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Basics

Definition

A hyperkähler manifold, or an irreducible holomorphic symplectic
manifold, M is a compact complex Kähler manifold with
π1(M) = 0 and H2,0(M) = Cσ with σ everywhere non-degenerate.

Remarks.

1 Any holomorphic 2-form σ induces a homomorphism
τ : TX → ΩX . The form σ is everywhere non-degenerate if
and only if τ is bijective.

2 The last condition implies that KX = OX . In particular,
c1(X ) = 0.

3 From Beauville-Bogomolov’s decomposition theorem,
irreducible holomorphic symplectic manifolds are building
blocks of compact Kähler manifolds with c1 = 0.
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K3s

Irreducible holomorphic symplectic manifolds are
higher-dimensional analogues of K3 surfaces.

K3

A K3 surface is a compact complex surface S with KS = OS and
b1(S) = 0.

Indeed:

1 Kulikov, Siu, Todorov: Every K3 surface is Kähler.

2 Every K3 surface is simply conected (quartic in CP3).

3 H2,0(S) is generated by a non-degenerate holomorphic form.
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Equivallent Definition

Definition

A compact connected 4n-dimensional Riemannian manifold (M, g)
is called irreducible hyperkähler if its holonomy group is
Sp(n) = U(2n) ∩ Sp(2n,C).

Remarks.

1 Sp(n) is the subgroup of GL(n,H) that preserves the standard
Hermitian form on Hn : x̄n1 y1 + · · ·+ x̄n1 y1.

2 If (M, g) is hyperkähler, the quaternions H act as parallel
endomorphisms on the tangent bundle of M. In particular,
every λ ∈ H with λ2 = −1 gives rise to an almost complex
structure on M. Fix a standard basis I , J,K = IJ of H. Then
λ = aI + bJ + cK with a2 + b2 + c2 = 1. Therefore, there is a
S2-bundle of complex structures on (M, g), the twistor space.

3 The metric g is Kähler with respect to every λ ∈ S2.
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Remarks

1 If (M, g) is hyperkähler, then one can construct a
holomorphic non-degenerate 2-form on (M, g , I ), namely:
σ = ωJ + iωK , where ωλ = g(λ·, ·) is the corresponding
Kähler form. Similary if we fix J or K .

2 If X is holomorphic symplectic, then from Yau’s solution of
Calabi’s problem it follows that there is a unique Ricci-flat
metric for any fixed Kähler class. This metric is hyperkähler.

3 An irreducible symplectic holomorphic manifold with a fixed
Kähler class is the same object as an irreducible hyperkähler
manifold with a fixed metric.
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Examples

1 K3 surfaces are the only examples in complex dimension 2.

2 Standard series of examples due to Beauville (1983)
(Fujiki, n = 2):
(i) the Hilbert schemes of n points Hilbn(S), where S is a K3
surface. This is the space of 0-dimensional subspaces Z of
length dim OZ = n. When S is a smooth connected compact
surface, Hilbn(S) is a smooth connected compact manifold of
dimension 2n which is the desingularization of Symn(S)
(Fogarty). (b2 = 23)
(ii) the generalized Kummer varieties Kn+1(A), where A is an
abelian surface. This is the fiber over 0 ∈ A of the natural
morphism Hilbn+1A→ Sn+1A→ A. (b2 = 7)

3 O’Grady’s two exceptional examples in complex dimensions 10
and 6 with b2 = 24 and b2 = 8 respectively (desingularizations
of moduli spaces of semistable sheaves: 1999 and 2000).
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Examples

“New examples”

Any small deformation of an irreducible hyperkähler is also an
irreducible hyperkähler.

This is because a small deformation of a compact Kähler manifold
is again Kähler (due to Kodaira) and also, H2,0 is preserved.

Huybrechts (1997)

Two birational projective irreducible hyperkähler manifolds are
deformation equivalent and, hence, diffeomorphic.

