Too Many Daves

by Dr. Seuss

Did | ever tell you that Mrs. McCave
Had twenty-three sons, and she named them all Dave?

Well, she did. And that wasn't a smart thing to do.

You see, when she wants one, and calls out "Yoo-Hoo!
Come into the house, Dave!" she doesn't get one.

All twenty-three Daves of hers come on the run!

This makes things quite difficult at the McCaves'

As you can imagine, with so many Daves.

And often she wishes that, when they were born,

She had named one of them Bodkin Van Horn.

And one of them Hoos-Foos. And one of them Snimm.
And one of them Hot-Shot. And one Sunny Jim.
Another one Putt-Putt. Another one Moon Face.
Another one Marvin O'Gravel Balloon Face.

And one of them Zanzibar Buck-Buck McFate...

But she didn't do it. And now it's too late.

from The Sneetches and Other Stories by Dr. Seuss
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Terminology
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By analogy with Yang—-Mills’ theory, gravitational instantons are defined to be solutions of the classical Einstein
equations which are non-singular on some section of complexified spacetime and in which the curvature dies away at
large distances. The Schwarzschild and Taub-NUT solutions are simple examples, the latter being self-dual. A many
Taub-NUT solution is also given. The significance of the two integrals in the curvature which are pure divergences is
discussed.

Examples: Euclidean Schwarzschild solution,
Taub-NUT, multi- Taub-NUT, Eguchi-Hanson

CP? (?)
Belavin-Burlankov 76, Eguchi-Freund 76, Hawking '77, Gibbons-Hawking ‘78

In the early Euclidean quantum gravity papers
a Gravitational Instanton is a complete Einstein Riemannian 4-manifold with
finite Euler characteristic and signature.



All of the spaces below are required to be complete Riemannian 4-manifolds that are not flat.

e Gravitational Instanton:

Ric,, = Ag,, , xandfinite.

o Self-dual Gravitational Instanton:

1
Rm = *Rm , pl(TM)z—J tr Rm A Rm < 0.
872},

e Tesseron:

Non-compact Hyperkahler manifold with finite Pontrjagin number.

Note: Self-duality implies
p(TM) < 0o < ||Rm||;2 < oo.



Tesserons C Self-Dual Gravitational Instantons C  Gravitational Instantons
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Tesserons are distinguished by their asymptotic Volume Growth:

A ball of geodesic ball of radius R

Space Vol (Bg)
. AE R
. AF R
"""""""" AG R
"""""""" ALH  RR®

Classification of Tesserons was recently completed:

® ALE: Kronheimer ‘89

® ALF: Minerbe '07,'08

® ALG & ALH: G. Chen and X.-X. Chen ‘15;  G.Chen and Viaclovsky ‘21
® ALG™: G. Chen and Viaclovsky '21, Sun, Zhang '21

® ALH*: Hein, Sun, Viaclovsky, Zhang '21; Collins, Jacob, Lin ’21;
Lee, Lin 22



Asymptotic Model

A hyperkahler 4-mld with a triholomorphic isometry has a Gibbons-Hawking form:

. (dr + w)?
2+(T W)

g=Vx , where *;dV = dw,

All tesserons’ model ends have (locally):

JALE V=—F%
2] x|
N
JALF V=70 +—
2| x|
JALG V=C+ g 1n(x12 + x22 Current literature distinguishes:

ALG* and ALH* are spaces with N # 0, and

ALG and ALH are with N = 0 (locally constant fiber).



Prototypical example: Asymptotic metric:

— Circle fibration
2| x] R* metric in ‘radial coordinates’ (growing circle):

Quotient: R*/T,

. 2
g =—dx“ + 2x(df + w)

2x I c SUQ).
The Taub-NUT: Circle fibration
N > . e
JALF V=¢+— o= (£ 4 i)d;éz L (do+ ) (with stabilizing circle):
2 |.X' | 2X  + QL
JALG V=C+ g In(x? + x2) Elliptic Fibrations: Over cone base @
_|d8, + 1d8,|?
(ALG* IfN Sé O) g = TdedZ _|_ ;
72.

!
T=Tl+iT2=C+N2—ﬂan

e ALH V = C + Nx, t =1 +it, = C+iNz Over cylinder base\ )

<
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Classification

ALE: R* Aps1, Disy.and Eg, B, Eg Ay = R*
A, = T*P! = Eguchi-Hanson

ALF: 3% S Apsg and Disg Ay = Taub-NUT
A, = (k + 1)-centered multi-Taub-NUT
D, = Atiyah-Hitchin,
D, = deformation of double cover of D,

D, = deformation of (R> x §1)/Z,
ALG:

8 ALG? E, E, E, LD h A

R*x T% Dy, Dy, Dy, Dy, Dy, | . ‘

PN
ALH: E, E, .

