacktriangleright no ϑ_j integral

Two different cases:

> some ϑ_i integral

by hand, show that $\inf_{\mathcal{MS}'} \operatorname{sys}_j = 0$ use local surgery near x_i

no θ_j integral
 sys has local minima

Two different cases:

> some ϑ_i integral

by hand, show that $\inf_{\mathcal{MS}'} \operatorname{sys}_j = 0$ use local surgery near x_i

 \blacktriangleright no ϑ_i integral

sys has local minima \implies cannot be done by hand

Two different cases:

> some ϑ_i integral

by hand, show that $\inf_{\mathcal{MS}'} \operatorname{sys}_j = 0$ use local surgery near x_i

 \blacktriangleright no ϑ_j integral

sys has local minima \implies cannot be done by hand

use Goldman symplectic structure

Define $\operatorname{sys}_j : \mathcal{MS}' \to \mathbb{R}_+$

Define $\operatorname{sys}_i : \mathcal{MS}' \to \mathbb{R}_+$ sending [S, x, h] to

 $\min \begin{cases} \ell_h(\text{shortest geodesic arc from } x_j \text{ to } x_i \text{ with } i \neq j) \\ \ell_h(\text{shortest geodesic loop based in } x_j) \end{cases}$

Define $\operatorname{sys}_i: \mathscr{MS}' o \mathbb{R}_+$ sending [S, x, h] to

 $\min \begin{cases} \ell_h(\text{shortest geodesic arc from } x_j \text{ to } x_i \text{ with } i \neq j) \\ \ell_h(\text{shortest geodesic loop based in } x_j) \end{cases}$

Use local surgery at x_j and $\dim(\mathcal{MS}') > 0$

Define $\operatorname{sys}_i: \mathscr{MS}' o \mathbb{R}_+$ sending [S, x, h] to

 $\min \begin{cases} \ell_h(\text{shortest geodesic arc from } x_j \text{ to } x_i \text{ with } i \neq j) \\ \ell_h(\text{shortest geodesic loop based in } x_j) \end{cases}$

Use local surgery at x_j and $\dim(\mathcal{MS}') > 0$ $\rightsquigarrow \inf_{\mathcal{MS}'} \operatorname{sys}_j = 0$

 $\mathsf{Define}\,\, {\rm sys}_i: \mathscr{MS}' \to \mathbb{R}_+ \ \, \mathsf{sending}\,\, [S,x,h] \ \mathsf{to}$

 $\min \begin{cases} \ell_h(\text{shortest geodesic arc from } x_j \text{ to } x_i \text{ with } i \neq j) \\ \ell_h(\text{shortest geodesic loop based in } x_j) \end{cases}$

Use local surgery at x_j and $\dim(\mathcal{MS}') > 0$ $\rightsquigarrow \inf_{\mathcal{MS}'} \operatorname{sys}_j = 0$

 $\implies \mathcal{MS}'$ is not compact

• Goldman sympl.form Ω on $\mathcal{MS}_{g,n}(\vartheta)$

▶ Goldman sympl.form Ω on MS_{g,n}(ϑ)
 ▶ recall F : MS_{g,n}(ϑ) → M_{g,n}

▶ Goldman sympl.form Ω on MS_{g,n}(ϑ)
 ▶ recall F : MS_{g,n}(ϑ) → M_{g,n}
 ▶ Claim: [Ω] = F*[ω] for some ω on M_{g,n}

Goldman sympl.form Ω on MS_{g,n}(ϑ)
recall F : MS_{g,n}(ϑ) → M_{g,n}
Claim: [Ω] = F*[ω] for some ω on M_{g,n}
(g, n) ≠ (0,3) ⇒ M_{g,n} non-compact

Goldman sympl.form Ω on MS_{g,n}(ϑ)
recall F : MS_{g,n}(ϑ) → M_{g,n}
Claim: [Ω] = F*[ω] for some ω on M_{g,n}
(g, n) ≠ (0,3) ⇒ M_{g,n} non-compact ⇒ [ω^{3g-3+n}] = 0

Goldman sympl.form Ω on MS_{g,n}(ϑ)
recall F : MS_{g,n}(ϑ) → M_{g,n}
Claim: [Ω] = F*[ω] for some ω on M_{g,n}
(g, n) ≠ (0,3) ⇒ M_{g,n} non-compact ⇒ [ω^{3g-3+n}] = 0
[Ω^{3g-3+n}] = F*[ω^{3g-3+n}] = 0

b Goldman sympl.form Ω on $\mathcal{MS}_{g,n}(\vartheta)$ $\blacktriangleright \text{ recall } F: \mathcal{MS}_{g,n}(\vartheta) \to \mathcal{M}_{g,n}$ $\blacktriangleright \quad \boxed{\text{Claim: } [\Omega] = F^*[\omega] \text{ for some } \omega \text{ on } \mathcal{M}_{g,n}}$ $\blacktriangleright \ \overline{(g,n) \neq (0,3)} \implies \mathcal{M}_{g,n} \text{ non-compact} \\ \implies [\omega^{3g-3+n}] = 0$ ► $[\Omega^{3g-3+n}] = F^*[\omega^{3g-3+n}] = 0$ • Ω^{3g-3+n} is a volume form on \mathcal{MS}'