Note: One can obtain more examples as deformations and
birational transformations of the examples above. However, we are
going to consider the examples up to deformation equivalence.
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Lagrangian Fibrations

Motivation

In studying the moduli space of K3 surfaces, one tries to
understand a class of K3 surfaces that is dense in the moduli space
and easier to study. Such classes are: Kummer surfaces, quartics in
P3 and elliptic K3 surfaces. The structure that will generalize to
higher dimensions that is most helpful is a fibration by abelian
varieties.

Definition

A Lagrangian fibration on a 2n-dimensional irreducible hyperkähler
manifold is the structure of a fibration over Pn whose generic
smooth fibre is a Lagrangian variety of dimension n.
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Lagrangian Fibrations

Matsushita’s theorem

Consider a fibration f : M → B with 0 < dimB < dimM. Then
dimB = 1

2dimM and the general fiber is a Lagrangian abelian
variety.

Hwang’s theorem

If the base B is smooth, then B = CPn.

Beauville-Bogomolov-Fujiki form

Given a hyperkähler M, there is a non-degenerate integral form q
on H2(M,Z) of signature (3, b2 − 3) satisfying Fujiki’s relation∫
M α2n = c · q(α)n for α ∈ H2(M,Z), with c > 0 a constant

depending on the topological type of M. This generalizes the
intersection pairing on K3 surfaces.
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Fibrations and SYZ

Observation

Given f : M → CPn, and h an ample class on CPn, then α = f ∗h
is nef with q(α) = 0.

SYZ Conjecture: Bogomolov; Hassett-Tschinkel; etc.

If L is a nef line bundle on M with q(L) = 0, then L induces a
Lagrangian fibration, as above.

Remark

This conjecture is known for deformations of K3[n] (Bayer–Macr̀ı;
Markman), for deformations of Kn(A) (Yoshioka), for O’Grady’s
O6 (Mongardi–Rapagnetta) and O10 (Mongardi–Onorati).
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Kobayashi’s pseudometric

Definition

The Kobayashi pseudometric on M is the maximal pseudodistance
dM such that all holomorphic maps f : (D, ρ)→ (M, dM) are
distance decreasing, where (D, ρ) is the unit disk with the Poincaré
metric.

Definition

A manifold is Kobayashi hyperbolic if dM is a metric.

Brody’s theorem

Let M be a compact complex manifold. Then M is Kobayashi
non-hyperbolic if and only is there exists an entire curve C→ M.
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Kobayashi’s conjectures

Kobayashi’s conjectures (1976)

1 For S a K3 surface we have dS ≡ 0.

2 For M hyperkähler we have dM ≡ 0.

3 A hyperkähler manifold M is Kobayashi non-hyperbolic.

Note

Mori-Mukai ’82: The first conjecture holds for projective K3
surfaces, using dominating families of (singular) elliptic curves.

K-Verbitsky’ 2012

All known hyperkähler manifolds are Kobayashi non-hyperbolic.
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Main Theorems

Verbitsky’ 2013

M. Verbitsky extended this to all hyperkähler manifolds.

Theorem 1 (K - Lu - Verbitsky’ 2014)

Let S be a K3 surface. Then dS ≡ 0.

Theorem 2 (K - Lu - Verbitsky’ 2014; K - Lehn’ 2022)

Let M be a primitive symplectic variety with ρ < max = b2− 2 and
deformation equivalent to a Lagrangian fibration. Then dM ≡ 0.

Theorem 3 (K - Lu - Verbitsky’ 2014; K - Lehn’2022)

Let M be a primitive symplectic variety with ρ = b2 − 2 and
b2(M) ≥ 7. Assume the SYZ conjecture holds for all deformations
of M. Then dM ≡ 0.
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Algebraic non-hyperbolicity (Demailly)

Proposition (Demailly)

Let M be a compact complex Kobayashi hyperbolic manifold. Let
h be a Hermitian metric with corresponding (1, 1)-form ωh. Then
there exists a constant A > 0 such that for any non-constant
holomorphic map φ : C → M from a smooth projective curve of
genus g , we have 2g − 2 ≥ A ·

∫
C φ
∗ωh.

Definition (Demailly)

The property above is called algebraic hyperbolicity.

