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Reminder

I Calabi-Yau manifold: (compact) Kähler (X , J,!)+ nowhere
vanishing holomorphic volume form ⌦, satisfying the PDE

!n = const⌦ ^ ⌦

I These are interesting because they are Ricci flat, i.e. satisfies
the vaccum Einstein equation Ric = 0.

I Notice in particular there is a canonical measure on the
manifold.
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Major open problem:

Question
What would happen when the complex structure/Kahler class
degenerates?



Kahler class degeneration

Option 1: Fix complex structure, let the Kahler class go to some
nef but not ample class on the boundary of the Kahler cone.
(Tosatti, ....)

Option 2: Fix the Kahler class, and vary the complex structure.
Concretely: Fix some embedding into an ambient Fano manifold
(eg. projective embedding), and vary the coefficients of the defining
polynomials.
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Complex degeneration

Basic dichotomy:
I Noncollapsing case: Under the diameter one normalisation, the

volume stays bounded from below.-> Donaldson-Sun theory,
metric limit=algebraic limit.

I Collapsing case: Mostly open. Expect: the metric behaviour
depends on a non-negative integer m  n, m=dimension of
the essential skeleton.



Complex degeneration

I Sun-Zhang: Small complex structure limit.

Xt = {F0F1 + tF = 0} ⇢ M = Fano manifold, dimM � 3.

Here F0 = 0,F1 = 0 are smooth and transverse ample divisors
whose degrees add up to the anticanonical degree of M, and
F = 0 intersects {F0 = 0} \ {F1 = 0} transversely.

I Large complex structure limit typical example (Fermat
family, related to the SYZ conjecture):

{X0X1 . . .Xn+1 + tF = 0} ⇢ Pn+1.



Intermediate complex structure limit example:

{F0 . . .Fm + tF = 0} ⇢ M = Fano manifold.

Here Fi 2 H
0(M, Ldi ), with di � 1, and

P
di = d , �kM = dL. The

divisors are suitably generic so that the intersections are transverse.
I Here m=dimension of the essential skeleton
I Main interest: How to describe the CY metric at the level of

Kähler potentials.
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Sun-Zhang small complex structure limit

I In the m=1 case, Sun-Zhang gave a gluing description of the
CY metric.

I The K3 surface case was previously studied by HSVZ.
I The CY metrics are collapsing and the gluing involves a

hierarchy of length scales.



Sun-Zhang small complex structure limit

I Large scale behaviour: The CY metrics collapse to an interval,
with the normalised volume density given by a piecewise
smooth function.

I Small scale behaviour: At the two ends of the interval, you get
Tian-Yau model spaces D0 \ D1 and D1 \ D0. Here
Di = {Fi = 0} is a Fano manifold.

I The asymptotics of the two Tian-Yau spaces are approximated
by the Calabi ansatz.

I The interpolation between the two Tian-Yau spaces is achieved
by the Ooguri-Vafa type metric, lying over the open interval.
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Sun-Zhang small complex structure limit

I The generic region of the CY metrics (ie. most of the volume)
is modelled on the Calabi ansatz.

I The Calabi ansatz geometrically looks like an iterated fibration:
the smallest scale is a circle bundle, over the compact
Calabi-Yau manifold D0 \ D1, over the 1-dimensional base.

I In the K3 surface special case (HSVZ), the Calabi-Yau
D0 \ D1 is an elliptic curve, and the Calabi ansatz amounts to
a nilmanifold fibration.
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Intermediate complex structure limit

Goal: Partially generalise Sun-Zhang to

Xt = {F0 . . .Fm + tF = 0} ⇢ M = Fano manifold.

I Here we assume 1  m  n� 1, where n = dimXt . Notice: by
the Lefschetz hyperplane theorem, D0 \ . . .Dm is connected.

I Caveat: this excludes the large complex structure limit case
m = n.
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Main theorem:

Theorem
The Kahler potential of the CY metric in the class 1

| log |t||c1(L) has
a C

0-limiting description in terms of the solution to an optimal
transport problem.

I We work with the normalised Kähler class 1
| log |t||c1(L). This is

the natural normalisation for the Kähler potentials to be
uniformly L

1 bounded.
I Caveat: Our result will only describe the CY potential in the

C
0-topology limit. To get metric information, it would remain

to get C 2-control.



Main theorem:

Theorem
The Kahler potential of the CY metric in the class 1

| log |t||c1(L) has
a C

0-limiting description in terms of the solution to an optimal
transport problem.

I We work with the normalised Kähler class 1
| log |t||c1(L). This is

the natural normalisation for the Kähler potentials to be
uniformly L

1 bounded.

I Caveat: Our result will only describe the CY potential in the
C

0-topology limit. To get metric information, it would remain
to get C 2-control.



Main theorem:

Theorem
The Kahler potential of the CY metric in the class 1

| log |t||c1(L) has
a C

0-limiting description in terms of the solution to an optimal
transport problem.

I We work with the normalised Kähler class 1
| log |t||c1(L). This is

the natural normalisation for the Kähler potentials to be
uniformly L

1 bounded.
I Caveat: Our result will only describe the CY potential in the

C
0-topology limit. To get metric information, it would remain

to get C 2-control.



I Comparison with Sun-Zhang: In the m = 1 case, our result
captures the potential of the Calabi ansatz region at the
C

0-level. It is not refined enough to see the details of the
Tian-Yau core region or the Ooguri-Vafa type region.



Optimal transport problem rough description:
I The domain is an m-dim simplex

� = {x0 + . . .+ xm = 1} ⇢ Rm+1. (For experts: this comes
from the essential skeleton).