b Goldman sympl.form Ω on $\mathcal{MS}_{g,n}(\vartheta)$ ▶ recall $F : \mathcal{MS}_{g,n}(\vartheta) \to \mathcal{M}_{g,n}$ $\blacktriangleright \quad \boxed{\text{Claim: } [\Omega] = F^*[\omega] \text{ for some } \omega \text{ on } \mathcal{M}_{g,n}}$ $\blacktriangleright \ \overline{(g,n) \neq (0,3)} \implies \mathcal{M}_{g,n} \text{ non-compact} \\ \implies [\omega^{3g-3+n}] = 0$ ► $[\Omega^{3g-3+n}] = F^*[\omega^{3g-3+n}] = 0$ • Ω^{3g-3+n} is a volume form on \mathcal{MS}' $\implies \mathcal{MS}'$ non-compact

Projective structures

Projective structures Spherical metric h on \dot{S} equivalent to $[\operatorname{dev}_h, \rho_h]$:

Projective structures Spherical metric *h* on \dot{S} equivalent to $[\operatorname{dev}_h, \rho_h]$: $\triangleright \rho_h : \pi_1(\dot{S}, b) \to \operatorname{SU}_2$

Projective structures Spherical metric *h* on \dot{S} equivalent to $[\operatorname{dev}_h, \rho_h]$: $\triangleright \rho_h : \pi_1(\dot{S}, b) \to \operatorname{SU}_2$

 $\blacktriangleright \rho_h$ -equivariant local homeo $\operatorname{dev}_h: \widetilde{\dot{S}} \to \mathbb{S}^2$

Projective structures Spherical metric h on \dot{S} equivalent to $[dev_h, \rho_h]$: $\blacktriangleright \rho_h : \pi_1(\dot{S}, b) \to \mathrm{SU}_2$ \blacktriangleright ρ_h -equivariant local homeo $\operatorname{dev}_h: \widetilde{\dot{S}} \to \mathbb{S}^2$ \mathbb{CP}^1 -structure on $\dot{S} \iff$ replace SU₂ by SL₂(\mathbb{C}) $\overline{\mathcal{MP}_{g,n}(\vartheta)}$ moduli space of \mathbb{CP}^1 -structures on \dot{S} with angle $2\pi \vartheta_i$ at x_i

Projective structures Spherical metric h on \dot{S} equivalent to $[dev_h, \rho_h]$: $\blacktriangleright \rho_h$: $\pi_1(\dot{S}, b) \rightarrow SU_2$ \blacktriangleright ρ_h -equivariant local homeo $\operatorname{dev}_h : \widetilde{\check{S}} \to \mathbb{S}^2$ \mathbb{CP}^1 -structure on $\dot{S} \iff$ replace SU₂ by SL₂(\mathbb{C}) $\overline{\mathcal{MP}_{g,n}(\vartheta)}$ moduli space of \mathbb{CP}^1 -structures on \dot{S} with angle $2\pi\vartheta_i$ at x_i

$$\mathcal{MP}_{g,n}(\vartheta) \xrightarrow{\check{F}} \mathcal{M}_{g,n}(\vartheta)$$

$$\int_{F} \mathcal{MS}_{g,n}(\vartheta)$$

holomorphic affine bundle

$\blacktriangleright \ M_{\vartheta}: \mathcal{MS}_{g,n}(\vartheta) \stackrel{\text{loc}}{\longrightarrow} \mathcal{R}ep_{\vartheta}^{nc}(\dot{S}, \mathrm{SU}_2) \text{ noncoaxial}$

*M*_ϑ : *MS*_{g,n}(ϑ) → *Rep*^{nc}_ϑ(S, SU₂) noncoaxial
 *M*_ϑ : *MP*_{g,n}(ϑ) → *Rep*^{nc}_ϑ(S, SL₂(ℂ)) monodromy map *M*_ϑ is local homeo (Luo '93)

*M*_θ : *MS*_{g,n}(θ) → *Rep*^{nc}_θ(S, SU₂) noncoaxial
 *M*_θ : *MP*_{g,n}(θ) → *Rep*^{nc}_θ(S, SL₂(ℂ)) monodromy map *M*_θ is local homeo (Luo '93)
 cpx Goldman sympl.form Ω_ℂ on *MP*_{g,n}(θ)

*M*_ϑ : *MS*_{g,n}(ϑ) → *Rep*^{nc}_ϑ(S, SU₂) noncoaxial
 *M*_ϑ : *MP*_{g,n}(ϑ) → *Rep*^{nc}_ϑ(S, SL₂(ℂ)) monodromy map *M*_ϑ is local homeo (Luo '93)
 cpx Goldman sympl.form Ω_ℂ on *MP*_{g,n}(ϑ)
 real Goldman sympl.form Ω on *MS*_{g,n}(ϑ) is restriction of Ω_ℂ