SALH [ x 77 Ey By E, Bs Eg B, Ey —K3
E,,




ALE:

ALF:

ALG:
& ALG®

ALH:
& ALH"

Naive Parameter Count

11

Mn denotes n real parameters specifying the form of infinity and
m “interior” parameters.

R* A1, Disgeand Ejgrg:
0)o (3K)o

3 1
R*X§", Ao and Dy

(0)1

R? x T2,
(0)3

R x 77,
0)7

(K)o

Note: additional isometries

(3K)o reduce this Naive count,
e.g.A; ALE — (1),

(Bk)1  (BK)

Iy I* Ek=6,7,8
Di—o,123 D, 6.
(BK)3 (Bk)s  LWk=1,2,3

(Bk-1)1 (?)
E,, E,

E,,

E,, k5, E,, E5, E¢, E,, Eq,
(BK)3

and A; ALF — (1),

v Ire II*

E6’ E7’ E8
v hir 1
L5 , L, |, L4
1
—K3
2

(3x8)7



More terminology

In relating these spaces, studying their metric, and exploring gauge theory on them
it is extremely useful to realize each as a gauge theory moduli space.

For example, all of D-type ALF metrics were explicitly found
using their realization as moduli spaces of monopoles.

Realizing a tesseron as a gauge theory moduli space endows it with
a lot of interesting structure: families of tautological bundles,
connections associated to them, various operators, etc.

An abstract point in a tesseron acquires a body (gauge fields)
iIn some (4d, 3d, etc) world,

so, let us call it “incorporation”.

12



History of Incorporation

e ALE space = moduli spaces of a quiver = (quiver). Kronheimer '89

® ALF spaces:
Do ALF = Atiyah-Hitchin space = /(rk 2 Nahm equations). Atiyah-Hitchin ‘78, Nahm '80
AcALF = A (rk (1,k) Nahm Equations).
Dk ALF = A (rk (2,k) Nahm Equations). Ch-Kapustin ‘98

® ALG spaces:
Dk ALG = 4 (rk 2 Hitchin Equations on CP! with 2, 3, or 4 poles). Ch-Kapustin ‘00
All ALG = 4 (Hitchin systems on CP! with 3 or 4 singularities) Boalch ‘12 (*“Modularization”)

® ALH spaces:
Fo,...,Es ALH = . (Monopoles on R X T? w/ simple sings). Ch-Ward ‘12, Ch, Ch-Cross '19
Ez & Es ALH = (Sing. Monopoles on R X T? w/ sings). Thomas Harris ‘24

Moral: - - '
SN 9 a This makes some horizontal connections
L= - WuIvers between these moduli spaces apparent,
_F - Nahm or Bows but leaves others obscure.

|G - Hitchin or Slings \ertical connections remain obscure, though interesting.
'H - Monowalls

> > > >
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More terminology:

Let us take a more uniform view of ALL tesserons, by
realizing all of them as moduli spaces of monopoles in our
3-dimensional space.

Call it monopolization.

14



Monopolization

The very first step along this path was taken by Atiyah and Hitchin:
Do ALF = Atiyah-Hitchin space = ./ (centered 2 SU(2) monopoles)
R x S' = (1 SU(2) monopole)

Ax ALF = A (1 U(2) monopole with k+1 Dirac singularities)

Dk ALF = . (centered 2 U(2) monopoles with k simple Dirac singularities)

First: Let us relate all these ALF spaces (via Gromov-Hausdorff convergence)
and relate them to ALE spaces.

15
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Singular Monopoles

+_ 1 0

- =>4

Simple Dirac singularities at marked points p;, ..., p, and p1+, ...,pvt: D = i[_2xpg ] +0(1)
B 0 0

n—1,n—1

Note: More generally the charge is any cocharacter of the gauge group.

Boundary conditions:

0 Finite energy =>
+ O(r~?) center of mass is a “modulus”

R L
DE(RX) = — .
2 — Ayt ——

R?%x !