Question

Since algebraic non-hyperbolicity implies Kobayashi
non-hyperbolicity, a natural question to ask is: are hyperkähler
varieties algebraically non-hyperbolic?
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Algebraic non-hyperbolicity

Theorem 4 (K - Verbitsky’ 2017)

Let M be a hyperkähler manifold with Picard rank ρ. Assume that
either ρ > 2 or ρ = 2 and the SYZ conjecture holds. Then M is
algebraically non-hyperbolic.

Key theorem (K - Verbitsky’ 2017)

Let M be a projective hyperkähler manifold with infinite
automorphism group. Then M is algebraically non-hyperbolic.

Generalization (Bogomolov - K - Verbitsky’ 2017)

Let M be a projective manifold with infinite automorphism group.
Then M is algebraically non-hyperbolic.
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Set-up

Teich

Consider the Teichmüller space Teich := Comp/Diff0(M) which
admits an action by the mapping class group
Γ := Diff+(M)/Diff0(M). The Teichmüller space is
finite-dimensional for M Calabi-Yau. An element I ∈ Teich is
ergodic if the orbit Γ · I is dense in Teich, where
Γ · I = {I ′ ∈ Teich : (M, I ) ∼ (M, I ′)}.

Verbitsky’s theorem

If M is hyperkähler and I ∈ Teich. Then I is ergodic if and only if
the corresponding positive oriented 2-plane contains no rational
vectors.
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Upper semicontinuity

Motivation for “ergodicity”

Via Global Torelli for hyperkähler manfolds, one identifies
Teich0

b = SO(3, b2 − 3)/SO(2)× SO(1, b2 − 3) = Per. The
mapping class group Γ acts on Per, and it turns out that this
action is ergodic using the Haar measure on Per and Calvin
Moore’s theorem.

Key Proposition

Let (M, J) denote a complex manifold with d(M,J) ≡ 0. Let
I ∈ Teich be deformation equivalent to J. Assume I is ergodic.
Then d(M,I ) ≡ 0.

Proof

Indeed, consider diam : Teich→ R≥0, the maximal distance
between two points. This is upper semi-continuous. Then
0 ≤ diam(I ) ≤ diam(J) = 0.
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Double fibrations

Theorem 1

Let S be a K3 surface. Then dS ≡ 0.

Proof of Theorem 1

Case I: ρ = b2 − 2
Then S is projective and dS ≡ 0 by Mori-Mukai.
Case II: ρ(S , I ) < b2 − 2
Then I is either ergodic or its orbit is in the “intermediate” case
and in both cases we can deform (S , I ) to a projective (S , J)
whence d(S ,I ) ≡ 0.

Key Theorem

Let M be a primitive symplectic variety, admitting two Lagrangian
fibrations associated to non-proportional nef parabolic classes.
Then dM ≡ 0.
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Double fibrations - Proof

Proof

Suppose we have
πi : M → Xi , i = 1, 2

with hi ample on Xi and αi its pull back to M. Then q(αi ) = 0
and the lattice 〈α1, α2〉 has signature (1, 1). Since q(α1, α2) 6= 0
we can compute as follows: Let Fi denote a fiber of πi , i.e.,
[Fi ] = αn

i . Then

[F1][F2] =

∫
M
αn
1 ∧ αn

2 = cq (α1, α2)n 6= 0.

Note that pseudodistances of points in a given fiber is zero. We
use this to connect arbitrary pairs of points in M using the two
fibration structures.



Proof of main theorem 2

Theorem 2

Let M be hyperkähler with ρ < max = b2 − 2 and deformation
equivalent to a Lagrangian fibration. Then dM ≡ 0.

Idea behind Theorem 2

The locus of Teich consisting of Lagrangian fibrations
self-intersects. In the intersection one can choose a deformation
with two Lagrangian fibrations as in the Theorem about double
fibrations, hence dM ≡ 0. In the case when ρ < b2 − 2, the
complex structure is either ergodic or in the intermediate orbit by
Verbitsky’s classification. In both cases since the complex structure
is deformation equivalent to one with vanishing Kobayashi
pseudometric, we use the upper semicontinuity Proposition in order
to complete the proof.
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Proof of main theorem 3

Theorem 3

Let M be hyperkähler with ρ = b2 − 2 and b2(M) ≥ 7. Assume
the SYZ conjecture holds for all deformations of M. Then dM ≡ 0.