- *M*_ϑ : *MS*_{g,n}(ϑ) → *Rep*^{nc}_ϑ(S, SU₂) noncoaxial *M*_ϑ : *MP*_{g,n}(ϑ) → *Rep*^{nc}_ϑ(S, SL₂(ℂ)) monodromy map *M*_ϑ is local homeo (Luo '93)
 cpx Goldman sympl.form Ω_ℂ on *MP*_{g,n}(ϑ)
 real Goldman sympl.form Ω on *MS*_{g,n}(ϑ) is restriction of Ω_ℂ
- ▶ $\mathcal{MP}_{g,n}(\vartheta) \to \mathcal{M}_{g,n}$ affine bundle

 $\blacktriangleright \ M_\vartheta: \mathcal{MS}_{g,n}(\vartheta) \stackrel{\mathrm{loc}}{\longrightarrow} \mathcal{R}ep_\vartheta^{nc}(\dot{S}, \mathrm{SU}_2) \text{ noncoaxial}$ $\blacktriangleright \check{M}_{\vartheta}: \mathcal{MP}_{g,n}(\vartheta) \stackrel{\mathrm{loc}}{\longrightarrow} \mathcal{R}ep_{\vartheta}^{nc}(\dot{S}, \mathrm{SL}_2(\mathbb{C}))$ monodromy map \check{M}_{ϑ} is local homeo (Luo '93) • cpx Goldman sympl.form $\Omega_{\mathbb{C}}$ on $\mathcal{MP}_{g,n}(\vartheta)$ ▶ real Goldman sympl.form Ω on $\mathcal{MS}_{g,n}(\vartheta)$ is restriction of $\Omega_{\mathbb{C}}$ ▶ $\mathcal{MP}_{g,n}(\vartheta) \to \mathcal{M}_{g,n}$ affine bundle $\implies H^2(\mathcal{MP}_{\sigma n}(\vartheta)) \cong H^2(\mathcal{M}_{\sigma n})$

34/34

 \blacktriangleright $M_{\vartheta}: \mathcal{MS}_{g.n}(\vartheta) \xrightarrow{\operatorname{loc}} \mathcal{R}ep_{\vartheta}^{nc}(\dot{S}, \operatorname{SU}_2)$ noncoaxial $\blacktriangleright \check{M}_{\vartheta}: \mathscr{M}_{\mathcal{P}_{g,n}}(\vartheta) \overset{\mathrm{loc}}{\longrightarrow} \mathscr{R}ep_{\vartheta}^{nc}(\dot{S}, \mathrm{SL}_2(\mathbb{C}))$ monodromy map \check{M}_{ϑ} is local homeo (Luo '93) • cpx Goldman sympl.form $\Omega_{\mathbb{C}}$ on $\mathcal{MP}_{g,n}(\vartheta)$ **•** real Goldman sympl.form Ω on $\mathcal{MS}_{g,n}(\vartheta)$ is restriction of $\Omega_{\mathbb{C}}$ ▶ $\mathcal{MP}_{g,n}(\vartheta) \to \mathcal{M}_{g,n}$ affine bundle $\implies H^2(\mathcal{MP}_{g,n}(\vartheta)) \cong H^2(\mathcal{M}_{g,n})$ \blacktriangleright $[\Omega_{\mathbb{C}}] = \check{F}^*[\omega]$

 $\blacktriangleright \ M_{\vartheta}: \mathcal{MS}_{g,n}(\vartheta) \xrightarrow{\mathrm{loc}} \mathcal{R}ep_{\vartheta}^{nc}(\dot{S}, \mathrm{SU}_2) \text{ noncoaxial}$ $\blacktriangleright \quad \widecheck{\check{M}}_{\vartheta}: \mathscr{M}\!\!\mathcal{P}_{g,n}(\vartheta) \stackrel{\mathrm{loc}}{\longrightarrow} \mathscr{R}\!\!ep^{nc}_{\vartheta}(\dot{S}, \mathrm{SL}_2(\overline{\mathbb{C}}))$ monodromy map \check{M}_{ϑ} is local homeo (Luo '93) • cpx Goldman sympl.form $\Omega_{\mathbb{C}}$ on $\mathcal{MP}_{g,n}(\vartheta)$ ▶ real Goldman sympl.form Ω on $\mathcal{MS}_{g,n}(\vartheta)$ is restriction of $\Omega_{\mathbb{C}}$ $\blacktriangleright \ \overline{\mathscr{M}\!\mathscr{P}_{g,n}(\vartheta)} \to \overline{\mathscr{M}\!_{g,n}} \text{ affine bundle}$ $\implies H^2(\mathcal{MP}_{g,n}(\vartheta)) \cong H^2(\mathcal{M}_{g,n})$ $\blacktriangleright \ [\Omega_{\mathbb{C}}] = \check{F}^*[\omega] \implies [\Omega] = F^*[\omega]$