. '
)
o
|
S o
=
[\ )

Infinite energy =>

b =—d .+ g1 +Re—) + O(1/ a
21 tag(v; + ¢;log|z|+Re z) (A71z]) center of mass is fixed

Coordinates
Z=x+1y, @

1 H
Af = ——diag((gjarg +(b; + Im—L))d0+adarg 2) + O(|z|2)
T <

9 .
L. + +
R X I D8 = z—ﬂdlag(Qj—x+1\4j—) + O(1/x) Infinite energy =>

Coordinates ] center of mass is fixed
A8 = — —diag(QF0dg + 1,d0 + x;- dp) + O(1/x)
x, 0, 2r
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AP
?0 K Monopoles in R’

A

17

= Moduli Space:
¥ é Pk-1
Pk
® A single monopole moduli: position in R and phase in S (VAR3) x S%
| (/1 _ 1 0 \
- l 21X _9
DE(X) = — + 002
2l 0 =4 —
\ 212l

A ALF = multi-Taub-NUT

® A single monopole with k + 1 simple Dirac singularities | 5 5
with NUTs at pg, ..., Py

Po> .- P € R

® Two monopoles in R3: two positions and two phases
=> 8 dim moduli space with trinolomorphic isometry

Two centered monopoles in R> with center at ¢ € R? Do ALF = Atiyah-Hitchin

Two centered monopoles with k simple Dirac singularities ]_50, ey ﬁk_l e R’ Dk ALF

This picture leads to direct relations between these spaces!
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A AP
Po ® * Relations between ALF Spaces

A
¥ é Pi-1
Pk
A single with k + 1 simple Dirac singularities Py, ..., P, € R’ Ax ALF
Two centered monopoles with k simple Dirac singularities P, ..., p;_; € R’ Dk ALF
> A S A °§’...—>A1 AO S R3xS!
A A A
c> 0 e oo c—> o0 |c—o o c— 00
D= Pr—1—70 Pp—=>>®

—)Dk_l_l_)Dk )...—)Dz Dl—)DO



Very schematically:

* R:’) X Sl AO ALF
A ' -
5 All isometric! | Do |
1 A P1 = Do
| D1 | . "’
A |
- 5 Ay AALF
B = ™S ALF,
<CO
3 A AgALF,
P1 R3 x S | . =
All isometric! | Do



ol

Y D,ALF
A
P
1
c] 1
D,ALF
\)Q
oF
3y §1 % AALF
R~ X § X 0
</ 2 "
O % =
?,g’ '~~.0,f.7.{,3 y N | Pol
..... g
72
AlALF ~~~~~ k
1




Relation to ALE

- A3 A2 SA S R“

ALE lﬁi D4/ A
E, E E |
-
AN - 4,54, 25 A pﬁTAO VAR ><S1
ALF / /‘ /‘ / /‘

Py— 00 Pp—™©0
- D, 3—>D3 —>D2 —>D10—>DO

Moral: Ak-1- and Dk-ALE spaces are moduli spaces of monopoles
of holomorphic charge 1 or centered monopoles of holomorphic charge 2
with k simple Dirac singularities.

21



3, )¢ D,ALF,
¢
¥ 1
lc| 4
D,ALE
[R4 / Z2 E
X
Qg ) D,ALF,
R4
R4 _20
> 1
§
A+ 1o
Qb Po
A ALF,



Two Monopoles with

simple Dirac Singularities

Dk« ALE 2 centered U(2) monopoles with non-max symm. breaking

A

Dk ALF

on R3

2 centered U(2) monopoles with symm. breaking A

Do, D1, D2, D3, D4 ALG

2 centered U(2) monopoles with symm. breaking

on R3

A

R — o

2 1
on R X S

23



Including ALG

e Ay 5= A2 DA S IR“
A
ALE / T T T
. > Dy
e A—-0
E, > E, > E,
A A A —> 00 —> 00 — 00 — 00
S S S DRI i ey W i G W i SRV 1)
Vi
AL VAV ERVERVA
: : ,,g,—>D4p3—>D3—>D2—>D1—>DO
A A A A A
R — o0
LLI3 LLIo LLI
ALG

— 00 — — — 00

Eq, > E, - E,



Spectral View of >
Periodic Monopoles

Periodic Monopole = Monopole on

R?x S!l=CxS!
X,y @

Z=x+1y

Monowall = Monopole on
RxS!x St =C*xS!
x 6 ¢ x+ 16
s = exp
27Z'R(9

Eigenvalues of monodromy of V‘g + @ around the S factor form an algebraic curve

{F(z,) =0 | z € C,t € C*}

deg 1,
.l-deg z

1 « 1
~ (=In|z|+=1In M)
27R, P p

O

1
Subleading — term deformation is NOT L?!

<
Thus:

perim. & depth 1 coeffs = parameters
other coefficients = moduli

{P(s,) =0 | s € C* t e C*}

deg t ?