Idea behind Theorem 3

If ρ = b2 − 2 ≥ 5 then there exists z ∈ Pic(M) with
q(z) = 0, z 6= 0 (by Meyer’s theorem for indefinite latices of rank
at least 5). The SYZ conjecture says z gives rise to a Lagrangian
fibration. Consider γ ∈ Γ1 := Aut(Pic(M)) with z ′ = γ(z) 6= z .
This way we get a second Lagrangian fibration. Apply the
Theorem about double fibrations.
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Singular setting

Definition

A primitive symplectic variety is a normal compact Kähler variety
X with rational singularities, such that H1(X ,OX ) = 0, and for a

symplectic form σ, H0(X ,Ω
[2]
X ) = Cσ.

Rational SYZ conjecture

Let X be a primitive symplectic variety. If a nontrivial movable line
bundle L on X satisfies qX (L) = 0, then L induces a rational
Lagrangian fibration f : X 99K B, i.e., a meromorphic map to a
normal Kähler variety B such that f has connected fibers and its
general fiber is a Lagrangian subvariety of X .
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Main theorem - singular case

Theorem (K-Lehn’2022)

Let X be a primitive symplectic variety. Suppose that every
primitive symplectic variety which is a locally trivial deformation of
X satisfies the rational SYZ conjecture. Then the following hold.

1 If b2(X ) ≥ 5, then X is non-hyperbolic.

2 If b2(X ) ≥ 7, then the Kobayashi pseudometric dX vanishes
identically.

Key ideas in the singular case

Finding one Lagrangian fibration is a way to produce
non-hyperbolic sub-tori, whose Kobayashi pseudodistance is
identically zero, and the bound b2(X ) ≥ 5 implies that there is a
non-trivial parabolic class which gives rise to a rational Lagrangian
fibration.
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Main theorem - singular case

Key ideas in the singular case - continuation

Finding two transversal Lagrangian fibrations implies vanishing of
the Kobayashi pseudodistance by the triangular inequality. Of
course, the more Lagrangian fibrations one needs to produce, the
more “space” one needs in the Néron-Severi group, and thus one
needs the bound b2(X ) ≥ 7 in the second case.

Another key idea

Given a rational Lagrangian fibration, together with C. Lehn we
show that there is either a second (rational) Lagrangian fibration
which is transversal to the first one, or there exist nontrivial
divisorial contractions. In the latter case, there is some birational
model for which the contracted Lagrangian fibration is chain
connected by its fibers. In both cases this leads to vanishing of the
Kobayashi pseudodistance.
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more “space” one needs in the Néron-Severi group, and thus one
needs the bound b2(X ) ≥ 7 in the second case.

Another key idea

Given a rational Lagrangian fibration, together with C. Lehn we
show that there is either a second (rational) Lagrangian fibration
which is transversal to the first one, or there exist nontrivial
divisorial contractions. In the latter case, there is some birational
model for which the contracted Lagrangian fibration is chain
connected by its fibers. In both cases this leads to vanishing of the
Kobayashi pseudodistance.



Generalizations - dominability results

Definition

An n-dimensional complex manifold M is dominable by Cn if there
is a holomorphic map F : Cn 99K M such that its Jacobian
determinant is not identically zero in the domain of F .

Theorem (K-Lu’2024)

Let M be a primitive hyperkähler variety of dimension 2n. If M
admits two distinct Lagrangian fibration structures, then M is
meromorphically dominable by C2n.

Theorem (K-Lu’2024)

Let M be a hyperkähler manifold of dimension 2n. If M admits a
Lagrangian fibration f : M → CPn with no multiple fibers in
codimension one, then M is holomorphically dominable by C2n.
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Thanks

Special thanks to the organizers!