I The target is an m-dimensional simplex
�̄ ⇢ Rm+1/R(1, 1, . . . 1) with a piecewise smooth density
function W (p), which can be written explicitly.

I The optimal transport problem produces a convex function u

on �, such that the gradient ru transports the Lebesgue
measure on � to the target measure W (p)dp on �̄.

I The main outcome is that the convex function u satisfies a
Monge-Ampère type equation

det(D2
u)W (ru) = const.
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I Pick a smooth positive metric h on L ! M; the choice does
not matter for now. In particular, we can compute the
pointwise magnitudes of F0, . . .Fm etc. Morever, the metric h

restricted to L ! Xt allows us to write the CY metrics on
(Xt ,

1
| log |t||c1(L)) in terms of a potential �CY ,t .

I There is a canonical way to extend the convex function u to
Rm+1 (via Legendre transform techniques).

I Ansatz metric:

�t = u(
log |F0|
log |t| , . . .

log |Fm|
log |t| ).

I Main theorem: k�CY ,t � �tkC0 ! 0 as t ! 0.
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One word on proof mechanism: The optimal transport solution
allows one to write down an approximately CY metric on Xt

(caveat: approximate only on a subset with most of the measure,
not everywhere). Then use pluripotential theory arguments to
argue this is C

0-close to the actual CY potential.



Slightly more detail: the main ingredients:
I Algebraic geometry: find a concrete basis for the space of

sections on (Xt , kL). (Tool: Hilbert series)
I Uniform Fubini-Study approximation (Tool: Bergman

kernel)
I From the optimal transport solution, construct some

approximate CY metric whose volume form is close to being
CY away from a subset of small measure (Tool: generalised
Calabi ansatz)

I Kolodziej’s technique of estimates on Kähler potential
(Tool: pluripotential theory).



Comment: the generalized Calabi ansatz is a framework which has
two well known special cases:
I For m=1, it reduces to the Calabi ansatz
I For m=n, it reduces to semi-flat metrics as in the SYZ

conjecture.
I In general, it is some kind of dim reduction for CY under some

torus symmetry, and reduces to some real MA type equation,
which is why optimal transport appears.



Analytic subtleties

I The optimal transport problem provides the data to construct
an approximate CY metric ansatz. This turns out to be close
to CY on 99% of the CY measure, but in the non-generic
region one loses control.

I Kolodziej’s technique: the usual intuition is that on a fixed
Kähler manifold, if �, are two Kähler potentials, with some
mild volume density bounds, and if the total variation between
their MA measures is small, then � and  should be close in
C

0.
I We would like to compare the true CY potential with the

ansatz potential. Let

�CY ,t � �ansatz,t = | log |t|| t , min
Xt

 t = 0.
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Analytic subtleties

I Here the complex structures are highly degenerate. A more
delicate issue is that the volume density of the ansatz potential
is not controlled in the generic region, so one can only apply a
one-sided version of Kolodziej.

I This leads to the weak L
1 potential convergence: given any

small � > 0, then for t small enough depending on �, the CY
measure on which

 t  �,

is bigger than 1 � �.
I There is a gap between this and the C

0-convergence in our
main theorem, and this gap is caused by the one-sidedness.
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Analytic subtleties

I To improve from weak L
1 potential convergence, to

C
0
loc -convergence on a large open subset (for experts: ‘close to

the essential skeleton’), the main ingredient is the mean value
inequality.

I This can not work globally on Xt , due to the degeneration of
the charts in the non-generic region.

I Instead: there is a more delicate argument involving
Ohsawa-Takegoshi extension (uniform Fubini-Study
approximation), and algebraic-geometry inputs about the
space of sections.
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Decomposition of sections

The optimal transport problem will involve a triangulation, and we
now give some hint for the algebro-geometric origin of this.

I On the Fano manifold, we can write any section s 2 H
0(M, lL)

as a finite sum

s =
X

F
l0
0 . . .F lm

m sl0,...lm .

Here li � 0 and d0l0 + . . . dmlm  l , and
sl0,...lm 2 H

0(M, (l �
P

di li )L) does not vanish identically on
D0 \ . . . \ Dm.
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Decomposition of sections

I Now when we restrict the section to Xt , there is an extra
equation F0 . . .Fm = �tF . This allows one to eliminate
F0 . . .Fm term to leading order. For small t, this means the
F
l0
0 . . .F lm

m term satisfies

li � 0,
X

di li  l , min li = 0. (1)

I Thus (� li
l )

m
i=0 lies in one of the m-simplices �_

0 , . . .�
_
m, eg.

�_
0 = {p0 = 0, pi  0,

mX

1

dipi � �1} ⇢ Rm+1.

I Upon the projection to Rm+1/R(1, . . . 1), the union of these
simplices projects homeomorphically to a simplex �̄_ with
vertices (0, . . .� 1

di
, . . . 0), with a natural triangulation.



Optimal transport problem

I On the simplices �_
j there is a weighting factor

W (p) = (1 +
mX

0

dipi )
n�m � 0.

This can be regarded as a density function on �̄_.
I In the optimal transport problem, the domain is the m-simplex

with the Lebesgue measure

� = {xi � 0,
mX

0

xi  1} ⇢ Rm+1.

I The target is �̄_ with the measure W (p)dp. The density is
piecewise smooth, due to the issue of the triangulation.



Comment on the numerical aspect:
I In the physics community there is a lot of interest in

simulating CY metrics numerically. Traditional methods
include Fubini-Study approximations (cf. Donaldson).

I In the intermediate complex structure limit examples, our work
suggests a new method: solve the optimal transport problem
numerically instead.

I Challenge: Is there a good numerical scheme which detects
fine scale features such as Tian-Yau core regions or
Ooguri-Vafa type metrics?
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