| Satﬂ i Ml

deg s

® P —

. 15
e27zR(p((I>+zA(p) ~ 1~ Mi“Sa

I a x 1
+—1nM,)

O ~ (
2zR, p 2Ry P

In|s|
All other deformations are L? |

Thus: perimeter coefficients = parameters
interior coefficients = moduli



Monowalls a1 *0

Ch’14

Monopole charges + singularities —> Newton polygon N Ch-Cross ‘19
Number of moduli = 4 x Internal integer points of N Qs Qn
o (Perimetr integer points ot ).\ ya
Number of parameters = 3 x [(Perimeter integer points of N) -3] Q_Q\ | - S
e VA
SL(2,z) moduli space isometry generated by Q-1 ‘ - | \Q+3
S = Nahm transform and

T= Adding constant magnetic field (A, ®) — (A — Odep, D + x1).
All integer Newton polygons with a single internal point up to SL(2,2):

Ee BN

pY v Y Ve
! !
. B :
p="T - b,,
Ve p VA Ve N
| f | :
E 72 N T
3 p=06 L. - - k,-
p | N ' v
E> , (> -\
p=5 L. -
Ve N Ve N

Eo
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An example:
E5 ALH—> D1 ALG

® onowall with one simple Dirac singularity
& charges (1,0) and (1,-1).

Spectral curve in C* X C*:

st? —eM(s? —us+ Dt +s—p=0

e Limit opening one periodic direction: Ry — 0

. 1% {
— 3 r
s = eRo let u=72+ R2 and eM — RezeM and [ = =
0 \/
P = eRq@ led modul led t 9'
rescaled modulus rescaled parameter constant shift

in Higgs field

® Limiting spectral curve in C X C*
fz—eM(zz—v)f+z—q =0

Periodic monopole of nonabelian charge 2 with one singularity.

In general: Exs1 ALH —> Dk ALG



ALE

ALF

ALG

ALH

Ey — B, — E
! ! A.._>A3

A

E; — E, — Eg

TTT

o

LLis

A

Ay

/

A

LLi>

A A

L1+

A

N O

N

A—-0

AR3XSI

\/ ' /

.|-D,——sD;,——D,— D, — D,

A

D, — D;—— D, —— D, —— D,

/ Ry — o

Vi

28



Horizontal ALH Relations

Eg——E;——E,——E,——E, ——E ——E,

BN

Limit of extreme
Higgsing at — oo

DA O

Tensoring with
abelian Dirac monowall

!

AN

Moving one Moving one Moving one .,
2 Limit of extreme
positive SINg.  negative sing.  negative sing. . .
o —o0 to + 00 to — 0 Higgsing at —oo

29



Space of all ALH metrics

The parameter space of ALH metrics is fibered over the “universal ALH associahedron”.

For example:

30



E-and Es ALH

These two cases were missing from the list of Monowalls with simple Dirac singularities.

Thomas Harris identified these as moduli spaces of
a) monowalls with more complicated Dirac singularities and

b) monowalls with non-maximal symmetry breaking at infinity!

This breakthrough allows to describe ALG and ALE limits.

Moral: E-type ALG and even ALE spaces are
moduli spaces of singular monopoles.

31



oo Ay —— Ay —— A —— R

ALE ...> D,

Ey — B, — E
A A

A

ALF

ALG

E; — E, — Eg

T

I b

e P A3

A

L3

Ay

/

A

LLl>

A A

LLI+

A—-0

VAR x 81

\/ ' /

..|-D,——sD,——D,— D, — D,

A

D, — D;—— D, —— D, —— D,

A

o

A

N O

/ Ry — o

Nz
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LLI-type ALG

Now it is time for LLI-type ALG spaces.

Each is a limit of a D-type ALG space!

Di ALG —> L4 ALG

Do ALG —> Ul ALG

D3 ALG —> L3 ALG



ALE
Ey — B, — E
A A A
ALF
ALG

E; — E, — Eg

T

.. > D,

/A

L= Ay —)AAz —— A — R*

/A

e P A3

//// ST

..|-D,——sD,——D,— D, — D,

A A

\

A

A

s ——— L >L114

\

)

A

A

A—-0

A VAR x 81

A

D, — D;—— D, —— D, —— D,

A

A

/ Ry — o
/El'

dastnnine

aNne




Future problems & generalizations

e Once every tesseron is a monopole moduli space,
every hyperkahler manifold is likely to be a monopole moduli space as well.

e For each tesseron find a construction of Yang-Mills instantons on it
(generalizing the ADHM-Nahm transform).

e From the monopole limiting procedure deduce relations between different
Quives, Nahm, Hitchin, etc systems.
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